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Abstract—Multi-source image fusion combines the information
coming from multiple images into one data, thus improving imaging
quality. This topic has aroused great interest in the community. How
to integrate information from different sources is still a big chal-
lenge, although the existing self-attention based transformer meth-
ods can capture spatial and channel similarities. In this paper, we
first discuss the mathematical concepts behind the proposed gener-
alized self-attention mechanism, where the existing self-attentions
are considered basic forms. The proposed mechanism employs
multilinear algebra to drive the development of a novel fully-
connected self-attention (FCSA) method to fully exploit local and
non-local domain-specific correlations among multi-source images.
Moreover, we propose a multi-source image representation embed-
ding it into the FCSA framework as a non-local prior within an
optimization problem. Some different fusion problems are unfolded
into the proposed fully-connected transformer fusion network (FC-
Former). More specifically, the concept of generalized self-attention
can promote the potential development of self-attention. Hence, the
FC-Former can be viewed as a network model unifying different
fusion tasks. Compared with state-of-the-art methods, the proposed
FC-Former method exhibits robust and superior performance,
showing its capability of faithfully preserving information.

Index Terms—Transformer, multilinear algebra, model-driven
neural network, multi-source image fusion, multispectral and
hyperspectral image fusion, remote sensing pansharpening, visible
and infrared image fusion.
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I. INTRODUCTION

THE use of deep learning technology for the analysis and
processing of biomedical and image information has be-

come an important research direction [1], [2], [3]. In the field
of multi-source image fusion, there is widely application in
various image processing problems, such as image fusion [4],
[5], [6], image denoising and reconstruction [7], [8], [9], image
enhancement [10], and further applied to high-level computer
vision tasks, such as classification [11], object detection [12],
[13], and medical diagnosis [14]. Differently from the incom-
plete information that can be captured by a single device, a
multi-source imaging system can better describe the informa-
tion in the scene, e.g., combining visible and hyperspectral
images, or thermal infrared images in night scenes, as well as
panchromatic and multispectral data, digital images, etc. Hence,
multi-source image fusion (MSIF) can be divided into several
research fields, such as multispectral and hyperspectral image
fusion (MHIF) [15], [16], visible and infrared image fusion
(VIS-IR) [17], [18], remote sensing pansharpening [19], [20],
[21], [22], multi-focus image fusion, and multi-exposure image
fusion. The fused image preserves spatial information and spec-
tral images for MHIF, remote sensing pansharpening, while for
VIS-IR, digital photographic image fusion, the complementary
features of the two images are fused to avoid the influence of the
shooting environment on the camera.

Recently, deep-learning techniques have obtained increasing
attention, clearly outperforming the latest model-based meth-
ods [27], [28]. Classic CNN-based methods [29], [30] adopt
single scale [31] or multi-scale structures [32], [33], [34] to
learn high-quality information for various vision tasks. However,
in the aforementioned approaches, the network structure deter-
mines whether the information in the data can be fully extracted.

Researchers have also devoted attention to model-driven neu-
ral network techniques that offer both good interpretability and
superior generalization capabilities getting state-of-the-art re-
sults. Model unfolding methods [35], [36] represent an example
in this class. These approaches involve the transformation of a
linear observation model through a certain variant replacement
(i.e., the half-quadratic splitting (HQS) [37], [38] and the al-
ternate direction multiplier method (ADMM) algorithm [39]).
Afterwards, the transformed model is converted into a learnable
network structure, thus endowing the traditional method with
a nonlinear representation [40], [41]. As prior knowledge, the
deep [42] and autoencoder priors [43] impose local priors. A
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Fig. 1. The current existing forms for self-attention along spatial or channel modes. They are built by matrix multiplication, connecting all the other elements
in one mode. To illustrate the information representation of self-attention, we show four key variants: self-attention (SA) [23], window-SA [24], reduced SA [25],
and cross-scale SA [26]. For multi-source image fusion tasks, cross-scale SA can process mutual fusion at different scales. For example, the Query, Q, can be the
LR-HSI, then the matrices K and V can both be the HR-MSI. Hence, the SA can retain domain-specific information from different domains, while simultaneously
disregarding the two internal source paradigms across scales.

non-local method has been proposed in [44] using non-local
priors for model-driven neural networks.

However, the aforementioned single-scale networks lack con-
textual guidance for feature representations. In contrast, multi-
scale networks always reduce the spatial resolution of features
in the process of feature extractions using skip-connections to
compensate for information loss, thus failing to achieve the ex-
pected feature representation for the multi-source image fusion
task. Another shortcoming is that CNN-based methods have
limited receptive fields and feature representation ability due to
static kernels for feature extraction [45], [46]. Recent exploration
into the self-attention (SA) mechanism within transformers, as
elaborated by Vaswani et al. [23], seeks to unveil latent non-
local relationships across specific dimensions (or modes). More
specifically, transformer-based methods [24], [47], [48] exploit
corresponding non-local information by computing the response
of a given pixel along a specific dimension (or mode). Trans-
former methods, proposed in the field of multi-source image
fusion [49], [50], capture domain-related non-local information
in both spatial and spectral domains. However, the quality of
fused images is limited due to a lack of multi-dimensional
information. Therefore, researchers developed various forms
of self-attention and performed matrix multiplication among
three factors (Query, Key, and Value) along different dimensions
(or modes) within intra-scales (aka in-scale) and cross-scales,
i.e., spatial self-attention, channel self-attention, and hybrid
self-attention, as shown in Fig. 1. Regarding spatial in-scale
self-attention, each spatial element is connected to all other ele-
ments while integrating channel information, without being able
to perceive the channel information of each element. Besides,
some hybrid self-attention methods combined different vertical
and horizontal self-attention paths to model pixel relations in
all dimensions [51], [52]. Since the in-scale self-attention is
intrinsic similarity, it cannot learn cross-scale patch similarity,
leading to reduced accuracy. Accordingly, Mei et al. [53] ex-
plored in-scale and cross-scale self-attention in an independent
connection module. Zhou et al. [54] proposed a cross-scale

Fig. 2. The comparison between the existing self-attention mechanism and
the proposed fully-connected self-attention framework based on the proposed
generalized self-attention scheme.

self-attention to build spatial similarity in two feature resolutions
of the image. Instead, NLRN [26] directly adopts a non-local
framework as soft block matching, and euclidean distance with
a kernel function to measure the spatial self-similarity. They
just verify that the cross-scale patch similarity widely exists in
a single dimension (mode) of the images.

Although the above-mentioned papers provided relevant con-
tributions, they show some shortcomings in feature represen-
tation. On one hand, self-attention just achieves preliminary
similarities for one or more unfolded dimensions (modes). This
leads to a lack of multi-dimensional information. On the other
hand, in-scale and cross-scale self-attentions are independent,
and thus not unified in a mathematical mechanism.

In this work, we derive a generalized version of self-attention
from the computational process of self-attention in terms of
multilinear algebra [55], [56]. Based on the proposed gener-
alized self-attention mechanism, the form of self-attention can
be further extended by getting the so-called fully-connected
self-attention (FCSA). Fig. 2 depicts the relationship between
the proposal and the existing self-attention mechanism. After-
wards, we present a novel architecture for the task of multi-
source image fusion (MSIF), i.e., the fully-connected trans-
former (FC-Former). The proposed FC-Former adopts three
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Fig. 3. Schematic illustration of the different MSIF tasks, including multi-
spectral and hyperspectral image fusion, visible and infrared image fusion, and
remote sensing pansharpening.

parallel branches for cross-scale fusion, where one branch re-
tains the same resolution as the HR-MSI and serves as the
main branch. One of the remaining two branches has the same
spatial resolution as the LR-HSI image, and the last one is
twice that of the LR-HSI image. The FCSA module succes-
sively calculates the in-scale channel self-attention from each
branch and performs cross-scale spatial self-attention among
branches. Compared with previously developed advanced hy-
brid non-local self-attention and transformer methods [53], [57],
the proposed FCSA method implements the characteristics of
intra-branch and inter-branch non-local self-similarity (NSS)
into feature maps connecting each dimension (mode) to learn
multi-dimensional information from these feature maps via
multilinear products. Moreover, it also achieves intra-scale and
cross-scale feature aggregation for MSIF tasks. Overall, our FC-
Former can fully consider the differences among features from
multi-source images. The obtained feature extraction enables
the network to capture more details, leading to more faithful,
accurate, and high-quality reconstructions.

The main contributions of this paper are summarized as
follows:

1) The proposed generalized self-attention provides a unified
framework relied upon a multilinear product among three
factors for the existing self-attention mechanisms.

2) We propose a novel fully-connected self-attention frame-
work (FCSA). The FCSA framework overcomes the limi-
tations of self-attention in terms of multi-dimensional and
domain-related characterizations. The proposed FCSA
method can fully exploit the characteristics of feature
maps among parallel branches, such as cross-scale and
intra-scale, local, and non-local self-similarity.

3) We propose a novel architecture, called FC-Former, which
is the first fully-connected self-attention network with
multi-scale feature representation. Benefiting from the in-
formation fidelity of high-resolution branches, our model
achieves state-of-the-art performance for some MSIF
tasks as shown in Fig. 3, i.e., multispectral and hyperspec-
tral image fusion (MHIF), visible and infrared (VIS-IR)
image fusion, and remote sensing pansharpening. Exten-
sive ablation experiments corroborate the effectiveness of
the proposed network. In addition, we also provide digital
photographic image fusion results in the supplementary
material.

4) The proposed multi-source image representation incorpo-
rates and unfolds the fusion problem into the FC-Former.

The network can be considered interpretable thanks to the
explicit characterization of both image priors and feature
representation.

This paper is an extended version of the conference paper
in [58], which is the first cross-scale parallel fusion network
specifically designed for remote sensing pansharpening, called
DCFNet. In this version, we extended the work in [58] from
both methodological and application points of view. The related
improvements are as follows:

1) The DCFNet shows a trade-off between parameter number
and feature representation. To get a win-win situation, we
propose the new idea of generalized self-attention, even
developing the FCSA framework to fully exploit multiple
sources of information.

2) The proposed FCSA framework explores self-attention
along different unfolded dimensions (modes), fully con-
sidering the differences between spatial and channel fea-
tures.

3) We develop a model-inspired FC-Former, where the pre-
fusion design is replaced by a multi-source input repre-
sentation embedded as a network prior that improves the
outcomes using classical physical constraints.

4) Unlike DCFNet, which is a network tailored to the pan-
sharpening problem, three different applications are con-
sidered in this work: multispectral and hyperspectral im-
age fusion (MHIF), visible and infrared image fusion
(VIS-IR), remote sensing pansharpening, and digital pho-
tographic image fusion.

The rest of the paper is organized as follows. Section II
sequentially presents three related works: model-based methods,
data-driven methods, and model-driven methods. This section
also provides the motivation for the work. Section III introduces
the proposed mathematical idea and framework as well as the
overall network. In Section IV, we conduct extensive experi-
ments on three MSIF tasks. Furthermore, additional discussions
and ablation studies demonstrating the FC-Former’s superior
performance, efficiency, and low parameters are reported in
Sections V and VI. Finally, concluding remarks are drawn in
Section VII.

II. RELATED WORK

A. Model-Based Methods

In the MSIF task, some early methods exploited domain-
specific features of source images using linear transformations,
see, e.g., component substitution (CS) [59] and multi-resolution
analysis (MRA) [60], [61] approaches.

Other methods related to the MSIF problem belong to the vari-
ational optimization-based (VO) class. VO approaches yield the
unknown fused image by minimizing a given domain-specific
optimization problem involving the multi-source images in in-
put. The advantages of VO methods are the better representation
of the information and an elevated interpretation. Prior knowl-
edge is introduced by adding a regularization term to address
the ill-posed nature of the optimization problem. For example,
sparse representation methods in the VO class are related to the
building of a dictionary to model (as a prior) the sparsity for
image patches [62], [63], [64]. To regularize image gradients,
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spatial priors impose the first-order smoothness on the unknown
(fused) image [65], [66]. Some other methods [27], [67] exploit
the low-rank property. Subspace analysis [67] and matrix/tensor
decomposition [67], [68] have also been used in conjunction
with the low-rank property. However, handcrafted priors are not
usually enough to represent real-world data accurately.

B. Data-Driven Deep Learning Methods

Deep learning (DL)-based methods have successfully ex-
ploited their powerful feature representation capability. DL-
based methods can be roughly summarized as convolutional
neural network (CNN)-based methods and transformer-based
methods. Regarding pansharpening, PNN has been proposed
in [69]. It is based on a three-layer CNN to obtain the pansharp-
ened image (HR-MSI). To fuse useful high-frequency informa-
tion based on physical constraints, in [70], the fusion process is
formulated as a linear observed model in which deep and fusion
networks are used to extract and fuse features from different
source images. Some specialized modules, such as the multi-
scale mechanism [49] and the spatial/channel attentions [71],
have recently been proposed for the MSIF problem. To enlarge
the receptive field, a pixel-adaptive convolution method has been
proposed, the so-called LAGNet [72], to exploit pixel-to-pixel
similarity in local windows to characterize content-aware fea-
tures. Bandara et al. [73] designed a cross-attention mechanism
to correlate pixel relations for multi-source images in MHIF.
Besides, Ma et al. in [74] first presented a transformer-based
framework for VIS-IR image fusion and digital photographic
image fusion, explaining the significance of the transformer’s
long-distance dependency on image fusion tasks. The study
in [75] first blends image matching, fusion, and semantic
awareness into the same framework, yielding promising results.
Wang et al. [76] leveraged domain knowledge to design a
semi-supervised transfer learning method to fuse infrared and
visible image fusion. However, the above-mentioned networks
are limited by the use of multi-scale and multi-dimensional
feature representation from the self-attention mechanism, often
resulting in poor fusion performance.

C. Model-Driven Deep Learning Methods

Wang et al. [77] proposed the DBIN model, where the estima-
tion of the exploited observation model and the related fusion
process are optimized iteratively and alternatively during the
reconstruction. Xie et al. [15] proposed the so-called MHFNet to
combine a low-rank prior and a complete basis set of HR-HSIs to
build the unfolding network. Guo et al. [2] designed a variational
gate mechanism to fuse three different similarities of miRNAs
via a novel contrastive cross-entropy function. As in the case
of classical convolutional networks, where local information
is extracted by convolutions, the deep [42] and autoencoder
priors [43] also impose local priors for model-based methods.

Non-local self-similarity (NSS) priors have recently been
explored in various research fields [23], [78]. The approaches
based on the use of these priors consider similar pixels/patches
of a given image to exploit the internal redundant informa-
tion. The self-attention mechanism is a good instance of NSS
methods based on long-range dependencies through matrix

multiplication. Unlike feature representation of convolutions,
transformer [79] can theoretically expand the receptive field
infinitely, thereby correlating different pixels/patches to each
other. Transformer methods often demonstrate a superior ability
to learn intrinsic features compared to CNN-based approaches.

To date, non-local networks [80] and transformer meth-
ods [81] represent state-of-the-art mechanisms in computer vi-
sion. To encourage joint feature learning across two dimensions
(modes), cross-modality transformers [57], [74] have recently
been designed to learn better feature representations between
two different domains. Wang et al. [44] integrated a data-driven
NSS prior and the HQS method addressing the problem with an
optimization-inspired deep neural network.

D. Motivation

In multi-source image fusion, the input data contains rich
multi-dimensional information and domain-specific informa-
tion, namely, local and non-local similarities within or across
scales, as well as spatial and spectral information. To fully
explore this potential information, we use multilinear algebra
to develop the mathematical concepts behind the generalized
self-attention mechanism and propose the FCSA framework.

The naive self-attention-based methods are often limited to a
single dimension or a specific perspective, resulting in the loss
of key information from different sources. To solve this prob-
lem, the FCSA mechanism can simultaneously integrate process
multi-dimensional feature information from different scales and
domains, and fully mine rich details in the image. Then, the
FCSA framework can deeply explore the information interaction
between various features in the image. By parallel branch design,
the FCSA framework establishes a fully connected relationship,
ensuring the maximum utilization of potential information in the
input data.

MSIF networks do not often get contextual guidance for
feature representation, even showing a feature extraction phase
that usually reduces the features’ spatial resolution. Hence, we
cannot advise its use for MSIF tasks. Instead, starting from
the promising results obtained in our conference paper, we
develop, in this work, the so-called FC-former network based on
the FCSA framework to consider feature similarity within and
across scales while obtaining discriminative information from
different sources.

III. FULLY-CONNECTED TRANSFORMER MODEL

A. Generalized Self-Attention Mechanism

In this section, we first summarize the necessary notations
and give several new definitions used in this paper. For the MSIF
task, an image and another image are defined as I1 ∈ R

H×W×c

and I2 ∈ R
h×w×C , respectively. The desired fused image is

indicated as If , where the scale ratio is r = H/h (e.g., 4 or 8).
For the MHIF task, the source images are the HR-MSI and the
LR-HSI, respectively, while for the visible and infrared image
fusion, are the infrared and the visible images, respectively, and,
for remote sensing pansharpening, are the panchromatic image
and the multispectral cube, respectively.
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Before introducing the generalized self-attention and the
FCSA method, we first describe the classic spatial self-attention
(Spa-SA) based on the definition of the batched matrix multi-
plication. Given the input tensor X ∈ R

B×P×N×C , the Spa-SA
can be formulated as follows:

Q = XWT
Q,K = XWT

K,V = XWT
V,

A = Softmax

(
QKT

√
d

)
,

Z = AV +X, (1)

whereWQ,K,V indicates the learnable parameters,Z represents
the output features, the Query is Q ∈ R

NQ×CQ determining the
spatial sizes of the output features and of the attention matrix, the
Key and Value are K ∈ R

NK×CQ and V ∈ R
NK×CV defining

the sizes of the attention matrix and of the output channel of
Z, respectively. K and V must have the same spatial size, i.e.,
NK = NV = N . We assume that Q and K are d-dimensional
vectors. The attention,A, relies upon the dot product betweenQ
and K to get spatial self-similarity, which influences V and vice
verse. Thanks to the self-attention mechanism, transformers can
achieve self-similarity along a specific dimension (mode).

Next, we will introduce the generalized self-attention mech-
anism through the following new definitions and theorems.

Definition 1 (Tensor Blocking): For a 4th-order tensor, X ∈
R

I1×I2×I3×I4 , a window (q × q) is set to be centered at each
spatial location. Tensor blocking with stride (s× s) generates a
blocking tensor, T ∈ R

I1×P×q×q×I2 . Thus, we have:

T = unfold
(q×q)
(s×s)(X ), (2)

where P denotes the number of patches and satisfies P =∏4
i=3

Ii−q+2∗p
s , where p is the border padding. The unfold

operator is implemented in Pytorch [82] with fast runtime.
Definition 2 (Batched Mode-k Unfolding): Given an N th-

order tensor,X ∈ R
I1×I2×···×IN ,n = (n1, n2, . . . , nN ) is a vec-

tor reordering. The batched mode-k unfolding of X is defined

as X[n,k] ∈ R

∏k−1
i=1 Ini

×
∏N

j=k+1 Inj
×Ik (1 < k ≤ N, k ∈ Z),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X[n;k](in1
in2

· · · ink−1
, ink+1

ink+2
· · · inN

, ink
) =

reshape(X , [In1
In2

· · · Ink−1
,

Ink+1
Ink+2

· · · InN
, Ink

]), 1 < k < N,
X[n;N ](in1

in2
· · · InN−2

, inN−1
, inN

) =
reshape(X , [In1

In2
· · · InN−2

, InN−1
, InN

]), k = N,

(3)

and its inverse operator yields X = reshape(Xn, [In1
, In2

,
. . . , InN

]) via indices n = (n1, n2, . . . , nN ).
Definition 2 can have well tensor permutation, X =

X(in1
, in2

, . . . , inN
) based on vector n.

Definition 3 (Batched Tensor Product): Supposing that
an M th-order X ∈ R

I1×I2×···×IM and an N th-order Y ∈
R

J1×J2×···×JN . Assume that two vectors m = (m1,m2,
. . . ,mM ) and n = (n1, n2, . . . , nN ) are vectors satisfying
Imi

= Jnj
for i = 1, 2, . . . , k. The batched tensor product be-

tween X and Y along mode k (1 < k ≤ min(M,N), k ∈ Z) in
matrix form is as follows:

Z = X ×m1,m2,...,mk
n1,n2,...,nk

Y, (4)

where the size ofZ is
∏k−1

i=1 Imi
×
∏M

j=k+1 Imj
×
∏N

j=k+1 Jnj

for 1 < k < min(M,N), k ∈ Z, or
∏M−2

i=1 Imi
× IN−1 ×

JN−1 for k = min(M,N). The last dimensions of X and
Y are contracted. The batched tensor product is the batched
format of the multilinear product and requires Imi

= Jni
for

i = 1, 2, . . . , k when k �= min(M,N), or Imi
= Jni

for i =
1, 2, . . . , k − 2, k when k = min(M,N). The associative and
commutative properties are not satisfied.

In Fig. 4(a), we give an illustration of the above definitions.
Below, we will introduce the theorems of the generalized self-
attention mechanism.

Theorem 1: Supposing that X ∈ R
I1×I2×···×IM and Y ∈

R
J1×J2×···×JN are two tensors. Thus, we have:
1) YT (in1:k−1

, ink+1:N
, ink

) = Y(in1:k−1
, ink

, ink+1:N
),

2) Z = X ×m1,m2,...,mk
n1,n2,...,nk

Y ⇔ X[m;k]Y
T
[n;k].

The interested readers can refer to the supplementary material
to have a look at the proof of Theorem 1. Theorem 1 describes the
relationship between the batched tensor product and the batched
matrix multiplication. Below, Theorem 2 will consider the self-
attention mechanism with two special tensor forms by using the
above definitions.

Theorem 2 (Generalized Self-Attention Mechanism): Let us
assume an N th-order tensor, X ∈ R

I1×I2×···×IN , the learn-
able parameters, W ∈ R

Iik×J3 , and the reordering vector, i =
(i1, i2, . . . , iN ). The generalized self-attention of X has three
reordering factors, Q, K, and V ∈ R

J1×J2×J3 along mode k,
where (J1, J2, J3) = (

∏k−1
i=1 Iii ,

∏N
j=k+1 Iij , Iik). Let us define

m = (m1,m2, . . . ,mN ) and n = (n1, n2, . . . , nN ) as indexes
of the batched tensor product. The generalized self-attention
generates two matrices A and Z along the kth dimension (mode
k), which have the following forms:

Q = X[i;k]W
T
Q, K = X[i;k]W

T
K, V = X[i;k]W

T
V,

A = Softmax

(Q×m1,m2,...,mk
n1,n2,...,nk

K
√
d

)
,

Z = A×1,nk+1−k+1,nk+2−k+1,...,nN−k+1,2
n1,n2,...,nk

V +X[i;k], (5)

where matrices Q,K,V, and A perform the inverse operator of
batched mode-k unfolding to tensor format.

The interested readers can refer to the supplementary material
to have a look at the proof of Theorem 2. Here, by utilizing
the tensor blocking operator given in Definition 1 and the
batched mode-k unfolding operator in Definition 2, we can
sequentially obtain three factors, Q, K, and V, represented
in the self-attention mechanism. A graphic illustration of the
generalized self-attention is in Fig. 4(b). A special form of spatial
self-attention is shown based on our generalized mechanism.

By using the proposed definitions and theorems, we can derive
several forms of self-attention. For example, assuming that the
input tensor Y is RB×d×C×H×W , transforming the dimensions
H ×W into the spatial size S, for multi-head spatial self-
attention, the batched mode-3 unfolding is performed to generate
Q,K, andV ∈ R

Bd×S×C , where i = (1, 2, 4, 5, 3). Afterwards,
the batched tensor product is performed for Q, K and V,
wherem = n = (1, 2, 3). For the channel self-attention, we first
merge the H and W dimensions to obtain Y ∈ R

B×d×C×S ,
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Fig. 4. Graphical illustration of the batched tensor product in Definition 3. Furthermore, we present the spatial self-attention based on the proposed definitions.
The tensor blocking of Definition 1 takes precedence over the batched mode-k unfolding.

TABLE I
SOME NOTATIONS USED ARE SUMMARIZED AS FOLLOWS

then Y[i;4](1, 2, 3, 4) yields Q, K, and V ∈ R
Bd×C×S , which

is also derived from batched mode-4 unfolding. In addition,
assuming that the input tensor Y is R

B×d×P×S×C , the spatial
and spectral multi-head self-attention forms are the same as
above. Definition 2 gets three factors of self-attention with three
dimensions of information, i.e., Q, K, and V ∈ R

Bd×P×SC ,
called patch self-attention [83], [84]. Further descriptions of
the existing self-attention forms can be found in other related
papers [85].

Remark 1: For Q, K and V ∈ R
I1×I2×···×IN , the generalized

self-attention generates tensors A and Z along the kth dimen-
sion. In addition, Theorem 5 can have a simplified form that
specifies the batched tensor product as Q×m1,m2,m3

n1,n2,n3
K and

A×1,m3,2
n1,n2,n3

V, where the inverse operator of batched mode-k
unfolding is not used.

Previous works introduced different forms of self-attention
and explored multi-dimensional information based on hybrid
structures. In the paper, we exploit multilinear analysis in tensor
algebra to generalize these self-attention forms.

B. Fully-Connected Self-Attention Framework

The separated matrices Q, K, and V, are multi-dimensional
and domain-related. This information at different modes lacks
an effective way to be combined. Based on the generalized self-
attention mechanism, we can develop the FCSA framework. The
FCSA framework is depicted in Fig. 5. More specifically, we use
cross-scale and intra-scale (aka in-scale) self-attention to trans-
fer features among features at different or at same resolutions.
Following Theorem 2 and the previous self-attention mecha-
nisms, the FCSA framework transforms three 1× 1 Conv2D
layers obtaining Q, K, and V, to calculate the response in
the same resolution branch. Afterwards, we adopt cross-scale
self-attention, which is defined in Theorem 2. Finally, these
features are transformed into new features along different modes
with different resolutions and channels.

The inputs of the FCSA framework are the high-resolution
(HR) feature maps, FH and IH , the medium-resolution (MR)
feature maps, FM and IM , and the low-resolution (LR) feature
maps, FL and IL. The tensors IH , IM , and IL represent
important source images, such as multispectral and thermal
images, etc, which are downsampled to a lower resolution. Af-
terwards, the FCSA model calculates self-attention along each
of their modes. By employing the proposed idea of generalized
self-attention, the fully-connected self-attention scheme is as
follows:

(ZH ,ZM ,ZL) = FCSA[mk;nk](XH ,XM ,XL). (6)

Authorized licensed use limited to: Mohamed bin Zayed University of Artificial Intelligence. Downloaded on February 10,2025 at 13:54:32 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: FULLY-CONNECTED TRANSFORMER FOR MULTI-SOURCE IMAGE FUSION 2077

Fig. 5. Illustration of the FCSA framework. The proposed FCSA framework unifies several self-attention mechanisms, such as [49] and [57], and includes their
corresponding multilinear product representation. The FCSA framework can facilitate the fusion of local and non-local prior information within and across images
from different sources. Note that stages 2 and 3 of the FCSA are simply plotted, not affecting the required tensor format.

Here, we further use feature branches to represent input ten-
sors, i.e., (XH ,XM ,XL). Then, XH = (FH , IM , IL), XM =
(FM , IH , IL), and XL = (FL, IH , IM ) denote the three fac-
tors (i.e., Query, Key and Value), respectively. [mk;nk] is one
of the reordering vectors of m and n at mode k. For a better
understanding of (6), the detailed algorithm is reported in Algo-
rithm 1.

Equation (5) performs the transfer of feature maps at different
resolutions. When transferring a lower resolution branch to a
higher resolution branch, the Query represents higher resolution
feature maps, while Key and Value denote lower resolution
feature maps. Following Definitions and Theorem 2, lower-
resolution feature maps influence higher-resolution feature maps
according to the reordering vector mk. Furthermore, these dif-
ferent resolution feature maps can progressively aggregate new
feature maps from high-to-low and low-to-high branches and
transfer the cross-scale feature maps back to high-resolution
branches. In summary, the proposed scheme can enhance feature
representation and achieve higher performance.

Remark 2: It is worth remarking that the FCSA framework
conducts multi-dimensional self-attention using the generalized
self-attention mechanism. The separated matrices, Q, K, and
V, are used to calculate two different unfolded self-attentions.
This induces both the long-range spatial and the global chan-
nel responses. The FCSA framework retains the transformer’s
solution while reducing the computational cost and increasing
non-local information. The FCSA can improve the performance
of MSIF, as reported in Table VI.

C. Complexity Analysis

Let us transform an N th-order tensor, X ∈ R
I1×···×Ik×···×IN ,

into I1 × · · · × Ik−1 × S × C, where Ik = S or Ik = C.
Then, we have batched operations for i < k, and multilin-
ear product operations for i ≤ k, 1 < i ≤ N . Therefore, the

Algorithm 1: One Stage of FCSA.

computational complexity of the FCSA is O(
∏k−1

i=1 IiI
2
kIk+1 +∏k−2

j=1 IjI
2
kIk−1), that is,O(

∏k−1
i=1 IiS

2C +
∏k−2

j=1 IjSC
2). The

computational complexity linearly increases with the size of the
image and the number of channels. Besides, self-attention has
some (GPU memory) storage costs. The FCSA storage cost,
which depends on S and C, is O(

∏k−1
i=1 IiS

2 +
∏k−2

i=1 IiC
2),

consistently with the hybrid self-attention considering both spa-
tial and spectral modes.

D. Multi-Source Image Representation

Several networks for MSIF can be separated into two parts:
deep and fusion sub-networks. The simplest fusion method relies
upon just adding or concatenating features. Instead, in this work,
we will introduce two more elaborated fusion strategies: (a)
dynamic branch fusion; (b) model-based branch fusion.
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Dynamic Branch Fusion: In our previous work [58], we
showed that different resolutions have unequal effects on fusion
results. Thus, feature maps at different resolutions should be
reweighed before being combined by the dynamic branch fusion
(DBF) module. The DBF method adds fusion coefficients to
features at different resolutions and resizes features at the same
resolution before the weighted fusion. The DBF method can be
widely applied to different fusion scenarios, thereby we chose it
as the baseline for the multi-source image representation (MSIR)
module.

Model-based Branch Fusion: The DBF method does not
consider physical constraints. Physical constraints are usually
introduced by linear observation models [9], [35]. The linear
relationships (reflecting prior knowledge) among input and out-
put data of the MSIF problem are computed by solving an
optimization problem. By using MSIR with linear observation
models, we can draw the following conclusions.

Lemma 1 (Linear Observation Models for MSIF): Assume
the MSIF problem with X ∈ R

HW×S denoting the desired re-
sults. The linear observed models, having as information sources
two cubes Y ∈ R

hw×S , and M ∈ R
HW×s, where (H,W ) and

(h,w) denote the different spatial sizes (with a scale ratio
r = H

h ), and S and s indicate the number of spectral bands for
the two inputs, are as follows:

Y = f1(X), M = f2(X). (7)

The functions f1(·) and f2(·) represent degradation operators.
Thus, the objective function can be formulated as:

X = argmin
X

||Y − f1(X)||F + ||M− f2(X)||F + φ(X).

(8)

Remark 3: For the MHIF problem, f1 and f2 can be defined
as f1(X) = XBS and f2(X) = RX, where B, S ∈ R

HW×hw,
and R ∈ R

S×s denote the blur operator, the downsampling
operator, and the spectral response matrix, respectively. f1 and
f2 are the spatial and the spectral fidelity terms, respectively.
The problem can be solved into the linear least squares frame-
work [15]. Similar linear relationships hold for other related
MSIF problems.

It is worth to be pointed out that, to obtain the desired fused
image, we adopt the proximal gradient algorithm [86] to solve
the problem as follows.

Theorem 3 (Interpretable Model-based Unfolding Represen-
tation [86]): Let an observed image, Y, be the corrupted (or
degraded) tensor version through a function f(·) of an unknown
image, X, having a simplified form as:

X = argmin
X

1

2
||Y − f(X)||2 + φ(X). (9)

There exists, X̂, solution of the algorithm, in the form:

X̂(t+1) = prox(ληφ)(X(t) − η∇g(X(t))), (10)

where prox(ληφ)(·) denotes a proximal operator, η is a weighting
coefficient, ∇g(·) is the gradient operator, and t is an iteration
index.

Problem 9 requires HQS or ADMM frameworks to be solved.
For different regularization terms, including deep network pri-
ors, we usually can have a closed-form solution. For the MHIF
problem, the gradient ofX is:∇g(X(t)) = (X(t)D−Y)DT +
RT (RX(t) −M), where the degradation operator D = BS.

By separating each sub-problem and transforming it into a
specific network form, we can build an optimization-induced
deep network through employing the MSIR block. It allows the
network to approximate the proximal operator of a regularizer,
not just a denoiser [35], [84].

The main difference among several fusion problems is how
to formulate a fusion model. In this work, we embed the ob-
served model into the FC-former to realize an interpretable deep
network for MSIF. The proposed FC-former network will be
introduced in Section III-E.

Remark 4: It is worth to be remarked that the optimization-
induced neural network is motivated by the linear observed
model and its solution. Under the aforementioned framework,
the regularization term can provide a non-linear representation
in the objective function. This allows us to estimate the solution
by exploiting deep learning and physical constraints.

E. Network Architecture

The overall architecture of the fully-connected transformer
(FC-Former) is presented in Fig. 6. It consists of three parallel
branches: the main HR feature branch, the MR feature branch,
and the LR feature branch. More specifically, the three branches
are arranged in parallel, and they are progressively combined
to form three stages. The main HR feature branch considers
H ×W spatial size images from different domains. The MR
feature branch receives the MR input and the feature maps from
the HR branch. Similarly, the LR feature branch takes an LR
input and the feature maps from the above two branches as input.

For the inputs in each branch, we design MSIR as the head
structure of each branch to aggregate feature maps transferred
from other branches with source images, as shown in Fig. 6.
From an implementation point of view, inspired by HRNet [34],
we chose the residual block and bottleneck as building blocks.
The convolution kernel of the residual block of each branch
is the same. Finally, the stacked residual blocks are arranged
behind the MSIR blocks. Therefore, a complete stage is built to
extract better features. Finally, we train the proposed model on
supervised and unsupervised tasks. Let I = {I1, I2, . . . } denote
input images from different sources. Then, for the supervised
task, we use the mean absolution error (i.e., �1 loss; L1) and
the structural similarity index measure (SSIM) as losses [50]
(LSSIM) to calculate differences between outputs and ground-
truths (GTs):

Θ = argmin
Θ

L1(fΘ(I),GT) + λLSSIM(fΘ(I),GT), (11)

where λ is set to 0.1 to balance the two losses,GT is the ground-
truth image, and fΘ is a non-linear function depending on the
learnable parameters Θ.

For unsupervised tasks, we use the intensity loss (L1), SSIM
loss (LSSIM), and texture loss (Ltext), to compute the loss between
output and input images. The details of the loss functions can
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Fig. 6. The overall architecture of FC-Former. The blue boxes represent network stages and the yellow parts denote the FCSA method depicted in Fig. 5.

Algorithm 2: Fully-Connected Transformer Algorithm.

be found in related works [17], [74], [87].

Θ = argmin
Θ

λ1L1 + λ2LSSIM + λ3Ltext, (12)

where each term L is L(fΘ(I), I). λ1, λ2, and λ3 are hyper-
parameters.

The FC-Former is summarized in Algorithm 2.

IV. EXPERIMENTS AND RESULTS

We assess the performance by comparing the proposed model
for different tasks, i.e., the MHIF, the VIS-IR image fusion,
and the remote sensing pansharpening. In addition, digital
photographic image fusion tasks (i.e., multi-exposure image
fusion and multi-focus image fusion) are shown in the supple-
mentary material. MHIF data have different spatial and spectral
resolutions. The VIS-IR image fusion task relies upon unsu-
pervised image fusion (combining data at the same resolution).
Finally, the remote sensing pansharpening task considers both
simulated and real-world data to fully assess the performance of
our method and its generalization ability. The proposed approach
is implemented in Pytorch and trained on a workstation with 2
NVIDIA GeForce RTX 3090 GPUs and 128 GB memory. For
the sake of brevity, we selected results of some representative
methods. The interested readers can refer to the supplementary
material to have a look at all the outcomes.

A. Multispectral and Hyperspectral Image Fusion

Setup: We test the proposed method on two widely used
MHIF datasets (i.e., CAVE [106]1 and Harvard [107]2)
considering 15 state-of-the-art techniques: MTF-GLP-HS
[88]JSTARS′2015, CSTF-FUS [108]TIP′2018, BDSD-PC
[59]JSTARS′2015, LTTR [109]TNNLS′2019, LTMR [67]TIP′2019,
UTV [110]JSTARS′2020, DBIN [77]ICCV′2019, SSRNet
[89]TGRS′2021, HSRNet [71]TNNLS′2021, MoG-DCN [35]TIP′2021,
Fusformer [90]GRSL′2022, DHIF [91]TCI′2022, 3DTNet
[84]IF′2023, MIMO-SST [92]TGRS′2024, DCINN [93]IJCV′2024.

Datasets: We assess the performance on the CAVE and Har-
vard datasets simulating a scaling factor of 4/8. Details about
the simulation procedure are provided in the supplementary
material. We randomly chose 20 samples for the simulated
training/validation dataset. The remaining 11 samples are used
for testing, i.e., balloons, cd, chart and stuffed toy, clay, fake and
real beers, fake and real lemon slices, fake and real tomatoes,
feathers, flowers, hairs, and jelly beans.

Results: The results are reported in Table II. For scaling factor
4, we also showed the true-color images of the fusion results and
the corresponding error maps in Fig. 7. It can be noted that both
the details and color accuracy of the proposed method are closest
to the GT. Besides, the high performance of our technique is also
reported using scaling factor 8, see Table II. Table II generally
shows that our method achieves competitive results compared
to the benchmark.

B. Visible-Infrared Image Fusion

Setup: Since our method is a general model, we can substitute
the MHIF fusion task with the visible and infrared (VIS-IR)
image fusion problem. The related datasets (i.e., TNO [111]3 and
RoadScene [17]4) are publicly available. To build training and
testing data, all red-green-blue (RGB) inputs are converted into
the YCbCr color space, and then image fusion is performed be-
tween the IR image and the luminance (Y) channel. We compare
the proposed FC-former with 11 representative state-of-the-art
methods: NSST [94]TIM′2018, DenseFuse [95]TIP′2018, IFCNN

1http://www.cs.columbia.edu/CAVE/databases/
2http://vision.seas.harvard.edu/hyperspec/
3https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/

1008029
4https://github.com/hanna-xu/RoadScene
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TABLE II
QUANTITATIVE RESULTS FOR THE MHIF TASK COMPARING SOME REPRESENTATIVE STATE-OF-THE-ART APPROACHES

Fig. 7. In the first row, true-color fused images are depicted obtained by the proposed FC-Former and by some representative methods on chart and stuffed toy
with scaling factor 4 for the CAVE dataset. In the second row, the related error maps (calculated between the fused image and the GT) are represented. Some
close-ups are also considered.

[96]IF′2020, DDcGAN [97]TIP′2020, U2Fusion [17]TPAMI′2020,
YDTR [87]TMM′2022, DecompFusion [98]ECCV′2022, SwinFuse
[112]TIM′2022, SwinFusion [74]JAS′2022, EMMA [100]CVPR′2024

and TC-MOA [99]CVPR′2024.
Datasets: According to [113] and the website5, we have

98/38 training/test images for the TNO dataset. For the Road-
Scene dataset, we randomly selected 190/10/20 pairs for

5https://github.com/Linfeng-Tang/Image-Fusion

training/validation/test containing heterogeneous characteris-
tics, such as roads, vehicles, and pedestrians. We use the same
data augmentation strategy as U2Fusion [17] (i.e., images are
randomly cropped to patches of size of 64× 64 with flipping)
to enlarge the number of samples.

Results: The quantitative results related to the TNO and Road-
Scene datasets are shown in Table III. Five quality metrics are
used to assess the performance, i.e., the peak signal-to-noise ratio
(PSNR) [114], the SSIM [115], the learned perceptual image
patch similarity (LPIPS) [116], Qabf [117], and Qs [118]. It is
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TABLE III
QUANTITATIVE RESULTS FOR THE VIS-IR IMAGE FUSION TASK ON THE TNO AND ROADSCENE DATASETS. PLEASE, REFER TO

SECTION IV-B FOR FURTHER DETAILS

Fig. 8. Comparison among some representative state-of-the-art methods for the VIS-IR image fusion task. Some close-ups are depicted in yellow and red boxes.
No error map is depicted because of the absence of a GT.

clear that our FC-Former achieves state-of-the-art performance
on both the VIS-IR datasets, getting superior SSIM and LPIPS
metrics and top performance (close to the best) on the PSNR,
Qabf , and Qs metrics. Some qualitative results are depicted in
Fig. 8(a) and (b). It can be observed that our approach gets high
performance, accurately preserving details without introducing
issues, such as grayscale biases, artifacts, or noise.

C. Remote Sensing Pansharpening

Setup: We compare our method using a publicly available
remote sensing pansharpening dataset [6], namely PanCol-
lection, consisting of data acquired by WorldView-3 (WV3),
QuickBird (QB), GaoFen-2 (GF2), and WorldView-2 (WV2)
sensors. Reduced resolution data are simulated starting from
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Fig. 9. Visual comparisons involving some representative pansharpening methods on one example of the reduced resolution WV3 dataset. True-color fused
images are depicted in the first row. The second row is devoted to error maps between fused images and the GT. Some close-ups are also reported in yellow and
red boxes.

real-world images exploiting Wald’s protocol [119]. It is very
valuable to perform experiments on remote sensing pansharp-
ening because it allows for a more comprehensive evaluation
of model performance in real fusion scenarios. In addition,
we compare the proposed approach with 15 state-of-the-art
methods. They are divided into four classes [120], i.e., CS, MRA,
VO, and DL (CNNs and transformers) methods:6

1) Component substitution (CS) methods: BT-
H [121]GRSL′2017 and BDSD-PC [59]TGRS′2019.

2) Multi-resolution analysis (MRA) approaches: the gener-
alized Laplacian pyramid (GLP) with modulation transfer
function (MTF)-matched filters [122] and its full-scale
regression version (MTF-GLP-FS) [101]TIP′2018.

3) A variational optimization-based (VO) technique:
LRTCFPan [27]TIP′2023.

4) DL methods: 11 CNN-based approaches, such as
PNN [69]RS′2016, PanNet [70]ICCV′2017, MSDCNN
[123]JSTARS′2018, DiCNN [124]JSTARS′2019, FusionNet
[102]TGRS′2020, LAGNet [72]AAAI′2021, DCFNet
[58]ICCV′2021, HMPNet [103]TNNLS′2023, CANNet
[104]CVPR′2024, and PanMamba [105]Arxiv′2024, and
one transformer-based technique, i.e., Invformer
[57]AAAI′2022. All the compared DL methods are trained
on the same data using default experimental settings (as
suggested in the related papers) for fair comparison.

Datasets: The dataset can be downloaded at.7 We chose WV3,
GF2, and QB data for performance assessment, and WV2 data
to test network generalization. The number of testing samples
for each reduced resolution and full resolution dataset is 20 (i.e.,
160 images in total). Please, refer to the supplementary material
for further details.

Results: To evaluate the quality of the proposed method, we
use reference and no-reference quality metrics.8 The reduced

6All the obtained results are reported in the supplementary material.
7https://github.com/liangjiandeng/PanCollection
8https://github.com/liangjiandeng/DLPan-Toolbox/tree/main/02-Test-

toolbox-for-traditional-and-DL(Matlab)

resolution assessment exploits the following reference-based
quality metrics: the spatial correlation coefficient [125] (SCC),
the spectral angle mapper [126] (SAM), the erreur relative glob-
ale adimensionnelle de synthése [127] (ERGAS), and the Q2n
(Q8 for 8-band data and Q4 for 4-band data). From Table IV, the
proposed FC-Former outperforms the other methods for almost
all metrics, and it is very close to the optimal values for the rest
of the cases. Fig. 9 shows the fused results with the related error
maps to appreciate the goodness of the outcome of the proposed
approach.

To assess the performance on real (full resolution) data, where
the reference image is not available, indexes without reference
are used, i.e., the spectral distortion (Dλ), the spatial distor-
tion (Ds), and the hybrid quality with no reference (HQNR)
indexes [128]. Table IV reports the average performance on the
full resolution (FR) examples for the exploited public dataset.
Again, FC-Former obtains the best results on average with the
lowest standard deviations, showing its superiority and greater
stability. Furthermore, in Fig. 10, we show visual results on
a full resolution WV3 example. The outcome of the proposed
FC-Former shows more details and a better visual quality.

V. DISCUSSIONS

In this section, we will discuss the components of the proposed
FC-Former. Without loss of generality, we consider the MHIF
problem using the CAVE ×4 dataset as an example.

A. MSIR

We analyze the FC-Former combined with classical fu-
sion methods. Two model-based fusion methods, model-based
branch fusion (MBF)-1 and MBF-2, have been adopted. In
MBF-1 [53], the mutual-projected fusion is used to replace the
simple addition or concatenation of feature maps. The residual
between two features from the in-scale and cross-scale branches
is downsampled into the original identity branch, transferring
information from both cross-scale and in-scale features. In
contrast, MBF-2 [35] adopts model-guided fusion to perform
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TABLE IV
QUANTITATIVE RESULTS FOR THE REMOTE SENSING PANSHARPENING TASK COMPARING SOME REPRESENTATIVE STATE-OF-THE-ART APPROACHES

Fig. 10. Visual comparisons involving some representative pansharpening methods on one example of the full resolution WV3 dataset. True-color fused images
are depicted in the first row. The second row is devoted to the HQNR maps. Some close-ups are also reported in yellow boxes.
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TABLE V
COMPARISON OF BRANCH FUSION APPROACHES ON THE CAVE ×4 DATASET

Fig. 11. The PSNR values between the proposed FC-Former and the second
best method for the three fusion tasks. The FC-Former achieves robust and
superior performance with a small parameter number and FLOPs considering the
CAVE ×4, the RoadScene, and the WorldView-3 (WV3) datasets. RR denotes
reduced resolution data simulated starting from full resolution (FR) images.
The red dotted arrow, in the remote sensing pansharpening case, indicates
the performance gain compared to the conference version [58]. The circle
radius indicates the parameter number (i.e., the larger the circle, the higher
the parameter number).

the MSIR operation. The MBF-2 explicitly incorporates the
observation model into the MHIF problem, where a convolution
network is used as a denoiser and guidance. In contrast, the
deep network based on the FCSA framework can get a nonlinear
representation with a non-local self-similarity prior. The DBF
method represents the basic implementation for the MSIR mod-
ule. Table V shows that the FC-Former has a better performance
by using MBFs to deal with multi-source inputs. Finally, it
indicates that our FC-Former is an interpretable network, which
is capable of combining the advantages of the model-driven and
data-driven approaches.

B. Complexity Analysis

It is well known that there is a trade-off between the per-
formance of DL methods and the number of parameters (or
computational cost). Fig. 11 shows these trade-offs for 23 state-
of-the-art approaches belonging to the considered three fusion
tasks. It can be concluded that the proposed FC-Former achieves
the best trade-off. Moreover, in Fig. 12, we show that the floating
point operations per second (FLOPs) of the FC-Former are quite

Fig. 12. PSNR vs. FLOPs for all the high performance methods on MSI/HSI
images with sizes of 16× 16/64× 64 and 16× 16/128× 128 related to the
CAVE ×4 and ×8 datasets, respectively. The proposed FC-Former (indicated
with a star marker) gets the best PSNR values with a small amount of FLOPs.

low, yet it achieves the highest performance in both the CAVE
test cases.

VI. ABLATION STUDY

We consider in this section, without loss of generality, the
CAVE ×4 dataset to conduct ablation studies.

A. Fully-Connected Self-Attention

The proposed FCSA framework, corresponding to the mul-
tilinear algebra in Section III-A, retains several forms of self-
attention along different unfolded modes. To explore the effects
of the FCSA framework, we perform ablation studies by con-
sidering five improved DCFNet methods and using the original
DCFNet as a baseline. Table VI reports the average and the corre-
sponding standard deviation results for the proposed FC-Former
approaches. It can be observed the beneficial effects of adding
self-attention into the baseline. Indeed, fusion results with self-
attention get higher performance on all the metrics. When the
cross-scale self-attention is the spatial self-attention (Spa-SA)
and the in-scale self-attention is the channel self-attention (CAL-
SA), the FCSA framework achieves the best results.

B. Spatial Multi-Head Self-Attention

Leveraging the trade-off between global dependency and
computational complexity in spatial multi-head self-attention
(Spa-MSA), we employ a window-based Spa-MSA to model
long-range information along the spatial mode. In Table VII,
we compare the effects of different window sizes, reducing
it from the HR to the LR branch to have a long-range re-
sponse with a flexible range. We chose a window size of
16/8/4 as a good trade-off between computational burden and
performance.

Authorized licensed use limited to: Mohamed bin Zayed University of Artificial Intelligence. Downloaded on February 10,2025 at 13:54:32 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: FULLY-CONNECTED TRANSFORMER FOR MULTI-SOURCE IMAGE FUSION 2085

TABLE VI
ABLATION STUDIES FOR THE FCSA FRAMEWORK USING CROSS-SCALE AND/OR IN-SCALE ATTENTION

TABLE VII
A COMPARISON OF DIFFERENT WINDOW SIZES FOR THE WINDOW-BASED

SPA-MSA FOR THE HR, THE MR, AND THE LR BRANCHES

VII. CONCLUSION

In this paper, inspired by multilinear algebra, we proposed
the mathematical idea of the generalized self-attention to unify
and generalize existing self-attention mechanisms. Based on this
generalized mechanism, we developed the first fully-connected
self-attention framework that captures intra- and cross-scale
patterns, as well as local and non-local similarities. Through
theoretical analysis and broad experiments, the proposed FCSA
framework addresses the representation issue at different dimen-
sions (modes) and scales while achieving better detail recon-
struction and lower computational costs. Afterwards, we built
a fully-connected transformer network using the FCSA frame-
work, called FC-Former. In this case, the multi-source image
representation module provides support to improve the physical
interpretation of the network and to guide the FCSA regulariza-
tion. FC-Former demonstrated superior performance with high
efficiency and low parameters (and computational costs) for
MHIF, VIS-IR image fusion, remote sensing pansharpening, and
digital photographic image fusion. Thanks to the positive impact
of strong feature representations for different fusion tasks, the
proposed method can outperform some state-of-the-art methods,
specially designed for the above-mentioned problems, demon-
strating its usefulness for a wide range of image processing tasks.
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