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Abstract—Complex networks serve as abstract models for understanding real-world complex systems and provide frameworks for

studying structured dynamical systems. This article addresses limitations in current studies on the exploration of individual birth-death

and the development of community structures within dynamic systems. To bridge this gap, we propose a networked evolution model that

includes the birth and death of individuals, incorporating reinforcement learning through games among individuals. Each individual has a

lifespan following an arbitrary distribution, engages in games with network neighbors, selects actions using Q-learning in reinforcement

learning, and moves within a two-dimensional space. The developed theories are validated through extensive experiments. Besides, we

observe the evolution of cooperative behaviors and community structures in systems both with and without the birth-death process. The

fitting of real-world populations and networks demonstrates the practicality of our model. Furthermore, comprehensive analyses of the

model reveal that exploitation rates and payoff parameters determine the emergence of communities, learning rates affect the speed

of community formation, discount factors influence stability, and two-dimensional space dimensions dictate community size. Our model

offers a novel perspective on real-world community development and provides a valuable framework for studying population dynamics

behaviors.

Index Terms—Complex networks, Evolutionary games, Reinforcement learning, Community structure, Stochastic process.

I

1 INTRODUCTION

F ROM the internet to mobile communication networks
[1], [2], social relationship networks [3], [4], biological

networks [5], [6], and transportation networks [7], [8], etc.
[9], [10], [11], complex networks have become ubiquitous
and have an increasing impact on human production and
life. How to establish a dynamic evolution mechanism for
complex networks that accurately reflects real-world condi-
tions is a key challenge in the field of complex networks. The
origin of complex networks dates back to 1,960 when Erdős
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and Rényi [12] established the theory of random graphs,
which pioneered the study of complex networks. The “six
degrees of separation” small-world experiment conducted
by Milgram [13] in 1,967 is a classic example of an empirical
study of complex networks. At the end of the 20th century,
Watts and Strogatz [14] proposed small-world networks,
Barabási and Albert [15] developed scale-free networks.
They respectively revealed the small-world and scale-free
properties of complex networks, built corresponding mod-
els to elaborate the mechanisms of these properties, and
successfully explained the widespread small-world prop-
erties [16], [17] and power-law distributions [18], [19] in
reality. Since then, network science has started to emerge,
and various novel complex network models have sprung
up in people’s vision.

An extensively developed complex network model not
only provides insights into the evolutionary patterns of real
network structures but also facilitates the investigation of
various collective behaviors within structured populations,
including synchronization [20], [21], evolutionary games
[22], [23], propagation [24], [25], and so on [26], [27], [28].
This capability makes it a valuable tool for studying and
understanding complex phenomena in diverse fields. In
1,992, Nowak and May [29] first introduced spatial chaos
into the prisoner’s dilemma, and their findings revealed
that the cooperation frequency in the network remained
stable at around 0.374, regardless of the specific values of the
game parameters. Subsequent studies [30], [31] have further
demonstrated that spatial structure has a positive impact
on the evolution of cooperation in evolutionary games.
However, the study published by Hauert and Doebeli [32]
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challenged this notion by suggesting that spatial structure
actually inhibits the evolution of cooperation in the snow-
drift game. Later, Santos and Pacheco [33] conducted studies
on scale-free networks and demonstrated that cooperators
play a dominant role in both the prisoner’s dilemma game
and snowdrift game, providing a plausible explanation for
the existence of cooperation in real-world scenarios. With
the development of complex network theory and evolution-
ary game theory, various mechanisms have been proposed
to promote cooperative behavior. One of the most renowned
contributions is the five rules introduced by Nowak [34].
Furthermore, more recent researches have uncovered that
reputation [35], [36], reward and punishment mechanisms
[37], [38] and game transitions [39], [40] also play significant
roles in facilitating the persistence of cooperation. These
findings have shed new light on the diverse strategies and
mechanisms that contribute to the survival and evolution of
cooperative behavior in various contexts.

Complex network modeling based on real-world phe-
nomena is a classical idea and has been strongly studied.
After the efforts in recent years, substantial progress has
been made in the study of complex networks, numerous sta-
tistical features of complex networks have been discovered,
and a growing number of complex network models that are
more realistic have been proposed one after another [41],
[42], [43]. For example, in recent years, some researchers
found that the number of individuals in the network should
not only increase but also decrease. Feng et al. [44] noticed
this point and proposed a novel evolving network model
that takes the growing and decreasing process into account
based on the queueing system. Ref. [45] discussed the re-
lationship between higher-order interactions and collective
behavior based on the fact that interactions can often occur
in groups of three or more individuals, which cannot be
expressed simply in terms of pairwise interactions.

Despite the significant attention and fruitful results
achieved in complex network modeling, existing research
falls short in deriving the formation and evolutionary mech-
anisms of community structures from the game interactions
among individuals. This phenomenon is pervasive in prac-
tice, ranging from interactions among small microorganisms
[46] to large-scale strategic games among nations [47]. More-
over, community structures are a key feature of complex
networks [48]. Numerous empirical studies have shown
that many networks exhibit heterogeneity, i.e., they consist
of various types of nodes rather than random connections
among a vast number of nodes of the same nature, where
there are more connections of the same type of nodes and
relatively few connections of different types of nodes [49],
[50]. We refer here to the subgraphs formed by nodes of the
same type and the edges between these nodes as commu-
nities in the network. Communities observed in real-world
networks represent distinct collections of different specific
objects. For example, communities in citation networks
consist of related papers on the same topic, communities
in the World Wide Web are groups of websites discussing
similar subjects, communities in social networks represent
real social groups based on interests or backgrounds, and
communities in biochemical networks or electronic circuit
networks can denote specific functional units. The iden-
tification and analysis of communities in these networks

provide valuable insights for understanding their structures
and dynamics and optimizing their functionality.

To fill this gap and address the shortcomings of previous
studies, this paper primarily applies networked evolution-
ary game theory and Q-learning in reinforcement learning
to uncover the formation and development mechanisms
of community structures in real-world systems. To the
best of our knowledge, this is the first study to model
complex networks based on individual game interactions
using reinforcement learning. Concretely, we assume that
the individuals within a system are intelligent and have
the potential to alter their locations in the two-dimensional
space at any given moment to maximize their payoffs. They
learn from past experiences to determine which mobile
actions will yield the highest rewards, but occasionally make
random choices due to limited intelligence or knowledge.
Simultaneously, we develop a mechanism for transforming
the distribution of individuals in a two-dimensional space
to the network structure in a high-dimensional space. We
note that individual rewards are determined through the
games they are engaged in with their network neighbors. To
model this process, we apply Q-learning in reinforcement
learning, a model-free reinforcement learning approach,
which identifies the optimal action plan based on the indi-
vidual’s current state. The typical structure of the network
generated according to our model is shown in Fig. 1, which
exhibits clear community structures, where different colors
indicate different communities. Moreover, we conduct a
comparative analysis of the evolution of community and
cooperative behaviors both in systems with and without the
birth-death process, and we apply them to real populations
and networks, yielding promising results. Additionally, we
perform a comprehensive analysis of the model’s influence
on the community and assess our model in comparison to
the heuristic model and classical networks.

Fig. 1. An example of the network structure generated according
to our model. The figure shows a network structure generated based
on our model, where different colors denote different community struc-
tures, suggesting that the model proposed in this paper can provide an
explanation for the formation and development of community structures
in reality.

The model proposed in this paper offers a novel per-
spective for understanding the emergence and evolution of
communities, bridges the gap left by previous studies in
this aspect, advances the study of complex network mod-
eling, and introduces a novel framework for examining the
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dynamics on structured populations, such as evolutionary
games, propagation, and synchronization.

In summary, the major contributions of this paper can be
outlined as follows:

• We propose an innovative model for the dynamic
evolution of complex networks based on a game
between individuals with reinforcement learning.
Besides, we establish a transition mechanism that
maps the distribution of individuals in the two-
dimensional space to the network structure in a high-
dimensional space.

• We introduce a birth-death process of individuals
to the system and determine the scale and distribu-
tion of the system at the steady state through both
theoretical and experimental analyses. Furthermore,
we compare it with systems without a birth-death
process in numerical simulations.

• The practicality of the model is validated by fit-
ting the population of different countries and the
degree distribution of real networks. The compari-
son between the model proposed in this paper and
classical networks in terms of network structure,
degree distribution, clustering coefficient, etc. is also
conducted.

• The model proposed in this paper provides a novel
perspective on the emergence and development of
community structure in reality, and the impacts of
the parameters on community structure have been
investigated from various aspects.

The remainder of this paper is structured as follows: In
Section 2, we display the details of the complex network
model based on the game of individuals with reinforcement
learning. In Section 3, we conduct some simulations to
validate our theory, observe the evolution of community
structure and population cooperative behavior in systems
both with and without the birth-death process, and fit the
proposed model to population data and real networks.
Subsequently, Section 4 offers a comprehensive analysis
of the formation and evolution of community structures
from various perspectives. Then, we provide a comparative
analysis of the proposed models in Section 5. Finally, in
Section 6, we summarize our study and provide some points
for improvement.

2 EVOLVING NETWORKS BASED ON A GAME

BETWEEN INDIVIDUALS WITH REINFORCEMENT

LEARNING

In this section, we introduce a novel evolving network
that considers the birth-death of individuals using the queu-
ing theory. We assume that each individual with self-learning
will move in the two-dimensional space based on their past
experiences and interactions with neighbors in a game and we
transform these individual dynamics into the corresponding
network structure in a high-dimensional space through the
proposed mechanism.

2.1 Birth-Death Process of Individual

First, we consider a system with r× r locations, where each
location can be represented by a lattice in a two-dimensional
space (containing r × r lattices). Each individual in the system
has a lifetime that follows a general distribution. Besides, new

individuals are input to the system at a specific rate ¼ that
follows an exponential distribution [44] with the probability
distribution:

f1(x;¼) =

{

¼e−λx, x ≥ 0
0, x < 0

. (1)

The exponential distribution is employed to model individ-
ual births due to its memoryless property and mathematical
simplicity, which make it an effective representation of inde-
pendent random events in various natural processes. Addition-
ally, the time intervals between events in many biological and
physical phenomena align well with the assumptions of the
exponential distribution [51], [52]. For instance, in large natural
populations, the birth times of individuals typically occur as
uncorrelated random events, with intervals that often exhibit
the characteristics of an exponential distribution.

Then, the size of the system N(t), i.e., the number of indi-
viduals in the system at time t, can be regarded as a continuous-
time Markov chain with the state space E = {0, 1, 2, · · · }. In
addition, we assume that each individual in the system is a
customer, and its behavior before leaving the system at the
end of its lifespan is a service. Thus, this dynamic process
of the input and output of individuals can be described by
a M/G/∞ queueing system, where M represents a Poisson
process for the input of individuals, G indicates the lifespan
of an individual obeying a general distribution, and∞ denotes
the number of individuals in the system belonging to [0,∞). We
illustrate the impact of the birth and death of individuals on the
system size in Fig. 2. The first and third rows depict the birth
and death rates of the system, respectively, with birth intervals
following an exponential distribution and lifespans adhering to
a general distribution. The second row indicates that the size of
the system falls within the range of [0,∞).

0 1 k-1 k...

System scale
...

끫欌0 끫欌1 끫欌끫殰−1끫欌끫殰−2 Birth rate... ...끫欌끫殰
끫欎1 끫欎2 끫欎끫殰끫欎끫殰−1...

Death rate
...끫欎끫殰+1

Fig. 2. Phase transition of system scale. The system scale undergoes
a transition from k − 1 to k at an exponential rate of λk−1 or from k to
k − 1 at a general rate of µk, and the system size is constrained within
the range of [0,∞).

Next, we derive the scale at which the system evolves to
reach a plateau. Before presenting the results, we first give
some illustrations. We suppose that S is the service time of
an individual and that an individual staying in the system at
time t indicates that the arrival time x of the individual obeys
t− S < x < t. The individual arrives before time t is a uniform
distribution with range [0, t] since the arrival of individuals is
a Poisson process. Therefore, we can deduce the probability
that an individual arrives before time t and still remains in the
system is:

X(t) =

∫ t

0

P [S > t− x]

t
dx =

∫ t

0

1−G(t− x)

t
dx, (2)

where G represents the distribution function of the service
time.

We consider that the probability of the number of individ-
uals at time t and those that arrive before t follows binomial
distribution and the arrival time of each individual is i.i.d.
Then, for those m ≤ n, we get

Pn,m(N | A, t) = Cm
n [X (t)]m [1−X (t)]n−m

=
n! [X(t)]m [1−X(t)]n−m

m!(n−m)!
.

(3)
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Otherwise, i.e., for those m > n, it is obviously that

Pn,m(N | A, t) = 0. (4)

Therefore, the number of individuals in the system at time
t (N(t)) and those that arrive before t (A(t)) follows the condi-
tional probability:

Pn,m(N | A, t) = P{N(t) = m | A(t) = n}

=

{

n!X(t)m[1−X(t)]n−m

m!(n−m)!
, m ≤ n

0, otherwise
.

(5)

Subsequently, we investigate the limiting probability distri-
bution of the system size.

Theorem 1. For the continuous-time Markov chain N(t) with
the state space E, assume that the expectation of death process
{G(t), t ≥ 0} exists, its limiting probability {Ãi, i = 1, 2, · · · } exists
and follows

Ãi = lim
t→∞

pi (t) = lim
t→∞

P {N (t) = i}

=
{¼E[G(t)]}i

i!
e−λE[G(t)].

(6)

The proof of Thm. 1 is given in Section 1 of the supple-
mentary material for those who are interested. According to
Thm. 1, we can derive the probability distribution of the system
size when it evolves to a steady state. Furthermore, we deduce
certain statistical properties of the system size based on the
limiting probability demonstrated in Thm. 1.

Theorem 2. The average scale of the system is

E[N(t)] = ¼E[G(t)], (7)

the variance of the scale is

D[N(t)] = ¼E[G(t)], (8)

and the average staying time of each individual is

E(T ) = E[G(t)]. (9)

The proof of Thm. 2 can be found in Section 2 of the
supplementary material for those who are interested. Therefore,
we can obtain the expected scale of the system, the dispersion
of a set of scales, and the lifespan of an individual when the
parameter ¼ and the death process {G(t), t ≥ 0} are known.

2.2 Individual Movement Based on Reinforcement

Learning

We consider the case that each individual in the system
has the potential to change its location at each moment to
pursue a greater profit. Besides, every individual is intelligent,
i.e., can get information from past experiences to determine
which mobile actions will yield the highest benefits. In other
words, the individual’s choice of mobile behavior is based on
learning experience, rather than obeying some simple rules.
However, the intelligence of each individual is limited, i.e., at
each time step, the individual can choose to move to a location
that can bring the maximum payoff with the probability of ¶
(this behavior is called exploitation) and also has a random
probability ϵ (this behavior is called exploration) to make a ran-
dom choice of location to move to, where ϵ+ ¶ = 1. Therefore,
we employ Q-learning with an ϵ-greedy strategy to model the
aforementioned process in this paper. This is a model-free (does
not require a model of the environment) reinforcement learning
that will find the best action according to the individual’s
current state. Concretely, an individual performing an action
in a particular state provides it with a reward, and the goal
of the individual is to maximize the cumulative reward at all
steps. Each individual has a utility table called Q-table learned

from its action experience through the Bellman equation, which
leads the individual to take the best action in each state.

Hereby, we provide a detailed description of the process
of individual movement. In the system, the state of each in-
dividual is the location it lives in, which can be represented
by dividing the two-dimensional space into equal-sized grids,
where a grid is regarded as a location. Each individual will
choose to move during a one-time step based on its current
state and past experience. Each individual has six optional
movement actions: move left, move right, move up, move
down, stay, and random move. The first four actions mean
that the individual will move to a location adjacent to the
location it is currently in, “stay” indicates that the individual
will not change its location, and “random move” suggests that
the individual will move to a location randomly selected from
all locations. When an individual performs a specific action, it
will receive a certain amount of reward, which is significant for
the individual’s future action choice.

As we described before, each individual has a dynamic
utility table to guide it in choosing the best action for each state,
and the updating rule of the utility table at each time step can
be expressed as

QAt

St
(t+1) = QAt

St
(t)+ ¸[RAt

St
(t+1)+µmax

a∈A
Qa

St+1
(t)−QAt

St
(t)],

(10)
where QAt

St
(t) represents the utility gained by the individual

in state St when executing action At at time t. RAt

St
(t + 1)

denotes the immediate payoff obtained by the individual in
state St at time t + 1 when performing action At at time
t, and the calculation of the individual’s immediate payoff
will be explained in detail in the next subsection. In addition,
the maxa∈A Qa

St+1
(t) means the maximum utility received by

the individual in the future after moving to the state St+1.
Moreover, ¸ and µ are the learning rate and discount factor,
respectively. A greater µ will cause the individual to focus more
on past experiences, otherwise, the individual will focus more
on immediate payoff. We note that the Q-table possessed by
each individual is not static, and its internal values are evolving
according to Eq. 10.

2.3 Payoff Calculation and Strategy Evolution of Indi-

vidual

In this subsection, we introduce the calculation of the imme-
diate payoff, which is based on the game between individuals
and their neighbors. Before then, we illustrate the transition
mechanism from the previously described movement of indi-
viduals between locations in the two-dimensional space to com-
plex networks in high-dimensional space, which is primarily
designed based on theories of memory decay [53] and strength
of ties [54]. Specifically, there are two main situations:

i) One is individuals i and j are in distinct locations at time
t. In this case, the rules for edge formation and edge weight
updating are as follows:

(a) If two individuals have no edge at the last time t−1, then
there will also be no edge between them at the current time. It
reflects the principle in social networks that the formation of
ties typically requires a history of interaction. In practice, con-
nections between individuals are generally established based
on previous interactions. Therefore, if no prior interactions or
connections exist, it is unlikely that a new connection will form
between them.

(b) If there is an edge with weight wt−1
i,j between individuals

i and j at the previous time t−1, then the weight of the edge will
be updated to wt

i,j = wt−1
i,j /´, where ´ is a decay factor. The de-

cay mechanism aligns with the real-life principle of relationship
maintenance, where relationships typically weaken over time,
particularly when interactions between individuals diminish.
If the updated weight exceeds the generation threshold of the
edge Ã, the edge will be retained; otherwise, it will be removed.
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Therefore, the edge weight updating rule in this case can be
expressed as

wt+1
i,j =

{

0, no edge between i and j at t

wt
i,j/´, otherwise

. (11)

ii) The other scenario is individuals i and j are in the same
state at time t. In this case, the rules for edge formation and the
updating of edge weights are as follows:

(a) If there is no edge between the two individuals at the
last time t − 1, then a new edge will be established between
them with an initial weight Ä . This mechanism models the
creation of new interactions and the formation of relationships.
For example, in social networks, individuals might form new
connections when they meet through common activities or
shared interests.

(b) If individuals i and j have an edge with weight wt−1
i,j

at the previous time t − 1, then the edge will be preserved
and its weight will be updated to wt−1

i,j /´ + Ä . Here, wt−1
i,j /´

denotes the natural decay of the edge weight, simulating the
natural weakening of the relationship over time. The addition
of Ä reflects the strengthening of the relationship due to new
interactions or joint activities when i and j are in the same
state. The updating mechanism aligns with the theory of the
strength of ties, which posits that frequent interactions enhance
the strength of connections between individuals.

Therefore, the edge weight updating rule in this case can be
denoted as

wt+1
i,j =

{

Ä, no edge between i and j at t

wt
i,j/´ + Ä, otherwise

. (12)

It is important to highlight that the decay factor ´ governs
the gradual attenuation of edge weights over time. A larger
value of ´ results in faster decay of the weights and a shorter
memory effect of the network. This decay mechanism mirrors
the natural weakening of relationships in real-world contexts or
the diminishing impact of reduced interactions over time on the
strength of relationships. Conversely, the weight Ä represents
the additional contribution from interactions when a relation-
ship is either established or maintained between individuals. It
reflects either the initial strength of a newly formed edge or the
reinforcement of an existing relationship. In summary, the con-
figuration of edge weights updating among individuals aligns
with actual social behavior patterns, ensuring that the evolution
of the network is consistent with real-world dynamics.

At each discrete time step, after all individuals have syn-
chronously taken actions to reach new states, the networked
structure is updated based on the newly adjusted weights
among individuals. In the new network, each node repre-
sents an individual, and the edges between nodes indicate the
interactions between pairs of individuals. Subsequently, each
individual synchronously engages in the snowdrift game with
its neighbors in the updated network to obtain payoffs. The
interactions between different strategy pairs result in different
payoffs, which can be represented by the following payoff
matrix:

M =

(

1 1− r
1 + r 0

)

, (13)

where r belongs to [0, 1], which is an adjustable payoff param-
eter for the snowdrift game. We utilize the strategy notation of
two-dimensional unit vectors as si = [1, 0]T for cooperate and
si = [0, 1]T for the defect. Accordingly, the payoff Ui obtained
by individual i can be expressed as follows:

Ui =
∑

j∈Ω

sTi Msj , (14)

where Ω means the set of neighbors for individual i in the
updated network structure. We emphasize that the cumulative

payoff for all individuals in the same state corresponds to the
immediate payoff obtained when an individual takes a specific
action. Next, each individual performs the strategy evolution
according to the Fermi function [55], [56]. Specifically, individ-
uals synchronously and randomly select one of their neighbors
for payoff comparison and adopt the neighbor’s strategy in the
next discrete time step with a probability given by:

P (si ← sj) =
1

1 + exp [(Ui − Uj) /»]
, (15)

where » denotes the noise intensity, which is utilized to char-
acterize the uncertainty associated with the process of strategy
evolution. A larger value of » implies a higher tendency for
individuals to adopt strategies in a more stochastic manner.
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Fig. 3. An illustration of the model. The figure shows the evolution
example of the complex network model. Black duration indicates the
lifetime of the individual, which follows a general distribution. The indi-
vidual will be removed from the system once its lifetime ends. We select
t1 and t2 to observe the snapshots of the two-dimensional space and
the network, which have a one-to-one correspondence between them.
When t = t2, individuals B and E in t1 have died since their lifetimes
are over, and new individuals G, H, and I are born in the system. The
connections between newly born individuals and individuals already in
the network are shown in green.

To enhance the clarity of our model, we give an example in
Fig. 3. The black line indicates the lifetime of each individual.
We choose evolution times t1 and t2 for observation. At t = t1,
there are six individuals in the system, and the corresponding
networked structure can be obtained based on the locations and
weights between individuals in the two-dimensional space. At
t = t2, individuals B and E in t1 have passed away, because
their lifespans ended. New individuals G, H, and I join the
system and create a new network, since the addition of new
individuals and individual movements, where interactions be-
tween new individuals and individuals already in the network
are highlighted in green.

3 SIMULATIONS AND RESULTS

In this section, we conduct extensive simulation experi-
ments to validate the previous theory. To begin with, we in-
troduce the methods of simulation experiments. Subsequently,
we study the evolution and statistical distribution of individual
numbers under different death processes to validate the the-
oretical analysis. Next, we compare the evolution of coopera-
tive behaviors, the emergence and development of community
structures, and the effects of payoff parameters and exploita-
tion rates on community structures in systems both with and
without birth-death process (SWBD and SWOBD)i. It is worth
noting that for the sake of clarity, for systems with the birth-
death process, we only choose to show results where the death

i. The code of the SWBD and SWOBD is available at
https://github.com/BinPi123/Dynamic-Evolution-of-Complex-
Networks
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process obeys a power-law distribution (SWBD with power-law
distribution), and the interested reader can refer to Section 3 of
the supplementary material to access all the results. Then, we
apply our model to fit populations from four different countries
and degree distributions of six distinct real networks.

3.1 Methods

Herein, we explain some methods for our subsequent sim-
ulations. At the initial moment, each individual is uniformly
distributed among different locations, the utility tables are
initialized to 0, and individuals select cooperation or defection
as their initial strategy with the same probability. We divide the
two-dimensional space into 10 × 10 grids of equal size, with
each location corresponding to one grid. The initial network is
a complete graph and then evolves dynamically as individuals
move around. For the generation of systems with the birth-
death process, we generate a Poisson process based on the fact
that it has the property of an exponential time interval, which is
generated by the function expovariate of the package random.
Once an individual is born, it will be connected to all individ-
uals in the same state and is assigned a lifespan that obeys a
specific probability distribution. In this study, we explore four
distinct death processes that follow different distributions, all
of which are widely used in practice. The first one is the power-
law distribution, often observed in urban population dynam-
ics, where a small number of large cities have significantly
higher populations compared to the majority of smaller cities,
which have relatively modest populations [57]. The second
distribution is the uniform distribution, frequently employed in
simple random sampling, where each individual has an equal
chance of being selected for death without distinction [58]. The
third is the exponential distribution, which is typically used to
model the lifetimes of devices. The non-memory property of
this distribution makes it appropriate for scenarios where the
failure rate of a device remains constant over time [59]. Lastly,
we consider the lognormal distribution, which is commonly
observed in certain biological characteristics, such as the sizes
of human organs, cell dimensions, and organism lifespans [60].

Next, we describe the generation for the four distributions.
The power-law distribution is generated using the inverse
transform technique. Concretely, the probability distribution of
the power-law distribution [61] is defined as follows:

f1(x;³) =
³− 1

x1−α
min

x−α, ³ > 2, (16)

where xmin and ³ indicate the lower bound and exponent
of the distribution, respectively. Accordingly, its distribution
function can be derived as follows:

F (x) = P {X ≤ x} =

∫ x

xmin

f1 (x;³)dx = 1−
x1−α

x1−α
min

. (17)

Denote u ∼ U(0, 1) as a random variable following a uniform
distribution in the range (0, 1) and u = F (x), then we have

x = F−1(u) = xmin (1− u)
1

1−α . (18)

According to the inverse transform technique, the variable
x in Eq. 18 follows a power-law distribution with a lower
bound xmin and exponent ³. It can be further simplified to

x = xminu
1

1−α , given that 1 − u also follows a uniform distri-
bution within the range (0, 1). Consequently, a power-law dis-

tribution can be generated using xminu
1

1−α , where u ∼ U(0, 1).
For the generation of uniform and exponential distributions,
we utilize the uniform and expovariate functions from the
random package, respectively. Besides, the lognormal distribu-
tion is generated using the random.lognoraml function from
the numpy package.

Once the lifespan of an individual is over, it is removed from
the network, along with its connections to its neighbors. In the

subsequent simulations, we conduct experiments on both sys-
tems with and without the birth-death process to demonstrate
the effect of this process on the results. All final results are
carried out on Python and are averaged over ten independent
simulations to ensure high accuracy.

In brief, Algor. 1 illustrates the Monte Carlo process for
the complex network modeling based on the game between
individuals with Q-learning in reinforcement learning. It is
important to note that, at each discrete time step, all individuals
first move synchronously and then play the snowdrift game
with their neighbors in the updated network structure. Follow-
ing this, the Q-table and strategy of each individual are updated
synchronously.

Algorithm 1 Monte Carlo Simulation

1: Initialize the current time tnow = 0, the update time
tupdate = 0, the weights among individuals weight, the
network structure G, each individual’s state S, action a,
utility table Q(S, a), strategy s, and payoff U .

2: Initialize the death time of each individual and the birth
time of the next individual.

3: while tnow < MCstep do
4: while tupdate < tnow do
5: for each individual x do
6: Choose action a from Q-table based on

ϵ-greedy policy.
7: Take action a and observe the new state S′.
8: end for
9: Update the weights among individuals weight

and obtain a new network structure G.
10: Calculate each individual’s payoff U based on the

game interactions.
11: for each individual x do
12: Update Q(S, a): Q(S, a) ← Q(S, a) + ¸[R +

µmaxa′ Q(S′, a′)−Q(S, a)].
13: Randomly select a neighbor y and generate a

random number p between 0 and 1.
14: if p < P (sx ← sy) then
15: Update strategy: sx ← sy .
16: end if
17: end for
18: Increase update time: tupdate ← tupdate + 1.
19: end while
20: Determine the time tdeath of the first individual to

die and the time tbirth when the next individual j is
born into the system.

21: if tbirth < tdeath then
22: Update current time: tnow ← tbirth.
23: Determine the death time of individual j and the

birth time of the subsequent new individual.
24: Update the weights among individuals weight

and the network structure G.
25: else
26: Update current time: tnow ← tdeath.
27: Update the weights among individuals weight

and the network structure G.
28: end if
29: end while

3.2 Evolution and Statistics of the Number of Individu-

als

To validate the theory presented in subsection 2.1, we begin
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Fig. 4. Evolutionary curves and statistical distributions of the number of individuals. In this figure, we show both the (a) evolutionary curves
and (b) statistical distribution of the individual number in the system with the birth-death process under various death processes, including power-
law, uniform, exponential, and lognormal distributions. In addition, we utilize different markers and colors for comparison among different death
processes. The red line indicates the theoretical value for each specific death process.

TABLE 1
The results of the stationary number of individuals under different death processes

Results power-law distribution uniform distribution exponential distribution lognormal distribution

Theoretical result 240 405 150 309.339

Experimental result 236.233 402.169 150.856 304.971

Relative error 1.569% 0.699% 0.571% 1.412%

Variance 242.141 545.242 127.547 336.829

Skewness 0.141 -0.062 0.208 -0.027

Kurtosis -0.241 -0.481 -0.099 -0.152

by plotting the evolutionary curves and statistical distributions
of the number of individuals in the system under different
death processes over time, and the results are shown in Fig.
4. According to the theoretical results, we know that the final
size of the system is determined solely by the expected value of
the death process distribution and the input rate ¼. Therefore,
our analysis primarily focuses on the impact of various death
process distributions on the number of individuals, including
power-law, uniform, exponential, and lognormal distributions.
For the power-law distribution, the parameters are set to
¼ = 2, ³ = 3, and xmin = 60. For the uniform distribution,
we set the birth rate to ¼ = 3, with the starting and ending
values set to a = 120 and b = 150, respectively. In the case
of the exponential distribution, the birth rate is ¼ = 3 and the
death rate is » = 0.02. Lastly, for the lognormal distribution, the
birth rate, mean, and standard deviation are set as ¼ = 5, Å = 3,
and ϕ = 1.5, respectively.

We set the temporal coordinates of Fig. 4(a) to logarithmic
coordinates to better observe the rising and smooth phases
of individual population evolution. As time progresses, the
evolutionary curves of the number of individuals become stable
around t = 1000 in all four cases and subsequently fluctuate
steadily around the theoretical value, as indicated by the red
dashed line. However, the magnitude of these fluctuations
varies among the different curves. To show the similarity be-
tween theoretical and experimental results more intuitively, we
present the theoretical and experimental results for different
death processes in Tab. 1, where the theoretical results are cal-
culated according to Eq. 7, and we have E[N(t)] = λ(α−1)

α−2
xmin

for power-law distribution, E[N(t)] = λ
2
(a + b) for uniform

distribution, E[N(t)] = λ
κ

for the exponential distribution, and

E[N(t)] = ¼eυ+φ2/2 for lognormal distribution. The experimen-
tal results are averaged using the last 9,000 steps of a total of
10,000 evolutionary steps, and the relative error is obtained
by e = |x∗ − x| /x, where x∗ is the experimental result and
x is the theoretical one. Besides, we calculate the skewness to
characterize the direction and degree of skewness of the data
distribution, and the kurtosis to describe the steepness of the
data distribution. It can be seen that the maximum relative error
in Tab. 1 is just 1.569%, which illustrates that the experimental
results are well matched with the theoretical ones. Moreover,
the variance becomes larger as the size of the system increases,
which is consistent with Eq. 8 and the phenomenon shown in
Fig. 4(a), where the curve exhibits greater fluctuations as the
scale of the system grows. By comparing the skewness and
kurtosis of four data distributions, we get that the data dis-
tributions obtained with uniform and lognormal distributions
are left-skewed, while the other two are right-skewed, and all
the data distributions are thin-tailed.

Then, we capture the number of individuals in the last
9,000 steps of the total of 10,000 evolutionary steps, compute
the frequency of each specific number separately, and plot
the probability distribution of the four death processes in Fig.
4(b) by treating the frequencies as probabilities according to
the law of large numbers. The solid red line is the theoret-
ical distribution derived from Thm. 1. It is evident that the
theoretical distributions fit well with the experimental ones.
To illustrate this more intuitively, we respectively utilize the
Kullback-Leibler (KL) divergence (Eq. 19), the Jensen-Shannon
(JS) divergence (Eq. 20), the Pearson correlation coefficient (Eq.
21), and the cosine similarity (Eq. 22) to capture the distance
between the theoretical and experimental distributions, and the
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TABLE 2
The comparison between the theoretical and experimental distributions under different death processes

Results power-law distribution uniform distribution exponential distribution lognormal distribution

Kullback-Leibler divergence 0.039 0.045 0.022 0.038

Jensen-Shannon divergence 0.009 0.012 0.005 0.009

Pearson correlation coefficient 0.942 0.957 0.989 0.965

Cosine similarity 0.975 0.977 0.994 0.985

results are demonstrated in Tab. 2.

KL(A||B) =
∑

Ai log
Ai

Bi
, (19)

where A and B respectively denote the theoretical and experi-
mental distributions.

JS(A||B) =
1

2
KL(A||M) +

1

2
KL(A||M), (20)

where M = 1
2
(A+B).

r =
E[(A− E(A))(B − E(B))]

S(A)S(B)
, (21)

where E(X) and S(X) represent the expectation and standard
deviation of probability distribution X .

cos =

∑

AiBi
√

∑

A2
i

√

∑

B2
i

. (22)

It can be observed that the KL divergence (all less than
0.045) and JS divergence (all less than 0.012) are very small,
while the Pearson correlation coefficient and cosine similarity
are very close to 1 in all four death processes, which shows that
the theoretical and experimental distributions are in very good
agreement with each other, which also proves the validity of
our theoretical analysis in subsection 2.1.

3.3 Evolution of Network Cooperation Behaviors

In order to explore the effect of exploitation rate ¶ and
payoff parameter r on the cooperative behaviors of the system,
we present the heat maps of the proportion of cooperators on
SWBD with power-law distribution and SWOBD about ¶ and
r in Figs. 5(a) and 5(b), respectively. Both simulations share
identical parameter settings, differing only in the presence or
absence of the birth-death process. Concretely, we respectively
set the learning rate, discount factor, and weight fading factor
of the edge of the two simulations to 0.7, 0.3, and 2 to ensure the
comparability of the results. In addition, the total evolutionary
time for both simulations is set to 5,000 long enough to allow
the evolution of the cooperation ratio to reach stability.

From Fig. 5(a), we can see that the number of cooperators
varies relatively uniformly about the payoff parameter, whereas
the exploitation rate has almost no effect on the cooperative
behavior for a particular payoff parameter r. However, in Fig.
5(b), a high exploitation rate can promote the emergence of
cooperation at a specific r, which is a significant difference
between the cooperative behavior of the system with the birth-
death process and without. Furthermore, both Figs. 5(a) and
5(b) exhibit that a smaller payoff parameter r will be more
favorable to the emergence and maintenance of cooperation.
This is because according to the payoff matrix of the snowdrift
game indicated in Eq. 13, a higher r results in a larger payoff
to the defector and a smaller payoff to the cooperator, which
in turn encourages more individuals to prefer the defective
strategy. Additionally, we show the effect of ¶ and r on co-
operative behaviors for the death process obeying uniform,
exponential, and lognormal distributions, and the interested
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Fig. 5. Heat maps of cooperation fraction about payoff parameter r
and exploitation rate δ. By setting the y-axis as the exploitation rate
δ with a range [0, 1] and the x-axis as the payoff parameter r with
a range [0, 1], we demonstrate the heat maps of cooperation fraction
on the system with (in panel (a)) and without (in panel (b)) birth-death
process with respect to payoff parameter r and exploitation rate δ. The
learning rate, discount factor, and weight fading factor of the edge in
both subfigures are all set to 0.7, 0.3, and 2.

reader can refer to subsection 3.1 of the supplementary material
for more details.

3.4 Emergence and Evolution of Communities

In this subsection, we visually analyze the evolution of in-
dividual movement in a two-dimensional space to gain insights
into the emergence of system communities under different
parameter pairs (¶, r) of (0.8, 0.6), (0.8, 0.2), (0.4, 0.4), and (0.9,
0.4) in Figs. 6(a) and 6(b). Simultaneously, we transform the dis-
tribution of individuals in two dimensions to the corresponding
network structure based on the weights between them in Figs.
2(a) and 2(b) of the supplementary material. We find that the
formation and evolution of the communities in the network
structure correspond well to the two-dimensional space. The
scale of the system without birth-death process comprises 300
individuals, while the parameters associated with the scale of
the system with birth-death process are set to ¼ = 3, xmin = 80,
and ³ = 5, i.e., the size of the system as it evolves to a steady
state is 320, which can be obtained from Eq. 7 and is very close
to the scale of the system without birth-death process.

As displayed in Fig. 6(a), the individuals are consistently
evenly distributed on the plane regardless of the values of
the exploitation rates and payoff parameters. In addition, the
individuals of the corresponding network in Fig. 2(a) of the
supplementary material are also distributed randomly with
no distinguishing features. However, in Fig. 6(b), when the
exploitation rate is high and the payoff parameter is low, we
observe that individuals do not maintain an even distribution
across locations. Instead, they begin to cluster, forming mul-
tiple communities as time progresses and we adopt different
colors to mark these different communities that are formed.
In Fig. 2(b) of the supplementary material, the communities
corresponding to (¶, r) = (0.8, 0.2) and (0.9, 0.4) are clearly
identifiable, but exhibit an instability at t = 2, 000, which
are continuing to rapidly evolve and become stable again at
t = 3, 500. Furthermore, by comparing the first and second
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(a) Individual distribution of SWBD with power-law distribution
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Fig. 6. Evolutionary snapshots in the two-dimensional space under different parameter pairs (δ, r). By setting the parameter pairs (δ, r) as
(0.8, 0.6), (0.8, 0.2), (0.4, 0.4), and (0.9, 0.4) from top to bottom and fixing the time step at 500, 2000, 3500, and 5000 from left to right, we present
the evolutionary snapshots of individual movement in the two-dimensional space on the system with and without birth-death process in subplots (a)
and (b), respectively. All other parameters in the two subplots remain consistent for comparison.

rows (where ¶ is the same but r differs) of Fig. 6(b), we conclude
that a small payoff parameter can promote the emergence
and maintenance of communities. Although communities are
formed in both the third and fourth rows (where ¶ differs but
r is the same) of Fig. 6(b), the number of individuals in each
community structure in (¶, r) = (0.9, 0.4) is clearly larger and
appears earlier than that in (¶, r) = (0.4, 0.4). It suggests that
a larger exploitation rate is more conducive to the evolution
and maintenance of communities. These conclusions are further
corroborated by the corresponding network structures shown
in Fig. 2(b) of the supplementary material, but the communities
are not observed in the system with the birth-death process. In
this system, individuals die and new individuals join the sys-
tem at each moment but individuals cannot form a community
in a short period of time, therefore the joining of new individ-
uals is equivalent to entering a location at random. Besides,
we investigate the emergence and evolution of communities
under the death process following uniform, exponential, and
lognormal distributions, and the interested reader can refer
to subsection 3.2 of the supplementary material for further
details. Furthermore, we examine the emergence and evolution
of communities when the stag hunt game is adopted as the
underlying game model. Our findings reveal that the SWOBD
within the stag hunt game remains capable of fostering the
formation of communities. This suggests that the game model
employed in this study is not limited to the snowdrift game but
can be readily extended to other game scenarios by modifying
the payoff matrix. Readers interested in further details are
referred to subsection 3.2 of the supplementary material.

3.5 Effect of Payoff Parameter and Exploitation Ratio

on Community Structures

Subsequently, to investigate the impact of the payoff param-
eter and the exploitation rate on community structures, we use
the sum of the number of individuals in the four locations with
the highest populations throughout the evolutionary process
as a measure of community structure (denoted as Nc). In this
measure, a larger value indicates a more significant community
structure and vice versa. The results of SWBD with power-law
distribution and SWOBD are displayed in Figs. 7(a) and 7(b).

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

32

34

36

38

40

42

(a) SWBD with power-law distribution

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

50

100

150

200

250

(b) SWOBD

Fig. 7. Heat maps of the sum of the first four highest numbers of
individuals with respect to payoff parameter r and exploitation rate
δ. By setting the x-axis as the payoff parameter r with a range [0, 1]
and the y-axis as the exploitation rate δ with a range [0, 1], we show
the impact of r and δ on the sum of the first four highest numbers
of individuals on SWBD with power-law distribution (in panel (a)) and
SWOBD (in panel (b)).

From Fig. 7(a), we can see that the value of Nc for the system
with birth-death process falls within the range of 30 to 42, which
is considerably small compared to the scale of the system at the
steady state. It suggests that, in this scenario, individuals cannot
self-organize themselves to form a community structure. Addi-
tionally, the exploitation rates and payoff parameters appear
to have minimal impact on the community structure. For the
system without the birth-death process, the result shown in Fig.
7(b) illustrates that when the payoff parameter r < 0.45 and
the exploitation rate ¶ < 0.95, the value of Nc increases as the
exploitation rate grows. In some cases, the maximum value can
exceed 250, indicating that more than 83% of the individuals in
the system are self-organizing into communities. However, it is
worth noting that the value of Nc with ¶ = 1 is smaller than
that with ¶ = 0.95, demonstrating that the community structure
will be better served by an appropriate random selection of
individuals as they move around the location. Meanwhile,
when r > 0.45, the value of Nc remains around 50 regardless
of the value of the exploitation rate adopted, i.e., the system
does not form communities under these conditions. Moreover,
we explore the effect of r and ¶ on community structures under
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the death process obeying uniform, exponential, and lognormal
distributions, and the interested reader can refer to subsection
3.3 of the supplementary material for more details.

3.6 Fit of the Proposed Model on Real Data

To demonstrate the practical importance of the model pro-
posed in this paper, in this subsection, we apply the scale of the
system with the birth-death process under various death dis-
tributions to model the populations of four different countries.
Furthermore, the degree distributions of networks generated by
SWBD and SWOBD with reinforcement learning are employed
to fit the degree distributions of six different real networks.

3.6.1 Fit of the Birth-Death Process on Real Populations

We select the populations of Greenlandii, Guamiii, the Slo-
vak Republiciv, and Cubav from 1960 to 2022, spanning a total
of 62 years, and model them using the scale of the system
with birth-death process under various death distributions.
Specifically, we utilize a power-law distribution to model the
population of Greenland, setting the input rate at ¼ = 600, with
the power-law distribution parameters xmin = 50 and ³ = 3.
For Guam’s population, we employ a uniform distribution,
with the input rate set to 525, and the starting and ending
values set to 310 and 330, respectively. The population of the
Slovak Republic is modeled using an exponential distribution,
with an input rate of 89,600 and a death rate of 1/73. For the
population of Cuba, we use a lognormal distribution with an
input rate of 291,200, a mean of 2.5, and a standard deviation of
1.8. The fitting results for these four regions are presented and
compared with the real data in Fig. 8. All figures show that the
populations of the four countries gradually increase and then
tend to stabilize, and the simulation results closely match the
real data.

To provide a more intuitive demonstration of the fit, we
calculate the expected populations for the four countries along-
side the simulation results. We then determine the relative error
using the equation: e =| x − x∗ | /x, where x represents the
actual population and x∗ denotes the simulated population.
Furthermore, we compute the correlation coefficient between
the simulation results and the actual populations. The results
are summarized in Tab. 3, with the relative errors for Green-
land, Guam, the Slovak Republic, and Cuba being 0.96%, 0.48%,
0.71%, and 0.38%, respectively, which are all below 1%. Besides,
the correlation coefficients for all four fits exceed 98.39%, fur-
ther confirming the accuracy of the fit, as illustrated in Fig. 8.

3.6.2 Fit of the Degree Distribution using Reinforcement

Learning on Real Networks

Next, we analyze the degree distributions of networks gen-
erated by both SWOBD and SWBD with reinforcement learning
and utilize them to fit with the degree distributions of six
distinct real-world networks [62]: HS-HT, TWITTER-COPEN,
AVES-WEAVER-SOCIAL, DWT-607, MAMMALIA-DOLPHIN,
and NETSCIENCE. The HS-HT network is a biological net-
work, where nodes represent genes and edges signify con-
nections between genes. The TWITTER-COPEN network is a
retweet network consisting of 761 users as nodes and 1,029
retweets/mentions as edges. AVES-WEAVER-SOCIAL and
MAMMALIA-DOLPHIN are animal social networks, where
nodes denote animals and edges represent interactions be-
tween them. DWT-607 is a miscellaneous network based on
a symmetric connection table from DTNSRDC, Washington.
Finally, NETSCIENCE is a collaboration network containing
379 researchers as nodes and 914 co-authorships as edges. Some
statistical information about these six real networks, such as
the number of nodes, number of edges, assortativity, clustering

ii. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=GL
iii. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=GU
iv. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=SK
v. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=CU
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Fig. 8. Fit of the birth-death process under different death distribu-
tions on the populations of four different countries. In this figure, we
simulate the populations of four countries using different death process
distributions. Specifically, we use the power-law distribution for Green-
land (subplot (a)), and the uniform distribution for Guam (subplot (b)).
Subplots (c) and (d) illustrate the simulations for the Slovak Republic
and Cuba, where the death processes follow exponential and lognormal
distributions. The actual population data is represented by black dia-
monds, while the simulated curves are depicted with red squares.

coefficients, etc., are given in Tab. 4. The statistics reveal that all
networks have relatively low densities and the NETSCIENCE
network has the largest clustering coefficient among the six
networks, indicating that individuals in the NETSCIENCE net-
work tend to have the closest interactions.

We utilize the network generated by the SWOBD model
to fit HS-HT and TWITTER-COPEN networks, with the fitting
results shown in Figs. 7(a) and 7(b) of the supplementary
material, respectively. Additionally, we apply the SWBD model
to fit the real networks based on different death processes,
with the results displayed in Figs. 7(c)-(f) of the supplementary
material, where these death processes separately follow power-
law, uniform, exponential, and lognormal distributions. As
observed in Fig. 7 of the supplementary material, the degree
distributions of HS-HT and TWITTER-COPEN networks, along
with the network generated without the birth-death process, ex-
hibit characteristics consistent with the power-law distribution.
In contrast, the degree distributions of the AVES-WEAVER-
SOCIAL network and the network generated with a birth-death
process that follows power-law distribution approximate the
normal distribution. Notably, the network generated by SWBD
can also obey a power-law distribution, as illustrated in Fig.
7(f) of the supplementary material. For the fitting of DWT-607
and MAMMALIA-DOLPHIN networks, we model the death
process in the SWBD model with uniform and exponential
distributions, respectively, and the degree distributions of the
resulting networks display irregular patterns, as depicted in
Figs. 7(d) and 7(e) of the supplementary material.

To more intuitively assess the fit of the SWOBD and SWBD
models, we calculate cosine similarity (Eq. 22) and Jensen-
Shannon divergence (Eq. 20) to quantify the similarity between
the real and simulated data, as shown in Tab. 4. The results
indicate that the Jensen-Shannon divergence between the simu-
lated data and real data is relatively small, not exceeding 0.0997.
Conversely, the cosine similarity is notably high, with values
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TABLE 3
The comparison of models under different death processes in fitting real populations

Results Simulation population Real population Relative error Correlation coefficient

Greenland 51,216.46 51,713.24 0.96% 98.96%

Guam 131,359.27 131,996.69 0.48% 99.72%

Slovak Republic 5,039,330.92 5,075,572.91 0.71% 98.39%

Cuba 10,170,945.35 10,209,542.11 0.38% 99.49%

TABLE 4
Statistical results of real networks and similarity between simulated degree distributions and real degree distributions

Results Nodes Edges Assortativity Clustering coefficient Density JS divergence Cosine similarity

HS-HT 2,570 13,691 0.2943 0.1695 0.0042 0.0268 0.9877

TWITTER-COPEN 761 1,029 -0.099 0.0759 0.0036 0.0884 0.9732

AVES-WEAVER-SOCIAL 445 1,423 0.2295 0.6924 0.0144 0.0997 0.7563

DWT-607 607 2,262 0.1861 0.4792 0.0123 0.0398 0.9823

MAMMALIA-DOLPHIN 62 159 -0.0436 0.2589 0.0841 0.0095 0.9852

NETSCIENCE 379 914 -0.0817 0.7412 0.0128 0.0502 0.9645

no less than 0.7563. These findings suggest that the difference
between the degree distribution generated by our models and
the real data is minimal.

Therefore, based on the fitting of our model to real-world
data, we can conclude that our model demonstrates strong
consistency with actual population dynamics and real network
structures. This consistency indicates that the model proposed
in this paper has significant practical value.

4 ANALYSIS OF THE COMMUNITY STRUCTURES

As we have shown before, community structures predom-
inantly emerge in systems, when there is no process of birth
and death. In this section, our focus shifts to analyzing the
effect of several parameters, including the learning rate, the
discount factor in Q-learning, and the dimensions in the two-
dimensional space (number of rows and columns) on com-
munity formation and development in SWOBD. In alignment
with the approach detailed in subsection 3.5, we employ the
sum of the individuals in the four locations with the highest
populations as a metric for community structure (denoted as
Nc). A higher value in this measure signifies a more substantial
community structure, and vice versa.

4.1 Impact of Learning Rate on Community Structures

In this subsection, we study the influence of the learning
rate ¸ in Eq. 10 on the community structure. The dimension of
the two-dimensional space is set to 10×10, with an initial popu-
lation of 5 individuals at each location, i.e., the total scale of the
system is 500. The exploitation rate, discount factor, and payoff
parameter are respectively set to 0.7, 0.2, and 0.1. In addition,
we set the evolutionary time to 10,000, ensuring sufficient time
for the evolution to stabilize. The evolutionary curve of Nc over
time under different learning rates is depicted in Fig. 9(a). Figs.
9(b)-(d), (e)-(g), and (h)-(i) illustrate the corresponding network
structure at selected instants of time with ¸ = 0.1, 0.2, and 0.7.

From Fig. 9(a), we observe that the sum of the number of
individuals in the four locations with the highest populations

grows as time progresses and eventually stabilizes around a
certain value. The difference between the various curves lies in
the speed at which they evolve to a steady state. Specifically,
the curve with ¸ = 0.1 reaches a steady state around t = 6, 000,
¸ = 0.2 achieves stability around t = 5, 000, ¸ = 0.3 reaches a
steady state around t = 4, 000, while the curves with ¸ = 0.7
and 0.9 achieve stability around t = 3, 000. This trend is vi-
sually demonstrated by examining the corresponding network
structures. For instance, the network structure associated with
¸ = 0.1 in Figs. 9(b)-(d) reveals 1, 5, and 4 communities at
t = 3, 000, t = 5, 000, and t = 7, 000 respectively, and the
corresponding values of Nc at these times are notably distinct,
which suggests that its evolution has not yet reached a steady
state at t = 5, 000. On the contrary, the network structure with
¸ = 0.7 in Figs. 9(h)-(i) exhibits 4 communities at both t = 3, 000
and 7,000, with similar values for Nc, which indicates that it
has reached a stable state already at around t = 3, 000. Hence,
¸ = 0.2 in Figs. 9(e)-(g) can be obtained by a similar analysis. It
is noteworthy that although the rate of evolution varies among
the curves, the value of Nc upon reaching a stable state is
similar. Therefore, we derive that the learning rate influences
the speed of community structure formation and evolution,
with a large learning rate facilitating a quicker emergence and
stabilization of community structures. This is attributed to a
larger learning rate enabling individuals to learn more rapidly
from their actions, resulting in a faster convergence of their Q-
tables.

4.2 Effect of Discount Factor on Community Structures

Subsequently, we examine the impact of the discount factor
µ in Eq. 10 on the community structure. We present the evolu-
tionary curves of the value of Nc about time t in Fig. 10(a), along
with some individual distributions in the two-dimensional
space in Figs. 10(b)-(h). The exploitation rate, learning rate,
and payoff parameter are separately set to 0.7, 0.9, and 0.1. The
scale of the two-dimensional space is 10 × 10 and there are 5
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Fig. 9. Impact of learning rate on the formation and evolution of community structure. (a) The sum of the number of individuals in the four
locations with the highest populations (denoted as Nc) as a function of time t under different learning rates with η = 0.1, 0.2, 0.3, 0.7, and 0.9. (b)-(i)
The corresponding networks at different given learning rates and times, utilizing distinct colors to demonstrate the community structures.

Fig. 10. Effect of discount factor on the formation and development of community structure. Subplot (a) demonstrates the evolution of Nc as
time evolves under different discount factors with γ = 0.1, 0.2, 0.7, 0.8, and 0.9. The snapshots of individual distributions in the two-dimensional are
depicted in (b)-(c) for γ = 0.2 at t = 4, 000 and t = 7, 000, in (d)-(f) for γ = 0.8 at t = 2, 004, t = 4, 234, and t = 5, 500, and in (g)-(h) for γ = 0.9 at
t = 3, 000 and t = 6, 000.
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Fig. 11. Influence of the number of rows and columns in the two-dimensional space on the emergence and development of community
structure. Panel (a) presents the heat map of the sum of the first four highest numbers of individuals in relation to the number of rows and columns.
Panels (b)-(g) show the network structure under different values [(4, 4), (6, 6), (9, 9), (11, 11), (12, 12), (13, 13)] of the number of rows and columns
(row, col), respectively.

individuals at each location at the beginning, leading to a total
system scale of 500.

As depicted in Fig. 10(a), when the discount factor µ is
relatively small (µ = 0.1, 0.2), Nc gradually increases and then
plateaus with the passage of time. Conversely, when µ takes
larger values (µ = 0.7, 0.8, 0.9), Nc exhibits an initial increase,
followed by significant fluctuations over time, ultimately re-
ducing to approximately 50. This indicates a lack of sustained
community formation, a point corroborated by Fig. 10(h). Fur-
thermore, the snapshots demonstrated in Figs. 10(b)-(c) illus-
trate that there is already a substantial community formation at
t = 4, 000, which remains stable as time progresses. However,
for larger values of µ, although communities emerge during
the evolution process, the structures are unstable and undergo
significant changes, such as in Figs. 10(d)-(f) with µ = 0.8,
where the number of communities at t = 2, 004, t = 4, 234, and
t = 5, 500 are 4, 2, and 4, respectively, as well as the positions of
the emerging communities continuously change, and the com-
munity eventually disappears around t = 6, 000, after which
the value of Nc stabilizes. This observation underscores the
influence of the discount factor on the stability of community
structures. A larger µ, indicative of individuals placing greater
emphasis on future rewards, proves detrimental to the stability
of the community.
4.3 Influence of Dimensions in the Two-Dimensional
Space on Community Structures

We note that in the preceding numerical simulations, the
dimensions of the two-dimensional space were held constantly

at 10×10. In this subsection, we introduce variability by treating
the number of rows and columns as parameters to study their
influence on the community. The number of individuals at each
location at t = 0 is 4, and the initial configuration implies that
the system scale changes as the number of rows and columns
varies. With the learning rate, discount factor, exploitation rate,
and payoff parameter set to 0.9, 0.2, 0.7, and 0.1, respectively, we
show the heat map of Nc concerning the number of rows and
columns in Fig. 11(a). Figs. 11(b)-(g) demonstrate the network
structure corresponding to (row, col) = (4, 4), (6, 6), (9, 9),
(11, 11), (12, 12), and (13, 13). Different colors in the network
represent different community structures formed.

According to the results shown in Fig. 11(a), it can be seen
that Nc increases steadily with the growth of the number of
rows and columns, which illustrates the consistent formation
of communities in the system, with the size of the community
progressively expanding. Further insights can be gleaned from
the networks presented in Figs. 11(b)-(g). Under (row, col) =
(4, 4) and (6, 6), only one community is observed, whereas the
communities increase to 2, 4, 4, and 5 under (row, col) = (9,
9), (11, 11), (12, 12), and (13, 13). This observation suggests
that the number of communities grows proportionally with
the number of rows and columns. When the number of rows
and columns is small, the limited space constrains individual
movement, resulting in a small number of communities formed
but with a large number of individuals compared to the total
population. Conversely, with a larger number of rows and
columns, individuals have more space to choose and move,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

leading to the formation of more communities, albeit with
fewer individuals in each community.

5 MODEL COMPARISONS

In this section, we compare and analyze our proposed
model from two main aspects. On the one hand, from the
reinforcement learning point of view, we verify how the use
of heuristic models affects the results in the absence of rein-
forcement learning mechanisms. On the other hand, from the
perspective of the classical network model, the model proposed
in this paper is compared and analyzed with the classical
network in terms of network structure, clustering coefficients,
and degree distribution.
5.1 Comparison with Heuristic Model

Hereby, we focus on the impact of reinforcement learning
on the outcomes and propose an alternative heuristic model.
Specifically, each individual begins with random exploration,
which can be considered as setting the initial exploration rate
to ϵ = 1. The exploration rate then decays by a factor of 0.99
at each time step, and each individual explores its neighboring
states with a probability ϵ. If an individual finds a neighboring
state that offers greater benefits than its current state, it will
transition to the new state; otherwise, it will retain its original
state. It is important to note that state and payoff calculations
remain the same as in SWOBD, except that a heuristic model is
used instead of reinforcement learning.
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Fig. 12. Evolutionary snapshots of the heuristic model. This figure
illustrates the snapshots in the two-dimensional space generated based
on the heuristic model at different time steps, where the time step is
taken from 0 to 4,000 at an interval of 500.

In Fig. 12, we demonstrate evolutionary snapshots of the
heuristic model in a two-dimensional space. These snapshots
reveal that a community structure begins to emerge around
t = 500, but remains nearly constant thereafter. Additionally,
Fig. 8 of the supplementary material displays the performance
metrics of the heuristic model, including degree distributions
and state transition ratios. The state transition ratio means
the proportion of individuals that change their states at each
time step. The degree distribution, shown in Fig. 8(a) of the
supplementary material, indicates that the network generated
by the heuristic model does not follow typical normal or power-
law distributions, but rather exhibits an irregular distribution.
Moreover, Fig. 8(b) of the supplementary material shows that

the state transition ratio of the heuristic model rapidly de-
creases to 0, suggesting that individuals maintain their states
unchanged after stabilization. This observation contradicts the
real-world scenario, where community structures are typically
dynamically stabilizing and do not remain constant indefinitely.
In contrast, for SWOBD with a reinforcement learning mech-
anism, the final state transition ratio stabilizes around 0.25,
indicating that the community structure evolves dynamically
and maintains a dynamic equilibrium, which aligns with real-
world observations.

The results above demonstrate that SWOBD with reinforce-
ment learning is more effective in modeling the evolution of
complex networks and community structures, and it cannot
be replaced by a simple heuristic model. This effectiveness
arises from several key differences. In the heuristic model,
individuals lack memory and learning capabilities, focusing
solely on maximizing immediate benefits. Consequently, indi-
viduals in the same state take identical actions. In contrast, the
reinforcement learning model provides each individual with
a Q-table and the ability to learn, allowing them to consider
long-term cumulative payoffs, which contributes to the fact
that even individuals in the same state may act differently
based on their different experiences. Thus, it can be concluded
that reinforcement learning is crucial to the effectiveness of the
proposed SWOBD model.

5.2 Comparison with Classic Networks

In this subsection, we perform a comparative analysis be-
tween the model proposed in this paper (both SWBD with
power-law distribution and SWOBD) with classic networks,
including Watts-Strogatz small-world (WS) and Barabási-Albert
scale-free (BA) networks. The comparison spans aspects such
as network structure, degree distribution, clustering coefficient,
etc., and the results are demonstrated in Fig. 13. All net-
works have 300 nodes (SWBD with power-law distribution
also reaches 300 nodes when it evolves to a stable state). In
the WS network, each node initially connects to the 2 nearest
nodes on its left and right sides, with a subsequent reconnection
probability set to 0.3 for each edge, and no repeated edges or
self-loops are permitted. The new nodes in the BA network are
linked to the 3 existing nodes through the degree-preferential
connection mechanism.

In complex networks, the clustering coefficient of node
i with degree ki is defined as the ratio of the number of
connected edges between neighboring nodes of node i to the
maximum possible number of connected edges between these
neighboring nodes [63], which can be calculated using the
following formula: Ci = 2Ei

ki(ki−1)
, where Ei represents the

actual number of edges between the ki neighbors of node i.
If node i has only one neighbor or no neighbors, we denote
Ci = 0. The clustering coefficient of the network is the average
of the clustering coefficient of all the nodes in the network,
which reflects the degree of node aggregation in the network,
with a higher clustering coefficient indicating a greater node
aggregation, and vice versa. By plotting the distribution of node
clustering coefficients in the networks (as shown in the second
row of Figs. 13(e)-(h)) and calculating the clustering coefficients
of the networks, we get that most nodes in the WS and
BA networks exhibit low clustering coefficients, with overall
network clustering coefficients of 0.201 and 0.079, respectively,
whereas the majority of nodes in the networks of SWOBD
and SWBD with power-law distribution display high clustering
coefficients, with overall network clustering coefficients of 0.751
and 0.714, respectively. This phenomenon suggests that the
degree of aggregation in BA and WS networks is low, while
in SWOBD and SWBD with power-law distribution, it is high.

Figs. 13(i)-(l) present the degree distributions of the four net-
works. It is evident that the degree distributions of WS and BA
networks follow normal and power-law distributions, respec-
tively, while the degree distributions of SWBD with power-law
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Fig. 13. Comparison of the networks proposed in this paper with classical networks. In this figure, we respectively compare our SWOBD
network (third column) and the network of SWBD with power-law distribution (fourth column) with the WS small-world network (first column) and the
BA scale-free network (second column) in terms of network structure in subplots (a)-(d), clustering coefficient in subplots (e)-(h), degree distribution
in subplots (i)-(l), and joint degree distribution in subplots (m)-(p).

distribution and SWOBD networks exhibit irregular patterns
due to parameter settings of the model, and we emphasize that
the degree distributions of SWOBD and SWBD with power-
law distribution can also conform power-law and normal dis-
tributions, as demonstrated in Fig. 7 of the supplementary
material. Degree correlation is another metric used to assess the
connection between nodes with similar or dissimilar degrees.
A network is considered degree-degree positively correlated or
assortative if nodes with large degrees tend to connect with
other nodes with large degrees, and vice versa for degree-
degree negatively correlated or disassortative. In this paper,
we employ the joint degree distribution to characterize the
degree correlation. The joint probability P (j, k) is defined as
the probability that the two endpoints of a randomly selected
edge in the network have degrees j and k, respectively [64].
It represents the proportion of the number of edges that exist
between nodes with degrees j and k in the network to the total
number of edges and can be expressed as: P (j, k) = m(j,k)µ(j,k)

2M
,

where M is the number of edges in the network, m(j, k)
indicates the number of connected edges between nodes with
degree j and nodes with degree k. If j = k, then µ(j, k) = 2,
otherwise, µ(j, k) = 1.

By observing the joint degree distribution in the fourth row
of Fig. 13 and calculating the assortativity coefficient of the
network, we get that most edges in the BA network (assorta-
tivity coefficient of -0.082) are connected between small-degree

nodes and small-degree nodes. Besides, due to the presence of
hub nodes, many small-degree nodes are connected to large-
degree nodes, indicating that the BA network is disassortative.
However, the WS network (assortativity coefficient of -0.035)
shows most connected edges from moderate-degree nodes to
other moderate-degree nodes, suggesting a neutral network.
Concerning SWOBD (assortativity coefficient of 0.807) and
SWBD with power-law distribution (assortativity coefficient of
0.877) in Figs. 13(o) and (p), the values in and around the
diagonal in the heat maps of the joint degree distribution are
relatively large, suggesting that both networks are assortative
and the degree correlation is high. In addition, the network
structure, clustering coefficient, degree distribution, and joint
degree distribution of networks generated by the death process
following uniform, exponential, and lognormal distributions
are studied, and the interested reader can refer to subsection
3.6 of the supplementary material for more details.

6 CONCLUSIONS AND OUTLOOKS

Complex network modeling has always played a significant
role in network science, which not only reveals the formation
mechanisms in real networks but is also crucial in studying
structural dynamical systems. In this paper, we propose a
novel complex network model based on the game between
individuals with Q-learning in reinforcement learning and
take the lifetime of individuals into account, which follows
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an arbitrary distribution. Besides, we derive the probability
distribution of the system size when it evolves to a steady
state and the expected scale of the system. In the numerical
simulations, we initially study the stable distribution of the
number of individuals under various death processes governed
by different distributions, find that the numerical simulation
results coincide with the theoretical derivation, and verify the
correctness of the theoretical derivation by typical statistical
indices, such as relative error and Kullback-Leibler divergence.
Subsequently, we observe the evolution of network cooperative
behaviors, reveal the emergence and evolution of community
structure, and investigate the effects of the payoff parameter
and exploitation rate on community structure on both SWBD
and SWOBD. We discover that the exploitation rate and the
presence of the birth-death process have no significant effect
on cooperators, while decreasing the payoff parameter can
effectively promote the emergence of cooperators. Besides, we
gain that a smaller payoff parameter and a larger exploitation
rate will be more conducive to the evolution of community
structure on SWOBD and SWBD with lognormal distribution,
while on SWBD with power-law, uniform, and exponential
distributions, it is difficult for a community structure to emerge
regardless of the values of the payoff parameter and the
exploitation rate. Furthermore, we apply our model to real
situations, namely, fit i) the population evolution of four distinct
countries and ii) the degree distributions of six different real
networks. Whether in fitting population sizes using the birth-
death process or modeling degree distributions in complex
networks generated through reinforcement learning, the model
proposed in this paper performs well in both cases, demon-
strating its excellent practical values. Next, we perform an in-
depth analysis of the community structure shaped by SWOBD
and reach the conclusion that the learning rate determines the
speed of community formation, the discount factor governs
the stability of the community, and the dimension of the two-
dimensional space impacts the size of the community. Then,
we demonstrate the critical role of reinforcement learning in the
evolution of complex networks by comparing it with a heuristic
model as an alternative approach. Furthermore, through the
comparative assessment of our model with classic BA and WS
networks concerning network structure, degree distribution,
clustering coefficients, etc., we find that our model is capable
of generating networks that conform to both power-law and
normal distributions, and the networks exhibit high clustering
coefficients and assortativity characteristics than BA and WS
networks.

The model presented in this paper provides a fresh perspec-
tive on the formation and development of community struc-
tures in the real world. It also furnishes a valuable framework
for studying the dynamic behavior of populations, encompass-
ing phenomena, such as the spread of diseases, the evolution of
cooperative behavior, and the synchronization of individuals.
Additionally, it is worth emphasizing that the snowdrift game
utilized in this paper is not restrictive. The proposed framework
is broadly applicable and can be extended to other games by
appropriately modifying the payoff matrix. However, there
are still some areas for improvement. In particular, beyond
the Fermi function utilized in this paper to update individual
strategies, other update rules, such as best-take-over and the
Moran process, are also worth considering for strategy updates.
Besides, expanding the movement of individuals in the two-
dimensional plane to the three-dimensional space is also an
interesting point. In addition to the evolution of cooperative
behavior explored in this paper, the network model developed
herein can also serve as a foundational structure for investigat-
ing other forms of prosocial behavior on complex networks,
including fairness [65], trust [66], the safe development of
artificial intelligence [67], technological coordination [68], and
open data management [69]. In the near future, these issues will
be the focus of our studies.
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K. Kaski, J. Kertész, and A.-L. Barabási, “Structure and tie
strengths in mobile communication networks,” Proceed-
ings of the National Academy of Sciences, vol. 104, no. 18,
pp. 7332–7336, 2007.

[2] S. Ramanathan and M. Steenstrup, “A survey of routing
techniques for mobile communications networks,” Mobile
Networks and Applications, vol. 1, pp. 89–104, 1996.

[3] C. A. Heaney and B. A. Israel, “Social networks and social
support,” Health Behavior and Health Education: Theory,
Research, and Practice, vol. 4, pp. 189–210, 2008.

[4] L. F. Berkman, “The relationship of social networks and
social support to morbidity and mortality.,” Social Support
and Health, pp. 241–262, 1985.

[5] M. Girvan and M. E. Newman, “Community structure in
social and biological networks,” Proceedings of the National
Academy of Sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[6] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G.
Soldatos, S. Kossida, J. Aerts, R. Schneider, and P. G.
Bagos, “Using graph theory to analyze biological net-
works,” BioData Mining, vol. 4, pp. 1–27, 2011.

[7] J. R. Banavar, A. Maritan, and A. Rinaldo, “Size and form
in efficient transportation networks,” Nature, vol. 399,
no. 6732, pp. 130–132, 1999.

[8] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann,
T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck,
“Route planning in transportation networks,” Algorithm
Engineering: Selected Results and Surveys, pp. 19–80, 2016.

[9] Z. Lu, C. Xu, B. Du, T. Ishida, L. Zhang, and M. Sugiyama,
“Localdrop: A hybrid regularization for deep neural net-
works,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 7, pp. 3590–3601, 2021.

[10] B. Schwikowski, P. Uetz, and S. Fields, “A network of
protein–protein interactions in yeast,” Nature Biotechnol-
ogy, vol. 18, no. 12, pp. 1257–1261, 2000.

[11] L. Zhang, C. Bao, and K. Ma, “Self-distillation: Towards
efficient and compact neural networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 44, no. 8,
pp. 4388–4403, 2021.
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I

1 PROOF OF THEOREM 1

Theorem 1. For the continuous-time Markov chain N(t) with
the state space E, assume that the expectation of death process
{G(t), t ≥ 0} exists, its limiting probability {πi, i = 1, 2, · · · }
exists and follows

πi = lim
t→∞

pi (t) = lim
t→∞

P {N (t) = i}

=
{λE[G(t)]}i

i!
e−λE[G(t)].

(1)

Proof. As we stated, new individuals enter the system at
time intervals following an exponential distribution with
parameter λ and have a lifetime that obeys a general dis-
tribution. We yield
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pi (t) = P {N (t) = i} =
∞
∑

n=i

Pn,i(N | A, t)P [A (t) = n]

=
∞
∑

n=i

n! [X(t)]
i
[1−X(t)]n−i

i!(n− i)!

(λt)
n

n!
e−λt

=
[λtX (t)]

i

i!
e−λt

∞
∑

n=i

[λt− λtX(t)]n−i

(n− i)!

=
[λtX (t)]

i

i!
e−λtX(t).

(2)
Obviously, the probability pi(t) of the number of individ-

uals in the system at time t is a non-homogeneous Poisson
process. Therefore, under the condition that the expectation
of the general distribution {G(t), t ≥ 0} exists, its limiting
probability {πi, i = 1, 2, · · · } exists and follows

πi = lim
t→∞

pi (t) = lim
t→∞

[λtX (t)]i

i!
e−λtX(t)

=
λi

i!
lim
t→∞

[tX (t)]
i
e−λtX(t)

=
λi

i!

{
∫

∞

0
[1−G (t− x)]dx

}i

e−λ
∫

∞

0
[1−G(t−x)]dx

=
{λE [G (t)]}

i

i!
e−λE[G(t)].

(3)

The results follow.

2 PROOF OF THEOREM 2

Theorem 2. The average scale of the system is

E[N(t)] = λE[G(t)], (4)
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the variance of the scale is

D[N(t)] = λE[G(t)], (5)

and the average staying time of each individual is

E(T ) = E[G(t)]. (6)

Proof. The average scale of the system is the expectation of
the result in Thm. 1, which can be denoted as

E[N(t)] =
∞
∑

i=0

iπi = e−λE[G(t)]
∞
∑

i=1

{λE[G(t)]}i

(i− 1)!

= λE[G(t)],

(7)

the variance is expressed as

D[N(t)] = E
[

N2(t)
]

− E2[N(t)]

=
∞
∑

i=0

i2πi − {λE[G(t)]}2

= e−λE[G(t)]
∞
∑

i=1

i
{λE[G(t)]}i

(i− 1)!
− {λE[G(t)]}2

= λE[G(t)],

(8)

and the average staying time of each individual is calculated
by

E(T ) =
E[N(t)]

λ
= E[G(t)]. (9)

The results follow.

3 FURTHER SIMULATION RESULTS

In this section, we present the evolution of cooperative
behaviors and communities, the effect of payoff parameter
and exploitation ratio on community structures, and the net-
work structure and metrics in systems with the birth-death
process (SWBD), where the death process obeys different
distributions, including uniform (SWBD with uniform dis-
tribution), exponential (SWBD with exponential distribu-
tion), and lognormal (SWBD with lognormal distribution)
distributions. Moreover, this section includes supplemen-
tary figures that provide additional support and clarification
for the key results discussed in the main manuscript. We
emphasize that in order to ensure comparability, all param-
eter settings in each simulation are the same as those in the
corresponding simulation in the main manuscript, with the
exception of the death process distribution. Furthermore,
based on the theoretical results derived in subsection 2.1 of
the main manuscript, we adjust the parameters for different
death distributions to ensure that the system scales remain
similar when the evolution reaches stability.

3.1 Further Results for Evolution of Network Coopera-

tion Behaviors

In this subsection, we illustrate the evolution of network
cooperation behaviors under the death process following
uniform, exponential, and lognormal distributions, and the
results are shown in Fig. 1. The learning rate, discount factor,
and weight fading factor of the edge are set to 0.7, 0.3,
and 2, respectively, consistent with the settings in the main
manuscript. In addition, we set parameters for the different
death distributions to ensure that the systems are similar in
scale when evolutionary stabilization occurs. In particular,
for the uniform distribution, we set the birth rate to λ = 4
and the starting and ending values to a = 120 and b = 135.
The birth and death rates of the exponential distribution are
set to λ = 5.1 and κ = 0.01. In the case of the lognormal
distribution, the birth rate, mean, and standard deviation are
set as λ = 4, υ = 2.85, and φ = 2, respectively. With these
settings, the scale of the system at a steady state in all three
cases is approximately 510, which aligns with the power-law
distribution scenario discussed in the main manuscript.
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Fig. 1. Heat maps of cooperation fraction regarding payoff param-
eter r and exploitation rate δ under different death processes. The
figure demonstrates the effect of r and δ on cooperative behaviors when
the death process follows uniform (in subplot (a)), exponential (in subplot
(b)), and lognormal (in subplot (c)) distributions. The ranges of both the
x-axis and y-axis are set to [0, 1], with the x-axis and y-axis respectively
representing the payoff parameter r and exploitation rate δ.

From Fig. 1, we observe that the evolution of the co-
operation ratio under the three death distributions is sim-
ilar. Specifically, the cooperation ratio decreases with the
increase of the payoff parameter r, while the exploitation
rate δ has almost no effect on the survival of cooperators.
The phenomenon is the same as the results in the main
manuscript, where the death process obeys a power-law
distribution.
3.2 Further Results for Emergence and Evolution of

Communities

Fig. 2 illustrates the corresponding network structures
for the evolutionary snapshots in the two-dimensional space
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(b) Network structure of SWOBD

Fig. 2. Network structures corresponding to the evolutionary snapshots in the two-dimensional space shown in Fig. 6 of the main
manuscript. The parameter pairs (δ, r) are set to (0.8, 0.6), (0.8, 0.2), (0.4, 0.4), and (0.9, 0.4) from top to bottom. The time steps are fixed
at 500, 2000, 3500, and 5000 from left to right.

depicted in Fig. 6 of the main manuscript, enabling a direct
comparison between individual movements and the result-
ing network formations.

To explore the distribution of individuals in two-
dimensional space and their corresponding network struc-
ture under the death process obeying other distributions, we
select the same four sets of parameters (δ, r) as in the main
manuscript, i.e., (0.8, 0.6), (0.8, 0.2), (0.4, 0.4), and (0.9, 0.4).
The evolutionary snapshots in the two-dimensional space
and their corresponding network structures under different
parameter pairs (δ, r) and death processes are demonstrated
in Fig. 3.

From these snapshots of Fig. 3, it is evident that, regard-
less of the distribution followed by the death process, no
distinct community structure emerges in the system. The
distribution of individuals in the two-dimensional space re-
mains random, which is consistent with the results observed
when the death process follows a power-law distribution as
presented in the main manuscript.

In addition to the snowdrift game, we further investigate
the emergence and evolution of communities in SWOBD
within the context of the stag hunt game (SHG), where the
payoff matrix is defined as:

M ′ =

(

1 −r′

r′ 0

)

, (10)

where r′ ∈ [0, 1] represents a tunable payoff parameter.
Figs. 4(a) and 4(b) depict the evolutionary snapshots in
the two-dimensional space and the corresponding network
structures of SWOBD under different combinations of the
exploitation rate δ and the payoff parameter r′ in the SHG
setting, respectively. The results show that higher values
of δ and lower values of r′ favor the rapid formation
and sustained evolution of communities, consistent with
the findings observed in the SWOBD within the snowdrift
game scenario. These findings confirm that the snowdrift

game employed in this study serves as a special case, and
the proposed framework can be extended to other game
scenarios by substituting the corresponding payoff matrix.

3.3 Further Results for Effect of Payoff Parameter and

Exploitation Ratio on Community Structures

Although the results shown in subsection 3.2 indicate no
community structure formation for four specific parameter
combinations, this observation may not generalize across
all parameter combinations. To further investigate the ef-
fect of the payoff parameter and the exploitation rate on
community structures, we plot the heat maps of Nc (the
sum of the number of individuals in the four locations
with the highest populations throughout the evolutionary
process) with respect to r and δ under three different death
distributions, and the results are demonstrated in Fig. 5.

From Figs. 5(a) and 5(b), we can get that the value
of Nc is relatively small when the death process obeys
both uniform and exponential distributions, indicating a
lack of community structure in these cases. Furthermore,
the heat maps exhibit a highly uneven distribution of Nc,
suggesting that community formation is not significantly
influenced by the payoff parameter r or the exploitation rate
δ. These findings align with the results obtained with the
power-law distribution for the death process, as discussed
in the main manuscript. In contrast to the results for other
death distributions, the case where the death process fol-
lows a lognormal distribution shows a notable emergence
of community structures. As illustrated in Fig. 5(c), when
the exploitation rate δ is large and the payoff parameter
r is small, Nc can reach approximately 100, indicating the
formation of community structures within the system.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

0 1 2 3 4 5 6 7 8 9 10

(1) t=500
0

1

2

3

4

5

6

7

8

9

10

=0
.8,

r=
0.6

0 1 2 3 4 5 6 7 8 9 10

(2) t=2000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(3) t=3500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(4) t=5000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(5) t=500
0

1

2

3

4

5

6

7

8

9

10

=0
.8,

r=
0.2

0 1 2 3 4 5 6 7 8 9 10

(6) t=2000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(7) t=3500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(8) t=5000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(9) t=500
0

1

2

3

4

5

6

7

8

9

10

=0
.4,

r=
0.4

0 1 2 3 4 5 6 7 8 9 10

(10) t=2000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(11) t=3500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(12) t=5000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(13) t=500
0

1

2

3

4

5

6

7

8

9

10

=0
.9,

r=
0.4

0 1 2 3 4 5 6 7 8 9 10

(14) t=2000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(15) t=3500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(16) t=5000
0

1

2

3

4

5

6

7

8

9

10

(a) Individual distribution under uniform distribution
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(e) Individual distribution under lognormal distribution
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(f) Network structure under lognormal distribution

Fig. 3. Evolutionary snapshots in the two-dimensional space and their corresponding network structures under different parameter pairs
(δ, r) and death processes. By setting the parameter pairs (δ, r) as (0.8, 0.6), (0.8, 0.2), (0.4, 0.4), and (0.9, 0.4) from top to bottom and fixing
the time step at 500, 2000, 3500, and 5000 from left to right, we present the evolutionary snapshots of individual movement in the two-dimensional
space on the system with the birth-death process, where the death process follows uniform (in panel (a)), exponential (in panel (c)), and lognormal
(in panel (e)) distributions, respectively. The corresponding network structures are displayed in panels (b), (d), and (f). All other parameters in these
subplots remain consistent with the main manuscript for comparison.
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(a) Individual distribution of SWOBD within SHG
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(b) Network structure of SWOBD within SHG

Fig. 4. Evolutionary snapshots in the two-dimensional space and corresponding network structures of SWOBD under different parameter
pairs (δ, r′) within the context of the stag hunt game. Suplot (a) presents the evolutionary snapshots of individual movement in the two-
dimensional space on the system without the birth-death process, under four different combinations of (δ, r′): (0.8, 0.7), (0.8, 0.2), (0.5, 0.3), and
(0.9, 0.3), arranged from top to bottom. For each combination, the system state is shown at time steps of 500, 2000, 3500, and 5000, from left to
right. Subplot (b) displays the corresponding network structures. All other parameters are kept consistent with those used in the main manuscript
to facilitate direct comparison.
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(c) Lognormal distribution

Fig. 5. Heat maps of Nc with respect to payoff parameter r and
exploitation rate δ under various death processes. By setting the
y-axis as the exploitation rate δ with a range [0, 1] and the x-axis as the
payoff parameter r with a range [0, 1], we demonstrate the heat maps
of Nc about payoff parameter r and exploitation rate δ under the death
process obeys uniform (in subplot (a)), exponential (in subplot (b)), and
lognormal (in subplot (c)) distributions, respectively.

To provide a more intuitive understanding, Fig. 6
presents the distribution of individuals in the two-
dimensional space over time, with the death process follow-
ing a lognormal distribution and parameters set to δ = 1.0

and r = 0.1, respectively. The snapshots reveal that a
community structure begins to form around t = 2, 000.
Another community structure emerges around t = 3, 500

0 1 2 3 4 5 6 7 8 9 10

(1)t=500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(2)t=1000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(3)t=1500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(4)t=2000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(5)t=2500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(6)t=3000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(7)t=3500
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(8)t=4000
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

(9)t=5000
0

1

2

3

4

5

6

7

8

9

10

Fig. 6. Evolutionary snapshots in the two-dimensional space for
parameter pair (δ, r) = (1.0, 0.1) with a lognormal death process. The
figure depicts the individual distribution in the two-dimensional space
over time, where the death process follows a lognormal distribution
with the parameters δ = 1.0 and r = 0.1. The snapshots reveal the
emergence of distinct community structures as time progresses.

and subsequently stabilizes, which is consistent with the
results depicted in Fig. 5(c). However, it is important to note
that although community structures are present in this sce-
nario, the value of Nc remains smaller compared to systems
without the birth-death process. Specifically, the number
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and size of community structures in systems without the
birth-death process are larger, as demonstrated in Figs. 6(b)
and 7(b) of the main manuscript.

3.4 Further Results for Fit of the Degree Distribution

using Reinforcement Learning on Real Networks

In this subsection, we evaluate the fit of the degree
distribution on six different real networks, and the results
are shown in Fig. 7.
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Fig. 7. Fit of the degree distribution on six different real networks.
The figure illustrates the degree distributions of networks generated
by the SWOBD model, which are used to fit the degree distributions
of the HS-HT network (panel (a)) and the TWITTER-COPEN network
(panel (b)). Additionally, we fit the degree distributions of real networks
using networks generated by the SWBD model under various death
processes. Subplots (c) and (d) show the fitting results for the AVES-
WEAVER-SOCIAL and DWT-607 networks, where the death processes
follow power-law and uniform distributions. Subplots (e) and (f) present
the fitting results for the MAMMALIA-DOLPHIN and NETSCIENCE net-
works, where the death processes follow exponential and lognormal dis-
tributions, respectively. The x-axis represents the degree of the network,
while the y-axis indicates the probability of each degree.

3.5 Further Results for Comparison with Heuristic

Model

This subsection presents the performances of the heuris-
tic model, and the results are illustrated in Fig. 8.

3.6 Further Results for Network Structure and Metrics

In this subsection, we study the network structure,
clustering coefficient, degree distribution, and joint degree
distribution of networks generated by the death process fol-
lowing uniform, exponential, and lognormal distributions,
and the results are displayed in Fig. 9.

From Figs. 9(d)-(f), it is evident that most nodes in the
networks generated by these three death processes exhibit
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Fig. 8. The performances of the heuristic model. (a) is the degree
distribution of the network generated by the heuristic model. (b) shows
the evolutionary curves of the state transition ratio as time progresses
for the SWOBD and heuristic models.

high clustering coefficients, with values of 0.701, 0.676, and
0.671 for the uniform, exponential, and lognormal distri-
butions, respectively. This suggests a significant level of
aggregation among nodes in all three networks. The degree
distributions illustrated in Figs. 9(g)-(i) reveal that while
most nodes have relatively small degrees, there are also
a few nodes with relatively larger degrees. Notably, the
degree distributions for the death process obeying uniform
and lognormal distributions are similar, both approximately
following a power-law distribution. By plotting the joint
degree distributions of the three networks, we observe from
Figs. 9(j)-(l) that the numbers around and on the diagonal
line in the heat maps are substantial. This indicates that all
three networks exhibit assortative mixing and high degree
correlation, consistent with findings obtained in the main
manuscript where the death process adheres to a power-
law distribution. Furthermore, the assortativity coefficients
for networks generated by the uniform, exponential, and
lognormal death processes are 0.874, 0.755, and 0.871, re-
spectively. These relatively high values corroborate the ob-
servations from the joint degree distributions and align with
our previous analysis.
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Fig. 9. Some topological metrics of networks generated by SWBD with uniform, exponential, and lognormal distributions. In this figure,
we respectively demonstrate the networks and their corresponding topological metrics of SWBD with uniform (first column), exponential (second
column), and lognormal (third column) distributions. The network structures are shown in subplots (a)-(c), clustering coefficients in subplots (d)-(f),
degree distributions in subplots (g)-(i), and joint degree distributions in subplots (j)-(l).


