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An Efficient Image Fusion Network Exploiting
Unifying Language and Mask Guidance

Zi-Han Cao, Yu-Jie Liang, Liang-Jian Deng, Senior Member, IEEE , and Gemine Vivone, Senior
Member, IEEE

Abstract—Image fusion aims to merge image pairs collected by different sensors over the same scene, preserving their distinct features.
Recent works have often focused on designing various image fusion losses, developing different network architectures, and leveraging
downstream tasks (e.g., object detection) for image fusion. However, a few studies have explored how language and semantic masks can
serve as guidance to aid image fusion. In this paper, we investigate how the combination of language and masks can guide image fusion
tasks, discarding the previously complex frameworks, which rely on downstream tasks, GAN-based cycle training, diffusion models, or
deep image priors. Additionally, we exploit a recurrent neural network-like architecture to build a lightweight network that avoids the
quadratic-cost of traditional attention mechanisms. To adapt the receptance weighted key value (RWKV) model to an image modality,
we modify it into a bidirectional version using an efficient scanning strategy (ESS). To guide image fusion by language and mask
features, we introduce a multi-modal fusion module (MFM) to facilitate information exchange. Comprehensive experiments show that
the proposed framework achieved state-of-the-art results in various image fusion tasks (i.e., visible-infrared image fusion, multi-focus
image fusion, multi-exposure image fusion, medical image fusion, hyperspectral and multispectral image fusion, and pansharpening).
Code will be available at https://github.com/294coder/RWKVFusion.

Index Terms—Multi-modal guided image fusion, efficient network, attention, image fusion, pansharpening, remote sensing, deep
learning.
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Fig. 1: Performance assessment on several image fusion tasks comparing with state-of-the-art methods.

1 INTRODUCTION

Image fusion, a low-level vision task, holds a pivotal role
in various fields, such as computational imaging, military
reconnaissance, and medical diagnosis [1], [2], [3], [4].

Due to some limitations of current sensors and optical
imaging technologies, the information acquired by a single
modality does not fully represent real-world scenarios [5].
However, we can utilize different sensors to capture images
with different modalities, which are often complementary
(e.g., remote sensing satellites capture both panchromatic
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and multispectral images [1], [6] or hyperspectral images [2],
or visible and near-infrared images [3], [5], [7]). The goal
of image fusion is to create a composite (synthetic) image
by combining complementary information from multiple
source images that are captured using various sensors or op-
tical configurations. We aim for the fused image to represent
the information contained in the input images referring to
different modalities [7]. A network showing elevated fusion
performance can serve as pre-processing for downstream
tasks (e.g., object detection [8] and segmentation [9]).

In the field of image fusion, numerous methods have
been proposed, mainly divided into: i) traditional fusion
frameworks and ii) deep fusion frameworks using neural
networks. Because of some limitations in traditional frame-
works, such as defining handcrafted features and fusion
rules, to date, state-of-the-art fusion methods mainly fo-
cus on the second class. Recent deep fusion frameworks
usually put a spotlight on designing: i) fusion frameworks
(e.g., combining loss functions or incorporating additional
information to aid the fusion process); and ii) efficient deep
networks and neural operators.

https://github.com/294coder/RWKVFusion
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Regarding fusion frameworks, recent works have ex-
plored various strategies, such as different fusion losses [10],
additional discriminators to aid the fusion process [11], dif-
fusion priors [12], [13], deep image priors (DIPs) with itera-
tive algorithms [14], and incorporating some high-level in-
formation [13], [15], [16]. These fusion frameworks demon-
strated that solely relying on fusion losses for constraints
is limiting. Instead, utilizing other relevant information is
beneficial for the fusion process. Despite good outcomes,
current fusion frameworks still show evident drawbacks,
e.g., semantic segmentation leads to training overhead and
additional priors need to train dual generator/discriminator
networks or inference on diffusion processes.

A few studies explored how language and semantic
masks can serve as guidance to aid image fusion tasks.
Hence, in this work, we investigate the unification of lan-
guage and masks to guide image fusion tasks, discard-
ing previously developed (more complex) frameworks that
rely on downstream tasks, generative adversarial networks
(GANs), diffusion models, or DIPs. To the best of our knowl-
edge, the only approaches that use language as guidance
for image fusion are TextIF [17] and FILM [18]. We will
review them pointing out the differences with the proposed
framework in Sect. 2.1.

Designing an efficient network for image fusion is cru-
cial, especially when processing high-resolution images that
face large floating point operations per second (FLOPs) and
memory issues. Many architectures have been developed
for visual tasks. Early deep vision networks, such as convo-
lutional neural networks (CNNs) with residual blocks [19]
and autoencoder-based feature extraction [20], offer fast
execution times but struggle with smaller receptive fields.
Vision transformer (ViT) [21], with its global receptive field
and less inductive bias, excels in fine-grained tasks like
segmentation, especially when large datasets are consid-
ered. By patching images, ViT reduces the impact of the
self-attention’s quadratic spatial cost, but leads to a loss of
spatial information.

However, since image fusion is a low-level vision task,
it significantly differs from other high-level tasks for the
following reasons: i) it involves inputs from different modal-
ities (e.g., visible and near-infrared images) requiring tai-
lored modules for feature handling; ii) models operate at
pixel-level (not in a latent space as for diffusion models [22])
requiring more computational burden; iii) traditional CNNs
fail to extract enough global (context-based) information
and the quadratic memory consumption of classical atten-
tion is unacceptable for processing high-resolution images.

Most current image fusion networks aim to balance per-
formance and complexity by adopting hybrid architectures
that combine convolution and attention mechanisms (in-
cluding window attention [23] or other linear attentions [24],
[25]). Although this approach alleviates some issues, han-
dling high-resolution images still requires substantial mem-
ory overhead. The recent introduction of vision Mamba
(VMamba) [26] into the image fusion literature led to the
reduction of memory costs to near-linear levels [27]. How-
ever, vision Mamba performance remains controversial [28].

A novel recurrent neural network (RNN)-like architec-
ture, named receptance weighted key value (RWKV) [29],
has recently demonstrated outstanding performance in

language modeling. Inspired by the attention-free trans-
former [30], which decomposes attention into vector oper-
ations, RWKV combines the efficient parallelizable training
of transformers with the efficient inference of RNNs. Vision-
RWKV [31] extends this approach to vision tasks, yielding
promising results. However, the currently designed RWKV
networks neglect some specific requirements of image fu-
sion tasks, in particular, overlooking language and other
semantic guidance. Hence, we introduce the efficient linear
attention mechanism of RWKV as a fundamental opera-
tor for image fusion tasks designing an efficient backbone
network, which is multi-scale, has a global receptive field,
exhibits low latency, and unifies various guidance.

In this work, we are committed to addressing the
shortcomings of existing fusion frameworks by proposing
RWKVFusion, a multi-modal fusion framework. This frame-
work integrates various guidance into a single efficient
network to tackle image fusion tasks, thereby enhancing
fusion performance, as illustrated in Fig. 1. In the proposed
fusion framework, with data examples shown in Fig. 2,
we introduce both language and semantic masks to guide
the fusion process overcoming the drawbacks of previous
fusion frameworks.

The contribution of our paper is three-fold:

• We propose a new image fusion framework with
multi-modal guidance. Our image fusion framework
combines global-level language overview and object-
level semantic mask guidance, thus overcoming the
drawbacks of previous fusion frameworks (e.g., lim-
ited fusion guidance, complex priors, and depen-
dence on downstream prediction heads to introduce
semantic information).

• We introduce a linear-cost fusion network based on
the RWKV operator. We adapted RWKV to image
fusion developing a multi-scale architecture, named
RWKVFusion, which integrates RWKV with an ef-
ficient 2D image scanning strategy. To incorporate
diverse guidance, we designed a multi-modal fusion
module (MFM) that exploits both language and mask
features to semantically and globally guide image
fusion processes.

• We conducted experiments on various image fusion
tasks, including visible-infrared image fusion (VIF),
multi-exposure image fusion (MEF), multi-focus im-
age fusion (MFF), medical image fusion (MIF), hy-
perspectral and multispectral image fusion (HMIF),
and pansharpening. Extensive experiments assessed
the effectiveness of RWKVFusion.

The rest of this paper is organized as follows. We first
review related works in Sect. 2. The proposed RWKVFusion
framework is discussed in Sect. 3. The experimental analysis
on several image fusion tasks is shown in Sect. 4. Sects. 5 and
6 are devoted to some ablation studies and discussions, re-
spectively. Finally, concluding remarks are drawn in Sect. 7.

2 RELATED WORKS

2.1 Image Fusion and High-level Semantic Guidance
Image fusion is an image processing task with many down-
stream applications such as object detection and segmenta-
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Visible Infrared

Infrared captions: The image is a black and white 
picture. It shows a group of people walking on a 
street at night. The street is lined with buildings 
on both sides and there is a car parked on the left 
side of the image. The people in the image appear 
to be of different ages and genders, and they are 
all carrying backpacks …

Visible captions: The image shows a group of 
people walking on a street. There is a white van 
parked on the left side of the image and a white 
car on the right side. The street is lined with 
trees and there are buildings in the background. 
The sky sun is shining, casting a warm glow on 
the scene …

Masks

Over Under Masks

Captions: The image shows a vase of flowers on a window sill. The vase is filled with a variety of 
colorful flowers, including orange lilies, red roses, and green leaves. The flowers are arranged in a way 
that creates a beautiful bouquet. The window is made of wood and has a diamond pattern on the glass. 
The sunlight is shining through the window, creating a warm glow on the flowers. The wall behind the 
window is painted yellow and there is a wooden cabinet on the right side of the image.

FAR NEAR Masks

Captions: The image shows a group of metal tables and chairs arranged on a tiled patio. The patio is 
surrounded by a garden with purple flowers and greenery. The chairs and tables are made of metal and 
have a modern design with a curved backrest and armrests. The floor is made of light-colored tiles and 
there is a building in the background with large windows. The overall atmosphere of the image is 
peaceful and inviting.

MRI captions: The image is a black and white 
MRI scan of the brain, which appears to be a 
cross-sectional view of the human brain. The 
image is taken from a top-down perspective, 
with the brain in the center of the image. The 
brain is shown in a circular shape …

SPECT captions: The image is a digital illustration of a 
sphere with a black background. The sphere appears to 
be made up of different shades of purple and orange, 
with some areas appearing darker and others lighter. 
The colors are arranged in a way that creates a sense of 
depth and dimension …

MRI SPECT Masks

Fig. 2: Representative multi-modal data with language and mask guidance. The image fusion tasks from left to right and
from top to bottom are: visible-infrared, medical image, multi-exposure, and multi-focus. To serve as fusion guidance,
dense captions and masks are generated by Florence [32] and SAM [33], respectively.

tion. Its general formulation is as follows:

F = Fθ(S1,S2, · · · ,Sn), (1)

where Fθ(·) is a deep fusion network with parameters θ that
takes different modalities S = {S1,S2, · · · ,Sn} as input
and generates a fused image, F.

The optimal fused image is required to have the con-
sistency property, i.e., retaining the information contained
in the input modalities as much as possible. This property
motivated many works in i) developing training/inference
strategies to adapt to the task and/or ii) designing more
efficient and effective networks. We start reviewing previ-
ous fusion frameworks, postponing discussions on network
designs to the next subsection.

Fusion frameworks mainly rely upon end-to-end learn-
ing paradigms, as shown in Fig. 3 (left panel). Previously de-
veloped fusion frameworks usually focused on: i) designing
effective loss functions [7], [34], [35]; ii) integrating fusion
tasks with downstream applications such as detection and
segmentation [9], [36]; and iii) incorporating generative pri-
ors (e.g., GANs [11], [37] or diffusion models [38]). In terms
of loss function design, image pairs are processed through
deep neural networks, computing losses starting from the
output images, see “Standard fusion loss” in the left panel
of Fig. 3. These losses are specifically designed to preserve
essential information from each modality (consistency prop-
erty). For downstream task integration, existing approaches
typically adopt task-specific networks either sequentially or
in parallel to the fusion network, jointly optimizing them
using both fusion and task-specific losses, denoted as “Seg.
or Det. loss” in the left panel of Fig. 3. However, this
coupled training strategy introduces significant computa-
tional overhead and requires manual annotations. Regard-
ing generative priors, previous methods have attempted to
incorporate GAN-based cycle training [39] into image fusion
processes. Moreover, diffusion models have been utilized by

either injecting diffusion priors [13] or controlling diffusion
trajectories [40]. However, these complex prior mechanisms
often require additional network training or introduce com-
putationally intensive diffusion inference loops.

Moreover, there are a few works related to the use of
language as guidance to fusion processes. In particular,
TextIF [17] incorporates language information into a two-
stream encoder and a unified decoder transformer network,
utilizing language instructions for visible-infrared image
fusion. Notably, for language features, TextIF adopts a
coarse-grained guidance similar to a scale-shift mechanism
to inject language information. Similarly, FILM [18] employs
language generated by ChatGPT [41] for guidance, utilizing
cross-attention to facilitate information exchange between
language and image tokens, while neglecting semantic mask
guidance. The use of cross-attention introduces a substantial
computational burden. Since the language describes the
entire image, the input image cannot be cropped in small
patches. FILM adopts Restormer attention [42] to mitigate
the high memory overhead. However, this kind of atten-
tion results in diminished representational capability. The
proposed method leverages RWKV to effectively reduce
memory and computational overheads, while also incorpo-
rating globally aware language modality and objective-level
semantic mask information to guide image fusion processes.

2.2 Emerging Trends in Image Fusion Network Design

Network design is crucial for a given image fusion
task. Recent works explored the development of fusion-
oriented architectures to accomplish this task, including
properties such as multi-scale [27], [38], multi-branch [43],
large-receptive field [44], scale- or fusion size-ware [44],
linear-memory or linear-runtime [27], [45], and invert-
ible networks [46], [47]. These state-of-the-art architec-
tures share some similar characteristics as multi-scale and
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VIS

IR

VIS
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Fused

Mask

VIS captions: The image is a close-up of a 
street at night. In the center of the image, 
there is a bright light …;
IR captions: The image is a black and white 
photograph of a group of people walking on 
a street at night …

Fixed prompt: 
Car, Person … optional Image Captioning

Guidance

Mask Generation

Fig. 3: Comparison between previously developed fusion frameworks and the proposed RWKVFusion. The main
differences are as follows: i) some of these frameworks incorporate additional tasks, such as segmentation [9], [15] and
object detection [54], requiring semantic information, thus introducing training overhead and costly manual annotations;
ii) complex priors lead to the use of further networks [11] or a larger number of parameters and longer inference time [12],
[13]; iii) they exploit inefficient networks characterized by high computational demands, restricted receptive fields, and
some other limitations [55], [56]. Our RWKVFusion introduces automatic open-set detection and mask generation to include
semantic information to guide fusion processes without expensive annotation. VIS and IR stand for visible and infrared.

large-receptive properties and task-oriented fusion mod-
ules. Some successful pioneering works, as DSPNet [48]
and EMMA [49], are multi-scale architectures designed
with special feature-gathering operators (e.g., attention [21],
Restormer [42], and flatten attention [50]). PanMamba [51],
LE-Mamba [27], and CDDFuse [35] have been designed as
fusion-oriented modules.

Nevertheless, these approaches often make trade-offs for
several reasons, such as the balance between receptive field
and memory consumption, the high FLOPs for image fusion
tasks, and the time cost during training and inference. Most
architectures follow the design philosophy of using convo-
lution at high resolutions and attention at low resolutions,
but this still limits network performance. Recently, linear
attention mechanisms, such as flatten attention [50] and
Restormer attention [42], have emerged to address this issue
and have been applied to the design of image fusion archi-
tectures [52], [53]. However, although the memory overhead
has been reduced from O(L2) to O(C2), the computational
complexity increases from O(C2L) to O(CL2), where L
and C are the token length and the number of channels,
respectively. Additionally, state space models represented
by VMamba [26] offer linear overhead for global recep-
tive fields. However, their core selective scan mechanism
remains controversial [28], especially due to significant long
runtime latency. Thus, designing a linear memory/FLOPs
overhead, low latency backbone with large receptive fields
remains challenging.

2.3 RWKV

A novel linear attention mechanism, named RWKV [29], has
recently shown promising results in the field of language
modeling. Before introducing RWKV, let us first review the
basic form of attention. Unlike traditional RNNs [57], [58],
attention utilizes query, Q, key, K, and value, V, matrices to
model the relationship between input and output sequences,

Attn(Q,K,V). Thus, we have:

Attn(Q,K,V) = softmax(QK⊤)V, (2)

where ·⊤ is the transpose operator and softmax(·) is the
softmax function. The multi-headness and the scale factor,
1/
√
dk, are omitted (please refer to ViT [21]). Consider two

attended positions (t, i), with T token length, the attention
score at t can be written in vector form:

Attn(Q,K,V)t =

∑T
i=1 e

q⊤
t ki ⊙ vi∑T

i=1 e
q⊤
t ki

, (3)

where query, qt, key, ki, value, vi, are vectors from Q,
K, V, and ⊙ indicates the element-wise multiplication. By
introducing the weight matrix, W = {wt,i} ∈ RT×T , with
its elements dependent on both i and t, we can transform
attention into an RNN:

Attn(W,K,V)t =

∑T
i=1 e

wt,iki ⊙ vi∑T
i=1 e

wt,i+ki

. (4)

The previously developed RWKV converts the scalar wt,i

into a channel-wise decay vector w ∈ Rd multiplied by the
relative position, enhancing the language modeling capabil-
ity while maintaining the RNN form. The linear RNN model
is mainly designed to handle text sequences and can be
viewed as a linear attention mechanism with causal masks.
Despite recent efforts to extend RWKV to areas, such as
image classification [31], image restoration [59], and image
generation [60], its use in image fusion is still unexplored.

3 RWKVFUSION: IMAGE FUSION WITH RWKV
BACKBONE GUIDED BY LANGUAGE AND MASKS

3.1 Language and Mask Guidance in RWKVFusion

To address the issues raised in Sects. 2.1 and 2.2, we propose
a novel approach designed to transfer high-level semantic
information to fusion tasks. A schematic illustration of our
framework is depicted in Fig. 3 (right panel). The framework
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Florence and DINO 
(captioning & detection)

Fixed prompt (optional): 
Car, People …

SAM
(mask generation)

Boxes

Masks Merging
(optional)

Captions
VIS captions: The image is a close-up of a street 
at night. In the center of the image, there is a 
bright light …
IR captions: The image is a black and white 
photograph of a group of people walking on a 
street at night …

Mask

Different Modalities

VIS

IR

Efficient
RWKV
Model

T5
Model

Fused

Pretrained

Training

Fig. 4: An overview of the proposed semantic guidance branch. Image pairs of different modalities, optionally with fixed
prompts, are input into pre-trained large multi-modal models (DINO [62]) to detect objects and generate captions (using
Florence [32]). Object boxes are processed by SAM [33] to produce instance-level masks. A mask merging algorithm is used
to merge objects in different masks. The encoded captions from the T5 [61] model, along with the mask, are then fed into
the proposed RWKV model to guide fusion processes.

is divided into two branches: i) a fusion branch with an
efficient multi-modal network, and ii) a semantic branch
that provides semantic information to the fusion branch.
Input images from different modalities (e.g., visible and
infrared images) are fed into an efficient network guided by
image captions, T, and masks, M, to get the fused image.
Thus, the fusion process in (1) is reformulated as follows:

F = Fθ(S1, · · · ,Sn,T,M). (5)

For the fusion branch, we propose a pure RWKV net-
work with a linear overhead with respect to token length,
see Sect. 3.2 for more details. The semantic branch, serving
as fusion guidance, includes image captioning and mask
generation. To generate a language description of an image,
we use the pre-trained Florence model [32]. The captions are
encoded by the pre-trained T5 [61] model.

As detailed in Fig. 4, to segment the objects, a prompt
provided by users or Florence is sent to DINO [62] to detect
in an open-set manner. Afterward, the mask segmentation
is performed starting from these boxes to obtain object-
level semantic masks. It is worth to remark that, because
of the different information content in the input modalities,
the masks derived from the same prompt can differ and
get unsatisfactory results. To address this, we introduce a
mask merging algorithm to face these discrepancies, see
Sect. 3.7 for details. Then, the encoded captions, T, and
masks, M, are input into the RWKV encoder to guide fusion
processes. The RWKV decoder is used to decode features to
get fused outcomes. Finally, we compute the fusion loss,
Lfusion, using the fused images to update the parameters of
the network.

3.2 RWKVFusion Backbone Overview
In this subsection, we detail the fusion backbone of the
proposed framework. As shown in Fig. 5, RWKVFusion is a
multi-scale encoder-decoder architecture, instead of a plain
one. We conducted some experiments, see Sect. 6.1, where
the multi-scale architecture is modified to have a plain
backbone, similar to SwinIR [63], getting lower performance
with respect to the proposed multi-scale architecture.

The inputs of the network are images from different
modalities, encoded caption features, and semantic masks.
We first concatenate all image modalities along channel

dimensions before feeding them into the model. The first
convolutional layer projects data into a latent space, which is
then sent to the encoder to be encoded as features. As shown
in Fig. 5(b), the encoder consists of bi-directional RWKV
(BRWKV) layers, with each BRWKV layer consisting of a
multi-modal fusion module (MFM) and spatial and channel
mixing blocks.

It is worth mentioning that our RWKVFusion network
can be directly trained on large images without the need
for window partitioning/merging [64] while maintaining a
relatively low computational burden. An ablation study on
using window partitioning/merging is shown in Sect. 5.1.
Spatial mixing models the relationship among tokens at the
token level, similarly to the attention operation. Channel
mixing performs feature fusion along channels, as a feed-
forward network. To preserve modality information and
semantic guidance, we feed image pairs, captions, T, and
masks, M, into each encoder layer as conditions. For this
purpose, MFM, see Sect. 3.5 and Fig. 5(c), is designed to
guide the fusion process. Each encoder layer concludes with
a downsampling layer that has a downsampling factor of 2,
achieved through a stridden convolution.

The decoder is quite similar to the encoder but without
caption features and mask guidance, since the decoder
should focus on decoding fused images. Its input includes
not only features from the previous layer but also fea-
tures from the corresponding encoder layer, weighed by a
learnable factor. After being processed via the encoder and
decoder, the features are sent to a final convolutional layer
that projects them back into the pixel domain to get the
fused image.

3.3 Spatial and Channel Mixing
In the following, we will introduce the architecture of
the proposed BRWKV and the related motivations. When
considering architectural design choices, we typically aim
for the spatial operator in the block to have a sufficiently
large receptive field. However, pursuing a large receptive
field simultaneously leads to an increment of complexity.
RWKV, as an alternative to attention, follows a design
similar to spatial and channel mixing. The original RWKV is
designed for causal language modeling, thus differing from
2D images. To extract information from pixels, we need 2D
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Fig. 5: Architecture of the proposed RWKV network. It relies upon a U-Net multi-scale framework, incorporating raw
information from each modality, captions, and masks at various layers as conditions to guide the fusion process. Each
BRWKV layer has four key components: i) multimodal fusion module (MFM), ii) efficient scanning strategy (ESS), iii)
spatial mixing, and iv) channel mixing. Note that text feature T is input from the previous BRWKV encoder layer, but
mask M is a condition injected into each encoder layer.

spatial operators or sequences. Based on this, we first apply
an efficient scanning strategy, as introduced in Sect. 3.4, to
the input, scanning the 2D feature, X ∈ RH×W×C′

, where
H , W , and C ′ are the three dimensions of the input data,
into a 1D sequence stacked along the channel dimension,
Xs ∈ RL×C , where C = n · C ′, L = H · W , and n is
the scanning ratio. Then, the scanned image sequence is fed
into three linear layers with weights WR, WK , and WV , to
obtain receptance Rs, key Ks, and value Vs:

Rs = XsWR,Ks = XsWK ,Vs = XsWV , (6)

where the subscript “s” stands for spatial. Then, Ks and
Vs are fed into the WKV operator, OWKV (·, ·), to obtain
WKV global attention A ∈ RL×C , whose factorized vector
at position t, At, is as follows:

At = OWKV (Ks,Vs)t

=

∑L
i=1,i̸=t e

−(|t−i|−1)/L·w+kivi + eu+ktvt∑L
i=1,i̸=t e

−(|t−i|−1)/L·w+ki + eu+kt

,
(7)

where L is the sequence length, ki and vi are the i-th token
of Ks and Vs, respectively, and kt and vt are the t-th token
of Ks and Vs, respectively. |·| is the absolute value operator.
w and u are C-dimensional learnable parameters, which
control the channel-wise spatial decay and the bonus of the
current token. It can be noted that the WKV operator models
the global attention since it is a weighted summation of
vt and calculated along the L dimension by explicit decay
defined by the relative positions, (|t− i|−1)/L, and the key,
ki. Different from traditional attention, which can output
the explicit token-level attention map, the global attention of
WKV does not directly yield the same kind of fine-grained
attention. It compress the memory of tokens into global
attention, At. We will discuss this aspect in Suppl. Sect. 6.
After gathering global attention, receptance Rs is used to

gate the attention, and a linear layer is employed to obtain
the spatial output. Thus, we have:

Os = (σ(Rs)⊙A)WOs
, (8)

where WOs is the weight matrix of the linear layer, σ
denotes the sigmoid function, ⊙ is the element-wise mul-
tiplication operator, and Os is the spatial output.

The channel mixing is used to interact with the channel
information. We first normalize the spatial output:

Xc = RMSNorm(Os), (9)

where RMSNorm(·) stands for the root mean square nor-
malization [65] and Xc is the normalized spatial output.
Subsequently, three linear layers with weights WR, WK ,
and WV are used to project features into channel receptance
Rc, key Kc, and value Vc:

Rc = XcWR,Kc = XcWK ,Vc = ReLU2(Kc)WV . (10)

Unlike spatial mixing, the value Vc is derived from
Kc activated by the squared rectified linear unit, i.e.,
ReLU2(·) [66], used to enhance the nonlinearity. Similarly,
the value Vc is gated by sigmoid receptance Rc and linearly
projected into the feature space:

Oc = (σ(Rc)⊙Vc)WOc
, (11)

where WOc is the linear layer’s weight matrix and Oc is the
channel output.

BRWKV can be compared with popular attention mech-
anisms, including standard attention [21], flatten atten-
tion [50], window attention [23], and VMamba [26]. Their
number of parameters, time, and space consumption are
reported in Tab. 1. As can be seen, our BRWKV has a
linear space complexity and also demonstrates advantages
in terms of time complexity. Quantitative results comparing
different attention mechanisms are reported in Sect. 5.1.
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TABLE 1: Complexity of various vision models. The input image has a sequence length L and C input channels. For
window-based sequences, the length is L′ of P windows. The hidden dimension is N (i.e., the output channel). We show
parameter counts (Params), FLOPs, and space requirements (Space). D indicates the state size for VMamba.

k × k Conv Attention Swin Flatten Attn. VMamba BRWKV

Params k2CN 3CN + 2N2 3CN + 2N2 3CN + 2N2 3CN + 2N2 4CN + 3N2

FLOPs Lk2CN L2 + 5LCN P (L′2 + 5L′CN) 3LCN + L2N + LN2 1
16

LN2 + 2LND 26LC + 4LCN

Space LN L2 + 3LN P (L′2 + L′C) 3LN +N2 ND + 1
16

N2L 5LN

We can pass from the summation to the RNN forms of
our BRWKV. When we separate the numerator and denom-
inator in (7), we can obtain the following hidden states:

at−1 =
∑t−1

i=0 e
−(|t−i|−1)/L·w+kivi,

bt−1 =
∑L−1

i=t+1 e
−(|t−i|−1)L·w+kivi,

ct−1 =
∑t−1

i=0 e
−(|t−i|−1)/L·w+ki ,

dt−1 =
∑L−1

i=t+1 e
−(|t−i|−1)/L·w+ki .

(12)

Therefore, the summation form of the WKV operator in (7)
can be transformed into the recursively updated form:

At =
at−1 + bt−1 + ekt+uvt

ct−1 + dt−1 + ekt+u
, (13)

which highlights the relationship with RNNs. It is worth to
remark that an image patch is updated in each step and the
whole WKV matrix A requires L steps.

Considering the size of inputs K and V as L × C , the
FLOPs of the WKV operator OWKV are linear with respect
to the length of the image patch sequence:

FLOPs(OWKV ) = 2× 13× L× C, (14)

where factor 2 is related to the stacking along the channel
dimension of ESS and factor 13 comes from the computation
of the exponential for the hidden states (a,b, c,d) updates.

3.4 Efficient Scanning Strategy (ESS) for 2D Images
Since RWKV can only model causal language sequences and
modeling 2D images often requires bidirectional attention
operations, we introduce an efficient scanning strategy (ESS)
to convert 2D images into bidirectional 1D sequences, as
shown in Fig. 5(d). Specifically, we scan the image hori-
zontally and vertically, flattening it into 1D sequences, and
then we concatenate them along the channel dimension. To
extract image information more efficiently, we also scan the
image after flipping it vertically and horizontally. Further-
more, scanning can also be performed along the diagonal of
the image. This can lead to three variants of the scanning
strategies in each BRWKV block:

1) Alternately (with respect to the block index) hori-
zontal and vertical scanning before and after flip-
ping (2 scans in total);

2) Horizontal and vertical scanning before and after
flipping (4 scans in total);

3) Horizontal and vertical scanning before and after
flipping plus two diagonal scans (8 scans in total).

The third strategy is the most effective in terms of infor-
mation aggregation. However, with many scans (i.e., 8), the
number of channels grows with a factor of 8, increasing the

Text-guided featureMask-guided feature Encoder feature

Visible Infrared Mask

Captions: The image shows 
a street at night with a 
white truck parked on the 
right side of the road. The 
truck has its lights on and 
appears to be a delivery 
truck. There are several 
p eop l e  wa l k i ng  on  th e 
sidewalk next to the truck ...

Caption

Input feature

Fig. 6: Feature visualization for the MFM.

number of parameters and FLOPs. In practice, using the first
strategy, we got a slight performance degradation, while
obtaining clear advantages in terms of model parameters
and FLOPs. Ablation studies on different scanning strategies
are reported in Sect. 5.2.

3.5 Multi-modal Fusion Module (MFM)

MFM takes image pairs from different modalities, S , text
features, T, and masks, M, as input, to inject semantic in-
formation and guide fusion. In MFM, as shown in Fig. 5(c),
there are three paths to guide fusion: i) raw information
replenishment; ii) caption information overview guidance;
and iii) object-level mask guidance. In i), the input modali-
ties, S , and the features from the previous layer l− 1, Ol−1

c ,
are processed in a feature gate:

Xfeat = RMSNorm(Conv(Ol−1
c )),

Smod = RMSNorm(Conv(S)),
Xact = κ(AdapPool(Xfeat + Smod)),

Xfeat = (Xfeat + Smod)⊙Xact,

(15)

where AdapPool(·) adaptively pools the input with size of
C × H × W to C × 1, κ is the GELU activation [67], and
Conv(·) is a convolutional layer. In path ii), the mask M
is processed by a convolutional layer, obtaining Mfeat, and
then element-wise multiplied by the sum of the network
feature, Xfeat, and the modality feature, Smod:{

Mfeat = Conv(M),

Xmask = (Xfeat + Smod)⊙Mfeat,
(16)

where Xmask is the mask-guided feature.
After obtaining both features, they are added to form the

feature sequence Ximg :

Ximg = Xfeat +Xmask. (17)
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In path iii), Ximg is alternately concatenated with the
text feature, T, to generate a sequence Xtxt that contains
image and text features:

Xtxt =

{
Concat(T,Ximg), if j is even,
Concat(Ximg,T), if j is odd,

(18)

where j denotes the layer index and Concat(·, ·) is the con-
catenation operator. This allows caption T to be conditioned
on both the start and the end of sequences. Furthermore,
Xtxt is sent to a spatial mixing block to exchange language
and image information, and to a multilayer perceptron
(MLP) in the channel dimension, finally producing a text-
guided feature, X̃txt. Afterward, captions and image fea-
tures are split. Captions are sent to the next MFM and image
features are fed into the BRWKV block.

To illustrate the effectiveness of MFM, we visualize, in
Fig. 6, the features in the first encoder. It can seen that
Xmask is more focused on the objects provided by masks.
Moreover, X̃txt has a global response and objectives are all
highlighted. Thus, the semantic and object-level information
is injected into the encoded feature at layer l, Ol

c.

3.6 Loss Functions

For different fusion tasks, it is necessary to adopt differ-
ent supervised/unsupervised loss functions. For HMIF and
pansharpening tasks, we exploit the following supervised
loss function, Lsharpening :

Lsharpening = ∥F−GT∥1 + λ(1− SSIM(F,GT)), (19)

where GT is the ground-truth (GT) image, λ is a weighting
coefficient, ∥ · ∥1 is the ℓ1 norm, and 1 − SSIM is the SSIM
loss, with SSIM(·, ·) being the structural similarity index
measure [68].

For the VIF, MFF, MEF, and MIF tasks, which fuse
two modalities, i.e., S1 and S2, we employ the following
unsupervised loss function, Lfusion:

Lfusion = η1Linten + η2Lssim + η3Lgrad, (20)

where η1, η2, and η3 are weighting coefficients. Linten is the
intensity loss calculated as:

Linten = ∥F− S1∥1 + ∥F− S2∥1. (21)

Instead, Lssim is based on two combined SSIM losses calcu-
lated as:

Lssim = 2− SSIM(F,S1)− SSIM(F,S2). (22)

The SSIM loss is used to measure the structural similarity
between the fused image and the input modalities. Finally,
Lgrad is the gradient loss calculated as:

Lgrad = ∥∇F−max(∇S1,∇S2)∥1, (23)

where ∇ is the Sobel operator, which extracts the edge infor-
mation of images, and max(·, ·) is the maximum operator.
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Prompt: People, Car…
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in Supplementary
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VIS masks

IR masks
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Merged masks

Fig. 7: An overview of mask segmentation and merging.
Images from different modalities are fed into DINO and
SAM to detect boxes and segment masks in an open-set
manner. A novel mask merging algorithm is proposed.
Technical details and symbol definitions are reported in
Algos. I and II in Suppl. Sect. 3.

3.7 Mask Merging: Dealing with Unsatisfactory Masks

In Sect. 3.1, we introduced a semantic branch (see right
panel of Fig. 3) that generates object masks. Because of the
varying information content captured by different sensors,
given a prompt (prefixed or generated by Florence), de-
rived masks may differ from each others. Moreover, masks
are sometimes unsatisfactory to serve as guidance for fu-
sion. To address this problem, we developed an algorithm
that merges masks from different image modalities, which
makes the merged mask to better reflect the true number
and shapes of the objects. Specifically, our approach utilizes
predicted intersection over unions (IoUs) of masks to gener-
ate high-quality masks, avoiding object duplication or omis-
sion. The resulting high-quality mask generation provides
a robust foundation for RWKVFusion to perform effective
image fusion and combine semantic information from both
modalities. The flowchart of the proposed algorithms is
shown in Fig. 7. The algorithms for generating and merging
image masks are detailed in Algos. I and II in Suppl. Sect. 3.

4 EXPERIMENTAL ANALYSIS

We conducted experiments on six image fusion tasks to
validate the effectiveness of the RWKVFusion framework.
Additionally, we performed ablation studies and discus-
sions to demonstrate the performance and design rationality
of our model. For space limitations, implementation, bench-
mark details, and more experimental results are provided in
Suppl. Sects. 2, 4 and 7.

4.1 Datasets

4.1.1 Data
To evaluate the effectiveness of the proposed framework,
we included six tasks involving modalities from: 1) different



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

imaging sensors (i.e., VIF, MIF, pansharpening, and HMIF)
and 2) the same sensor but varying imaging parameters (i.e.,
MEF and MFF). The datasets are listed as follows:

1) VIF: MSRS, M3FD, and TNO datasets;
2) MIF: Medical Harvard dataset;
3) MEF: SICE and MEFB datasets;
4) MFF: MFI-WHU and RealMFF datasets;
5) Pansharpening: WV3, GF2, and QB datasets;
6) HMIF: Chikusei and Pavia datasets.

Detailed information (links and citations) of each dataset
is provided in Suppl. Sect. 1.

4.1.2 Mask Generation
For the VIF task, we manually provided the prompts,
“People, Car, Bus, Lamp, Motorcycle, Truck” for the M3FD
dataset, and applied the mask merging algorithm (see
Suppl. Sect. 3 Algos. I and II and Fig. 7 for a better illus-
tration) to deal with unsatisfactory resulting masks. Since
the MSRS dataset provided human-annotated masks, we
directly used them. For the MEF, MFF, and MIF datasets,
due to varying objects, we utilized the pre-trained Florence
model [32] for prompt extraction. When feeding data into
the RWKVFusion network, we scatter different objects in the
mask into separate channels, setting a maximum channel
number (experimentally set to 20) to enable the fusion
network to handle masks with varying object numbers. For
pansharpening and HMIF tasks, due to the small spatial size
of training samples (i.e., 64×64), we omitted mask guidance,
thus only applying language guidance. More examples of
generated masks and image captions are shown in Suppl.
Sect. 8.

4.2 Benchmarks
For the VIF fusion task, we chose recent state-of-the-art
fusion approaches for comparison. They can be categorized
as follows: i) decomposition methods: DeFuse [55] and
CDDFuse [35]; ii) task designed methods: U2Fusion [7],
SegMIF [9], and TC-MOA [70]; iii) prior-based methods:
DDFM [12]; iv) architectural design methods: SwinFu-
sion [56] and MGDN [69]; v) modality guided methods:
FILM [18] and TextIF [17].

For the MIF task, we added MATR [71], which has been
specifically designed for this task. Moreover, we exploited:
U2Fusion [7], SwinFusion [56], CDDFuse [35], DDFM [12],
MGDN [69], and TC-MOA [70].

For the MEF task, we included: U2Fusion [7],
DeFuse [55], TC-MOA [70], FILM [18], and IF-MT-SSL [73].
Moreover, we added two approaches specifically designed
for this task, i.e., HoLoCo [72] and HSDS [10].

For the MFF task, we added: U2Fusion [7], DeFuse [55],
DDFM [12], and TC-MOA [70]. Moreover, we included
two approaches specifically designed for this task, i.e.,
ZMFF [14] and IF-MT-SSL [73].

We provided many widely used quality metrics to assess
performance for the VIF, MIF, MEF, and MFF tasks: i) infor-
mation theory-based metrics: MI, VIF, and SF; ii) human

1. FILM does not provide the encoded text guidance (by ChatGPT)
for the TNO and MFI-WHU datasets. Thus, we did not compare with
it.

TABLE 2: Performance of recent state-of-the-art fusion meth-
ods applied to the VIF and MIF fusion tasks. The best results
are in red and the second-best results are in blue.

Methods MSRS dataset
MI↑ VIF↑ SF↑ Qcb↑ Qabf↑ Qy↑ Qcv↓ LPIPS↓

U2Fusion [7] 1.27 0.67 5.88 0.45 0.24 0.74 611.1 0.874
DeFuse [55] 1.87 0.68 8.13 0.49 0.43 0.90 265.1 0.751

SwinFusion [56] 1.46 0.56 8.09 0.48 0.40 0.79 1270.3 0.788
CDDFuse [35] 1.74 0.57 11.79 0.45 0.45 0.85 268.7 0.811

DDFM [12] 1.20 0.59 6.34 0.40 0.22 0.46 535.5 0.961
SegMIF [9] 1.42 0.54 10.59 0.42 0.46 0.65 248.1 0.828
MGDN [69] 1.89 0.85 9.66 0.52 0.51 0.90 224.1 0.685

TC-MOA [70] 1.93 0.61 9.18 0.50 0.48 0.92 186.9 0.792
FILM [18] 3.20 0.83 11.77 0.59 0.69 0.96 199.0 0.692
TextIF [17] 2.10 0.60 11.90 0.53 0.53 0.92 197.6 0.754
Proposed 3.42 0.87 11.50 0.60 0.70 0.96 182.2 0.677
Methods M3FD dataset

U2Fusion [7] 1.89 0.55 4.15 0.42 0.14 0.79 658.8 0.835
DeFuse [55] 1.99 0.70 7.45 0.43 0.34 0.88 511.7 0.693

SwinFusion [56] 1.92 0.65 10.71 0.42 0.46 0.91 537.6 0.650
CDDFuse [35] 2.63 0.70 14.7 0.48 0.62 0.95 436.7 0.637

DDFM [12] 1.84 0.51 8.65 0.40 0.33 0.81 511.7 0.693
SegMIF [9] 1.87 0.59 13.46 0.41 0.58 0.72 556.5 0.753
MGDN [69] 1.97 0.66 10.22 0.43 0.47 0.91 557.7 0.661

TC-MOA [70] 1.90 0.55 10.00 0.46 0.49 0.92 385.4 0.850
FILM [18] 2.42 0.52 15.00 0.47 0.55 0.93 424.0 0.779
TextIF [17] 2.54 0.72 15.53 0.52 0.68 0.93 395.0 0.661
Proposed 2.57 0.78 14.46 0.54 0.70 0.96 358.9 0.647
Methods TNO dataset1

U2Fusion [7] 1.42 0.65 6.37 0.48 0.33 0.83 508.4 0.751
DeFuse [55] 1.78 0.70 5.98 0.47 0.35 0.88 382.4 0.781

SwinFusion [56] 1.26 0.57 8.05 0.49 0.43 0.85 503.1 0.749
CDDFuse [35] 2.24 0.68 10.76 0.45 0.50 0.89 366.3 0.752

DDFM [12] 1.36 0.59 5.69 0.42 0.24 0.79 531.7 0.935
SegMIF [9] 1.97 0.63 11.97 0.47 0.54 0.76 427.9 0.789
MGDN [69] 1.43 0.65 7.29 0.47 0.34 0.84 463.9 0.736

TC-MOA [70] 1.70 0.59 6.94 0.48 0.40 0.90 315.7 0.933
TextIF [17] 2.17 0.64 11.22 0.52 0.56 0.91 278.8 0.749
Proposed 2.67 0.74 11.07 0.52 0.63 0.94 289.0 0.688
Methods Medical Harvard dataset

U2Fusion [7] 1.89 0.53 11.60 0.26 0.32 0.57 523.8 0.646
SwinFusion [56] 1.78 0.49 12.0 0.57 0.29 0.86 1011.2 0.532

MATR [71] 1.71 0.46 14.54 0.26 0.44 0.53 416.1 0.766
CDDFuse [35] 1.88 0.43 21.77 0.52 0.53 0.84 335.2 0.548

DDFM [12] 1.89 0.46 12.51 0.52 0.34 0.75 513.9 0.556
MGDN [69] 1.97 0.55 17.70 0.58 0.54 0.88 341.8 0.530

TC-MOA [70] 1.95 0.53 13.94 0.55 0.52 0.88 325.2 0.577
Proposed 2.02 0.57 22.03 0.60 0.63 0.90 300.2 0.534

perception inspired metrics: Qcb, Qy , Qcv , and Qabf ; iii)
deep model perceptual metrics: LPIPS [74].

For the HMIF task, we considered comparing three
traditional model-based methods and nine advanced deep
learning-based methods, and the baseline approach based
on the simple bicubic interpolation. The traditional model-
based methods are: CSTF-FUS [75], LTMR [76], and IR-
TenSR [77]. Instead, the deep learning-based methods are:
HSRNet [78], MogDCN [79], Fusformer [80], DHIF [81],
PSRT [82], 3DT-Net [83], DSPNet [48], BDT [84], and MIMO-
SST [85]. The adopted quality metrics are: PSNR, SAM,
ERGAS, and SSIM. The computational burden is evaluated
by calculating network parameters and FLOPs.

For the pansharpening task, we included three tradi-
tional methods in our benchmark, i.e., MTF-GLP-FS [86],
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TABLE 3: Performance of recent state-of-the-art fusion meth-
ods applied to the MEF and MFF fusion tasks. The best
results are in red and the second-best results are in blue.

Methods SICE dataset
MI↑ VIF↑ SF↑ Qcb↑ Qabf↑ Qy↑ Qcv↓ LPIPS↓

U2Fusion [7] 3.63 0.98 16.97 0.37 0.50 0.75 260.4 0.667
DeFuse [55] 2.57 0.53 19.12 0.34 0.49 0.85 228.6 0.760
HoloCo [72] 2.38 0.48 16.88 0.40 0.43 0.75 265.8 0.803
HSDS [10] 2.42 0.49 24.18 0.41 0.52 0.74 217.8 0.762

IF-MT-SSL [73] 1.61 0.28 24.32 0.35 0.25 0.56 400.1 0.747
TC-MOA [70] 2.64 0.63 14.50 0.41 0.55 0.77 231.1 0.778

FILM [18] 3.81 0.86 28.97 0.38 0.75 0.94 157.9 0.620
Proposed 3.81 0.93 29.04 0.38 0.78 0.96 135.8 0.597
Methods MEFB dataset

U2Fusion [7] 3.93 1.04 11.53 0.39 0.51 0.76 356.9 0.673
DeFuse [55] 3.13 0.75 13.82 0.36 0.54 0.91 307.6 0.686
HoloCo [72] 2.87 0.70 12.97 0.42 0.53 0.82 343.2 0.716
HSDS [10] 2.84 0.68 18.30 0.43 0.66 0.79 277.4 0.695

IF-MT-SSL [73] 2.10 0.39 17.23 0.39 0.34 0.68 606.0 0.734
TC-MOA [70] 3.19 0.77 12.30 0.43 0.58 0.81 268.9 0.689

FILM [18] 3.95 0.85 21.04 0.42 0.75 0.90 235.6 0.666
Proposed 3.97 0.91 20.31 0.43 0.78 0.94 204.8 0.622
Methods MFI-WHU dataset1

U2Fusion [7] 4.42 1.12 15.77 0.69 0.60 0.93 59.0 0.296
DeFuse [55] 4.12 0.99 13.34 0.67 0.49 0.89 80.1 0.331
DDFM [12] 4.20 1.04 15.82 0.65 0.59 0.89 66.9 0.331
ZMFF [14] 3.58 0.87 23.11 0.65 0.61 0.92 179.0 0.428

IF-MT-SSL [73] 3.25 0.52 24.66 0.55 0.31 0.72 437.1 0.388
TC-MOA [70] 3.96 0.97 14.08 0.67 0.54 0.91 60.1 0.361

Proposed 4.72 1.13 22.58 0.73 0.68 0.98 46.79 0.302
Methods RealMFF dataset

U2Fusion [7] 4.47 1.27 12.72 0.68 0.69 0.94 70.3 0.228
DeFuse [55] 4.36 1.23 10.59 0.59 0.67 0.93 97.7 0.252
DDFM [12] 4.28 1.21 13.59 0.67 0.55 0.75 75.6 0.313
ZMFF [14] 4.37 1.16 15.14 0.72 0.67 0.96 60.3 0.247

IF-MT-SSL [73] 3.24 0.59 15.66 0.35 0.56 0.80 471.2 0.305
TC-MOA [70] 4.19 1.14 11.47 0.61 0.68 0.94 67.3 0.277

FILM [18] 4.70 1.22 16.09 0.70 0.73 0.96 52.0 0.235
Proposed 4.90 1.32 14.62 0.74 0.73 0.97 45.60 0.200

BT-H [87], and LRTCFPan [88], four CNN-based meth-
ods, i.e., DiCNN [89], FusionNet [90], LAGConv [91],
and DCFNet [43], one transformer-based method (i.e.,
Invformer [92]), one model-driven method (i.e., HMP-
Net [93]), one diffusion-based method (i.e., PanDiff [94]),
and one Mamba-based approach (i.e., PanMamba [51]). As
suggested in [95], we considered SAM, ERGAS, Q2n, and
SCC as quality metrics at reduced resolution. Instead, we
used Dλ, Ds, and HQNR for tests at full resolution.

All adopted metrics will be discussed in Suppl. Sect. 4
together with the implementation details of the methods
used in our benchmarks.

4.3 Results for VIF and MIF

We evaluate the performance of our model for the VIF
task using three datasets: MSRS, M3FD, and TNO. Tab. 2
reports the quantitative comparison with some state-of-the-
art methods, divided into three sub-tables. Regarding the
MSRS dataset, the proposed RWKVFusion achieved the best
results on seven out of eight quality metrics. The same
outstanding performance is obtained on the M3FD and

TNO datasets, where our model ranked first or second on
seven out of eight metrics, with just a slight decrease in
performance with respect to the best values for SF.

Additionally, in Fig. 8, we depicted in the first two
rows some results related to the VIF task (referring to the
M3FD dataset). Having a look at them, we can observe two
people obscured by smoke and buildings in the background.
Among the fusion results of various methods, U2Fusion [7],
DeFuse [55], SwinFusion [56], and MGDN [69] produce low
quality outputs with blurry images. Although DDFM [12],
SegMIF [9], and TC-MOA [70] effectively reveal the in-
frared targets in the smoke, their results suffer from either
excessive brightness or darkness, along with severe color
distortions when compared to the visible images. FILM [18]
and TextIF [17], enhanced by language models, obtained
relatively better fusion quality, but they fail to clearly pre-
serve the buildings obscured by the smoke. In contrast, our
method fully integrated complementary information from
the source images, offering a more comprehensive depiction
of the objects obscured by the smoke.

The experimental results related to the MIF task using
the Medical Harvard dataset are reported in the fourth sub-
table of Tab. 2. In terms of numerical comparisons across
the various adopted metrics, RWKVFusion achieved the
best performance in all metrics except LPIPS. Although our
LPIPS score is not the best one, it is only 0.04 and 0.02
lower than the best [69] and the second-best [56] results,
respectively. Some visual analysis are provided in Suppl.
Sect. 9.

4.4 Results for MEF and MFF
The quantitative assessment on the selected MEF and MFF
datasets is reported in Tab. 3. The proposed method achieves
the best performance in most of the metrics (i.e., six or
seven out of eight quality metrics) for all four datasets.
Compared with the related state-of-the-art methods, our
approach demonstrates a better fusion capability.

In the middle and lower parts of Fig. 8, we present the
qualitative comparisons for the MEF and MFF tasks. For the
MEF task, we presented an instance of the SICE dataset. It
can be observed that most of the compared methods, such
as U2Fusion [7] and HoLoCo [72], achieve complementary
exposure fusion but lack global exposure consistency. Com-
pared to the most recent methods as TC-MOA [70] and
FILM [18], our approach has a better balance between high-
exposure and low-exposure regions, as demonstrated by
the head of the sculpture in the close-up and the further
sculpture. For the MFF task, we considered the RealMFF
dataset in Fig. 8. Several methods, including ZMFF [14] and
TC-MOA [70], lose details with respect to the source images,
such as the text on the sign in the foreground. In contrast,
our method demonstrates superior fidelity. The more precise
fusion guidance employed by our approach makes it stand
out among the compared state-of-the-art methods.

4.5 Results for Pansharpening and HMIF
Tab. 4 and Tab. 3 in Suppl. Sect. 7 report the quantitative
assessment for the pansharpening task using three datasets:
WV3 (8 bands), GF2 (4 bands), and QB (4 bands). For the
WV3 dataset, our RWKVFusion achieved state-of-the-art
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CDDFuseU2Fusion SwinFusionDeFuseInfraredVisible Mask

DDFM SegMIF MGDN TC-MOA ProposedFILM TextIF

Caption: The image is a digital art piece that appears to be a photograph of a cityscape with tall buildings in the background. The sky is cloudy and the ground is 
covered in green grass. In the center of the image, there is a large body of water that is flowing over a concrete wall. On the right side of the wall, there are two figures, 
one of which is standing on a ladder and the other is walking away from the camera.

U2FusionOver Under DeFuse HoLoCo

HSDS IF-MT-SSL TC-MOA FILM Proposed

Captions: The image shows a statue of a woman standing in front of a stone archway in a cemetery. The statue is of a young woman with her hands 
clasped together in prayer. She is wearing a long white dress and has a bouquet of flowers in her lap. The archway is made of stone and has columns 
on either side. In the background, there are several other statues and gravestones, as well as trees and shrubs. The sky is blue and the overall 
atmosphere of the image is peaceful and serene.

U2FusionFar Near DeFuse

ZMFF IF-MT-SSL TC-MOA FILM Proposed

Mask

DDFM

Captions: The image shows two black objects, which appear to be antennas, mounted on top of a white metal structure. The objects are cylindrical 
in shape and have a label on them. They are attached to the structure with two antennas on either side. The background is blurred, but it appears 
to be a garden or outdoor area with trees and greenery. The sky is blue and the overall mood of the image is bright and sunny.

Fig. 8: Visual comparisons on the M3FD, SICE, and RealMFF datasets. Close-ups are depicted in the green and blue boxes.

performance in both the reduced resolution (RR) and full
resolution (FR) assessments. It is worth to be remarked that
our RWKVFusion shows outstanding performance what-
ever the dataset, thus pointing out its robust generalization
ability. Fig. 9 (left panel) illustrates the error maps generated
by the compared methods on the WV3 dataset. The com-
parison of these error maps clearly demonstrates that the
proposed RWKVFusion method obtains residual maps that
are predominantly blue, i.e., with the lowest brightness and,
thus, the best results. As shown in Fig. 9, the magnified areas
in red and green boxes (representing buildings) demonstrate
that our RWKVFusion excels at preserving the fine struc-
tural details from the panchromatic images and the rich
spectral information from the low resolution multispectral
images. This is particularly evident in the transition regions
with significant spectral differences.

Finally, we also evaluate the performance of the pro-
posed RWKVFusion for the HMIF task. The results of our

model compared to recent state-of-the-art models are re-
ported in Tab. 5 calculated on both the Chikusei and the
Pavia test sets. The proposed approach demonstrates signif-
icant advantages across all metrics. More specifically, on the
Chikusei dataset, our model shows top performance for all
quality indexes. It is worth mentioning that the proposed
approach achieves these superior results with only 8.41%
of the parameters and 0.67% of the FLOPs with respect
to the second-ranked DHIF method [81]. Similarly, on the
Pavia dataset, our approach always outperforms the second-
best method, i.e., DSPNet [48], while using one-third of the
parameters and half of the FLOPs. Error maps are depicted
in Fig. 9 (right panel). They corroborate the numerical
assessment, highlighting the superior visual performance of
our model. Compared with the other methods, our model
excels at fusing fine details and retains spectral features of
the low resolution hyperspectral cube.
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TABLE 4: The averages and standard deviations of the adopted quality metrics for the pansharpening task calculated on
the WV3 test set. The best results are in red and the second-best results are in blue.

Methods Reduced Resolution (RR): Avg±std Full Resolution (FR): Avg±std #Params↓ #FLOPs↓
SAM↓ ERGAS↓ Q2n↑ SCC↑ Dλ↓ Ds↓ HQNR↑

W
or

ld
V

ie
w

-3
(W

V
3,

8-
ba

nd
)

MTF-GLP-FS [86] 5.32±1.65 4.65±1.44 0.818±0.101 0.898±0.047 0.021±0.008 0.063±0.028 0.918±0.035 — —
BT-H [87] 4.90±1.30 4.52±1.33 0.818±0.102 0.924±0.024 0.057±0.023 0.081±0.037 0.867±0.054 — —

LRTCFPan [88] 4.74±1.41 4.32±1.44 0.846±0.091 0.927±0.023 0.018±0.007 0.053±0.026 0.931±0.031 — —
DiCNN [89] 3.59±0.76 2.67±0.66 0.900±0.087 0.976±0.007 0.036±0.011 0.046±0.018 0.920±0.026 0.23M 0.19G

FusionNet [90] 3.33±0.70 2.47±0.64 0.904±0.090 0.981±0.007 0.024±0.009 0.036±0.014 0.941±0.020 0.047M 0.32G
LAGConv [91] 3.10±0.56 2.30±0.61 0.910±0.091 0.984±0.007 0.037±0.015 0.042±0.015 0.923±0.025 0.15M 0.54G
Invformer [92] 3.25±0.64 2.39±0.52 0.906±0.084 0.983±0.005 0.055±0.029 0.068±0.031 0.882±0.049 0.14M 3.89G
DCFNet [43] 3.03±0.74 2.16±0.46 0.905±0.088 0.986±0.004 0.078±0.081 0.051±0.034 0.877±0.101 2.77M 3.46G
HMPNet [93] 3.06±0.58 2.23±0.55 0.916±0.087 0.986±0.005 0.018±0.007 0.053±0.006 0.929±0.011 1.09M 2.00G
PanDiff [94] 3.30±0.60 2.47±0.58 0.898±0.088 0.980±0.006 0.027±0.012 0.054±0.026 0.920±0.036 45.33M 14.83G

PanMamba [51] 2.94±0.54 2.24±0.51 0.916±0.090 0.985±0.006 0.020±0.007 0.042±0.014 0.939±0.020 0.48M 1.31G
Proposed 2.78±0.52 2.03±0.43 0.918±0.083 0.988±0.003 0.016±0.006 0.036±0.005 0.949±0.009 1.21M 2.34G

TABLE 5: The averages and standard deviations of the adopted quality metrics for the HMIF task calculated on the Chikusei
and the Pavia Centre test sets. The best results are in red and the second-best results are in blue.

Methods Chikusei ×4 HMIF Dataset Pavia ×4 HMIF Dataset

PSNR↑ SAM↓ ERGAS↓ SSIM↑ #Params↓ #FLOPs↓ PSNR↑ SAM↓ ERGAS↓ SSIM↑ #Params↓ #FLOPs↓

Bicubic 33.35±2.14 4.00±0.37 7.65±0.48 0.815±0.044 − − 26.65±0.06 7.07±0.20 8.46±0.09 0.614±0.004 − −
CSTF-FUS [75] 35.40±2.48 5.40±0.60 7.88±0.71 0.844±0.049 − − 30.93±0.01 11.08±0.14 5.74±0.09 0.791±0.001 − −

LTMR [76] 41.21±3.66 2.98±0.86 4.84±1.23 0.950±0.031 − − 32.33±0.15 6.35±0.23 5.10±0.05 0.820±0.003 − −
IR-TenSR [77] 36.00±0.42 5.12±0.48 7.86±0.05 0.868±0.045 − − 30.87±0.11 6.81±0.25 5.82±0.01 0.783±0.003 − −
HSRNet [78] 42.01±0.95 2.33±0.24 3.95±0.29 0.947±0.009 0.633M 3.041G 32.17±0.17 5.60±0.18 4.60±0.05 0.867±0.003 2.061M 2.677G

MogDCN [79] 42.21±1.00 2.27±0.23 3.76±0.29 0.936±0.009 6.840M 53.507G 33.84±0.25 4.61±0.20 4.07±0.08 0.889±0.003 7.202M 51.743G
Fusformer [80] 43.37±1.02 2.03±0.19 3.49±0.28 0.959±0.006 0.504M 10.315G 35.31±0.32 4.33±0.18 3.37±0.07 0.924±0.003 0.539M 10.263G

DHIF [81] 43.69±1.05 1.94±0.19 3.33±0.28 0.960±0.007 22.462M 466.313G 35.30±0.38 4.36±0.20 3.35±0.10 0.924±0.002 38.785M 311.194G
PSRT [82] 43.48±0.96 2.01±0.19 3.47±0.25 0.961±0.006 0.303M 1.367G 34.86±0.44 4.47±0.20 3.54±0.14 0.916±0.001 0.288M 1.304G

3DT-Net [83] 43.53±1.01 2.03±0.19 3.46±0.28 0.963±0.006 3.464M 75.352G 35.10±0.38 4.44±0.19 3.35±0.09 0.927±0.002 3.482M 73.299G
DSPNet [48] 43.55±0.98 2.03±0.20 3.44±0.25 0.960±0.007 6.138M 7.125G 35.47±0.43 4.26±0.21 3.30±0.12 0.927±0.002 6.115M 7.031G

BDT [84] 43.25±1.06 2.09±0.21 3.44±0.29 0.955±0.008 3.263M 4.372G 34.55±0.35 4.66±0.22 3.70±0.11 0.904±0.002 3.056M 3.569G
MIMO-SST [85] 43.36±1.02 2.09±0.23 3.48±0.27 0.958±0.007 4.983M 2.505G 35.37±0.39 4.48±0.17 3.34±0.10 0.922±0.002 5.227M 2.248G

Proposed 43.89±1.10 1.93±0.18 3.33±0.28 0.963±0.006 1.888M 3.134G 36.06±0.41 3.95±0.17 3.07±0.08 0.936±0.003 1.888M 3.134G

5 ABLATION STUDY

5.1 BRWKV and Attention Mechanisms

In this section, we compare the proposed BRWKV with
other related mechanisms as flash attention [97], flatten
attention [50], window attention [64], and VMamba [26].
To ensure a fair comparison, we replaced BRWKV with
the aforementioned attention operations while maintaining
all other configurations. We maintained consistent hidden
channel dimensions across all variants. We evaluated these
model variants on the Pavia ×4 and MSRS datasets, and the
quantitative results are reported in Tab. 6(a)-(d). The results
indicate that flash attention, benefiting from its global recep-
tive field and optimized CUDA operators, achieves fusion
performance close to that of our RWKVFusion. However, it
has a quadratic cost with respect to token length. Flatten
attention, while reducing memory consumption, limits the
ability of attention in the C × C attention map, resulting
in poorer fusion performance. VMamba, on the other hand,
stores information in states, balancing expressive power and
cost, leading to moderate performance. Our RWKVFusion
outperforms these attention variants in almost all metrics.

By applying window partition and window merge op-
erations to the feature map before and after the BRWKV
module, we transform the global BRWKV into a windowed
BRWKV, thereby reducing the computational cost. We re-

placed each global BRWKV with its windowed counterpart,
and the fusion results are reported in Tab. 6(e). Although the
performance of the windowed BRWKV is lower than that of
the global BRWKV, it still outperforms the window atten-
tion. Hence, we recommend using this variant in resource-
limited scenarios.

5.2 Scanning Types

In Sect. 3.4, we proposed three scanning strategies to ad-
dress the limitation of the original RWKV [29] in modeling
relationships between 2D image tokens. It is worth noting
that scanning along different directions introduces inductive
bias, which can enhance the model’s learning capabilities.
However, this approach has a clear drawback, i.e., it in-
creases the number of channels, potentially compromising
efficiency. The results are reported in Tab. 6(f) and (g).
Compared to using the default scanning configuration, the
performance of Scan Config 2) is slightly inferior. Although
it offers more scanning directions, the excessive number
of scanning directions can disrupt the network’s spatial
awareness, leading to a decline in performance. As for Scan
Config 3), its performance is slightly better. We believe
this is because the additional scanning directions further
increase the network’s channel capacity, and the benefits
of over-parameterization offset the negative impact of too
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Fig. 9: Error maps with respect to the GT image for the compared approaches considering the pansharpening and the HMIF
tasks. The left and right panels respectively showcase the error maps of “area 5” from the WV3 test set and “area 1” from
the Chikusei (× 4) test set using a pseudo-color representation. Close-ups are depicted in the red and green boxes. PAN
and LRMS stand for panchromatic and low resolution multispectral images, respectively.

TABLE 6: Ablation studies about attention operators, scanning strategies, different MFM designs, and plain backbone, for
the VIF and HMIF tasks. The best results are in red, and the second-best results are in blue.

Ablations Pavia ×4 HMIF Dataset MSRS VIF Dataset
PSNR↑ SAM↓ ERGAS↓ SSIM↑ MI↑ VIF↑ SF↑ Qcb↑ Qabf↑ Qy↑ Qcv↓ LPIPS↓

(a) Flash Attn. [97] 36.04 3.95 3.06 0.936 3.44 0.81 11.33 0.55 0.62 0.96 185.8 0.685
(b) Flatten Attn. [50] 35.70 4.13 3.17 0.932 3.21 0.77 10.18 0.54 0.66 0.86 198.4 0.699
(c) Window Attn. [64] 35.86 4.13 3.20 0.929 3.40 0.82 11.12 0.60 0.69 0.88 207.3 0.682
(d) VMamba [26] 35.61 4.17 3.18 0.930 3.32 0.79 11.03 0.53 0.64 0.89 199.7 0.701
(e) Window BRWKV 35.89 4.11 3.15 0.932 3.41 0.82 11.36 0.59 0.66 0.93 195.0 0.679
(f) Scan Config 2) 35.90 4.09 3.14 0.933 3.36 0.80 10.97 0.57 0.67 0.94 200.7 0.680
(g) Scan Config 3) 36.09 3.92 3.05 0.936 3.41 0.88 11.49 0.61 0.71 0.96 178.1 0.675
(h) Simple MLPs 35.68 4.16 3.19 0.931 3.25 0.77 10.36 0.57 0.68 0.88 195.7 0.689
(i) Cross attentions 36.00 3.97 3.07 0.936 3.40 0.88 11.53 0.58 0.68 0.91 192.3 0.680
(j) Plain backbone 35.29 4.30 3.29 0.929 3.12 0.71 9.81 0.49 0.62 0.81 231.9 0.710
(k) Default 36.06 3.95 3.07 0.936 3.42 0.87 11.50 0.60 0.70 0.96 182.2 0.677

HSRNet

CNN-based

PanMamba Ablation-Attention

Mamba-based Attention-based RWKV-based

RWKVFusion

Fig. 10: Effective receptive fields (ERF) for architectures
based on different operators (i.e., convolution, Mamba, at-
tention, and RWKV) are visualized.

many scanning directions. However, this comes with greater
computational costs. Therefore, the default configuration is
selected as the optimal one.

5.3 MFM Design
In Sect. 3.5, we proposed an MFM to fuse language and
semantic mask guidance. To investigate the effectiveness of
this module, we performed ablation studies as follows:

1) Simple MLPs. We replaced the MFM module with
two simple three-layer MLPs, each consisting of

linear+RMSNorm+ReLU layers. The feature Ol−1
c

and modalities S are concatenated and fed into one
MLP, while the caption T is input to the other MLP.
The outputs of both MLPs are concatenated and
passed through a linear layer to produce the output
of the MFM variant.

2) Cross-attentions. We substituted the RWKV’s spatial
mixing mechanism with two cross-attentions fol-
lowing Flux.1-dev [98]. In the first cross-attention,
the caption features, T, act as queries, while the
image features, Ximg , defined in (17), serve as
keys and values. Instead, the second cross-attention
inverts the relationship, i.e., image features query
caption features.

We provide numerical results in Tab. 6(h) and (i). The
default MFM outperforms the compared fusion modules.

5.4 Semantic Guidance and Mask Merging
In Sect. 3.1, we proposed to enhance image fusion by in-
corporating global caption information and semantic mask
guidance into our model. To evaluate the relationship be-
tween these two inputs, we conducted experiments under
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Fig. 11: Monocular depth estimation results by using Depth Anything v2 [96]. Close-ups are depicted in the blue boxes.

TABLE 7: Ablation studies on the use of language and
semantic mask guidance. The best results are in red.

Ablation MSRS VIF Dataset
MI↑ VIF↑ SF↑ Qcb↑ Qabf↑ Qy↑ Qcv↓ LPIPS↓

i) Only caption 3.20 0.76 9.93 0.54 0.64 0.91 204.8 0.685
ii) Only merged mask 3.36 0.78 11.01 0.56 0.67 0.93 196.5 0.680
iii) None of both 3.10 0.69 9.72 0.48 0.62 0.79 234.7 0.711
iv) Mask concat 3.38 0.84 11.33 0.57 0.67 0.95 189.7 0.679
v) Default 3.42 0.87 11.50 0.60 0.70 0.96 182.2 0.677

the following settings: i) using only the caption; ii) using
only the merged mask; iii) using no guidance; iv) using
unmerged mask and concatenating them along the channel
dimensions (while still using caption); and v) default setting,
using both inputs.

The validation is performed on the MSRS dataset, see
Tab. 7. It can be observed that the best performance is
obtained by v, i.e., the default setting. The fusion perfor-
mance was reduced in both (i) and (ii) because they only
utilized partial semantic information. This demonstrates
that language and semantic mask guidance can mutually
improve the fusion performance. For configuration (iv), the
mask-merging technique was not used, but still introduces
caption information. While this approach retains the raw
mask features, it may introduce redundancy and potential mis-
alignment by comparing with merged masks, particularly
when masks overlap or are erroneously segmented in spatial
regions, which is the initial motivation of the mask merging
technique. As a result, its performance was also lower
compared to the default setting (i.e., using both caption and
merged-mask guidance).

5.5 The Settings of Prompting for Masking
To clarify the impact of using an optional fixed prompt
for masking, we conducted an ablation study comparing
two different prompting strategies: auto-prompt and fixed-
prompt. The auto-prompt (default of MEF, MFF, and MIF
tasks) uses the text descriptions generated by the Florence
model to guide the SAM segmentor in generating masks,
enabling open-set segmentation. The fixed-prompt (default
of VIF tasks) uses a pre-defined prompt relevant to common
objects within the evaluation dataset for more targeted
segmentation guidance.

Ablation results on the M3FD dataset are provided in
Tab. 8. Fixed-prompt slightly outperforms the auto-prompt.

TABLE 8: Ablation studies on the settings of prompting in
Sect. 3.1. The best results are in red.

Ablation M3FD VIF Dataset
MI↑ VIF↑ SF↑ Qcb↑ Qabf↑ Qy↑ Qcv↓ LPIPS↓

Auto-prompt 2.55 0.75 14.50 0.53 0.69 0.96 360.3 0.647
Fixed-prompt 2.57 0.78 14.46 0.54 0.70 0.96 358.9 0.647

We attribute this to the fact that the fixed-prompt targets
human-interested and easy-to-find objects, enabling more
precise guidance for the fusion model, while the auto-
prompt can benefit from the open-set detection but may
suffer from inaccurate detection, affecting subsequent seg-
mentation and mask injection, leading to a slight perfor-
mance decrease. Nevertheless, under both prompt settings,
our method still outperforms previous methods, demon-
strating that injecting semantic information from masks can
effectively enhance fusion performance.

6 DISCUSSION

6.1 Plain Against Multi-scale Backbones
One of the main contributions of this paper is the proposed
multi-scale design. However, non-multi-scale architectures,
which we refer to as plain backbones, are also quite popu-
lar. We believe that multi-scale architectures are of crucial
importance for low-level tasks, such as image fusion. There-
fore, similarly to SwinIR [63], we first concatenate the inputs
from different modalities and pass them through a linear
layer to map them to a higher dimension. We then feed the
features into multiple BRWKV layers without changing the
feature size. Finally, we map the features back to the data
space with the SwinIR light-weight projection head. More
details about this plain backbone can be found in Suppl.
Sect. 5. We compared the two architectures on the Pavia and
MSRS datasets. The results are reported in Tab. 6(j). It can
be observed that the multi-scale architecture performs better
with a comparable parameter count.

6.2 RWKV Effective Receptive Field
The effective receptive field (ERF) plays a crucial role in
determining whether a model possesses a large receptive
field. We adopted the RepLKNet’s [100] method for vi-
sualizing ERF to illustrate the ERFs of various models,
including CNNs, transformers, Mambas, and RWKVFusion.
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TABLE 9: Semantic segmentation metrics, including per-class IoU, mean IoU, and mean accuracy, are reported. Segformer
is trained on visible infrared images and different fusion methods on the MSRS VIF dataset. The best results are in red and
the second-best results are in blue.

Methods MSRS VIF Dataset Segmented by Segformer
Background Car Person Bike Curve Car Stop Guardrail Color Cone Bump mIoU mAcc

Visible 98.06 88.13 61.84 69.45 52.46 64.59 74.13 56.68 71.45 70.75 80.55
Infrared 97.92 86.46 71.49 66.62 48.16 55.63 42.90 50.97 65.26 65.04 74.73
DeFuse [55] 98.64 91.53 74.73 76.67 59.62 76.88 85.07 64.90 79.92 78.66 87.22
U2Fusion [7] 98.38 89.92 73.48 69.76 52.11 71.71 81.28 60.72 73.67 74.56 82.83
SwinFusion [56] 98.37 89.89 74.08 69.70 50.24 73.05 72.80 59.47 68.39 72.89 80.60
CDDFuse [35] 98.58 91.19 74.03 75.51 55.42 76.79 85.53 64.31 79.25 77.85 86.39
DDFM [12] 97.86 85.90 69.68 60.43 36.64 6393 78.11 50.88 57.27 66.74 73.29
SegMIF [9] 98.54 90.62 75.08 73.81 56.74 75.64 82.14 62.83 78.55 77.11 86.36
MGDN [69] 98.59 91.08 75.03 75.86 56.95 76.17 84.23 64.48 78.84 77.92 86.39
TC-MOA [70] 98.59 90.98 73.82 76.44 59.38 76.12 85.41 60.66 78.39 77.75 85.90
FILM [18] 98.71 92.13 76.42 77.40 62.32 76.79 85.86 64.27 80.94 79.43 88.64
TextIF [17] 98.70 92.04 75.24 77.25 61.99 77.39 85.79 64.56 80.47 79.27 88.30
Proposed 98.72 92.25 76.21 77.49 62.63 77.68 85.99 64.61 80.89 79.61 88.72

Fig. 12: Semantic segmentation results using Segformer [99] on images fused by the proposed RWKVFusion and
compared with previous methods. Segformer was trained separately on the corresponding fused/GT image pairs, with all
configurations held constant across experiments. Red boxes show segmented objects that cause mIoU differences.
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Fig. 13: Object detection by using YOLO v5 [8] on the
RWKVFusion’s fused product and the related GT.

The qualitative results are presented in Fig. 10. It is evident
that RWKVFusion exhibits a larger and more concentrated
ERF, closely resembling the global receptive field of global
attention, but with a clear advantage with respect to the
latter, i.e., a less-than-quadratic increase in memory con-
sumption with respect to token length.

TABLE 10: Object detection performance by applying recent
state-of-the-art fusion methods on the MSRS VIF dataset.
The best results are in red and the second-best results are in
blue.

Method People↑ Car↑ mAP@0.5↑ mAP0.5:0.9↑
DeFuse [55] 0.922 0.792 0.857 0.646
U2Fusion [7] 0.941 0.650 0.875 0.654

SwinFusion [56] 0.950 0.784 0.874 0.668
CDDFuse [35] 0.935 0.750 0.843 0.615

DDFM [12] 0.909 0.760 0.834 0.579
SegMIF [9] 0.961 0.840 0.900 0.703
MGDN [69] 0.942 0.830 0.886 0.656

TC-MOA [70] 0.923 0.811 0.867 0.671
TextIF [17] 0.954 0.838 0.896 0.690
Proposed 0.966 0.847 0.907 0.697

6.3 Downstream Tasks for VIF

Image fusion often serves as pre-processing for downstream
tasks. In this section, we will focus on VIF considering
three kinds of downstream applications: monocular depth
estimation, object detection, and segmentation.
Monocular depth estimation: Due to the lack of GT, we
simply present visual results. We employed Depth Any-
thing v2 [96] for zero-shot inference. From Fig. 11, it is
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clear that the depth maps estimated by our RWKVFusion
exhibit clearer contours, effective estimation of distant back-
grounds, and align well with human visual perception of
the depth.
Object detection: We tested our approach on the MSRS
dataset using the YOLO v5 detector [8]. The detection
performance for several VIF fusion methods is reported in
Tab. 10. Some detection examples are depicted in Fig. 13
and Suppl. Sect. 11. It is worth to be remarked that Seg-
MIF simultaneously optimizes both downstream and fusion
tasks, and its performance overcomes that of the proposed
RWKVFusion just for the mAP0.5:0.9 metric. Instead, our
RWKVFusion obtains the best performance for all other
metrics, clearly demonstrating its effectiveness.
Semantic segmentation: We adopt Segformer [99] with a
pretrained MiT-B3 backbone, trained for 100 epochs at a
fixed learning rate of 1e−4. As shown in Tab. 9, our method
achieves the best mIoU and the highest segmentation ac-
curacy. Fig. 12 reveals that fused images preserve target
boundary continuity, reducing segmentation error of small-
scale objects. More segmentation results can be found in
Suppl. Sect. 11.

7 CONCLUSION

In this paper, we proposed a novel image fusion framework
that simultaneously addresses the limitations of conven-
tional fusion frameworks and existing neural architectures.
To address the semantic deficiencies in the previous fusion
frameworks, we integrated multi-modal guidance, such as
language information and semantic masks, into the fusion
process. To overcome the limitations of existing network
designs, we introduced an efficient RWKV-based architec-
ture featuring linear computational complexity, multi-scale
processing capabilities, and a global receptive field, while
maintaining low latency and seamlessly integrating various
guidance. Extensive experiments and ablation studies on
different fusion tasks (i.e., VIF, MIF, MEF, MFF, HMIF, and
pansharpening) demonstrated the superior performance
and versatility of the proposed framework.
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[66] D. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le,
“Searching for efficient transformers for language modeling,”
NeurIPS, vol. 34, pp. 6010–6022, 2021.

[67] D. Hendrycks and K. Gimpel, “Gaussian error linear units
(gelus),” arXiv preprint arXiv:1606.08415, 2016.

[68] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[69] Y. Guan, R. Xu, M. Yao, L. Wang, and Z. Xiong, “Mutual-guided
dynamic network for image fusion,” in ACM MM, 2023, pp.
1779–1788.

[70] P. Zhu, Y. Sun, B. Cao, and Q. Hu, “Task-customized mixture
of adapters for general image fusion,” in CVPR, 2024, pp. 7099–
7108.

[71] W. Tang, F. He, Y. Liu, and Y. Duan, “Matr: Multimodal med-
ical image fusion via multiscale adaptive transformer,” IEEE
Trans. Image Process. , vol. 31, pp. 5134–5149, 2022.

[72] J. Liu, G. Wu, J. Luan, Z. Jiang, R. Liu, and X. Fan, “Holoco: Holis-
tic and local contrastive learning network for multi-exposure
image fusion,” Inf. Fus., vol. 95, pp. 237–249, 2023.

[73] W. Wang, L.-J. Deng, and G. Vivone, “A general image fusion
framework using multi-task semi-supervised learning,” Inf. Fus.,
vol. 108, p. 102414, 2024.

[74] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in CVPR, 2018.

[75] S. Li, R. Dian, L. Fang, and J. M. Bioucas-Dias, “Fusing hy-
perspectral and multispectral images via coupled sparse tensor
factorization,” IEEE Trans. Image Process., vol. 27, no. 8, pp. 4118–
4130, 2018.

[76] R. Dian and S. Li, “Hyperspectral image super-resolution via
subspace-based low tensor multi-rank regularization,” IEEE
Trans. Image Process., vol. 28, no. 10, pp. 5135–5146, 2019.

[77] T. Xu, T. Huang, L. Deng, and N. Yokoya, “An iterative regu-
larization method based on tensor subspace representation for

https://openai.com/chatgpt
https://openai.com/chatgpt


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote
Sens., vol. 60, pp. 1–16, 2022.

[78] J. Hu, T. Huang, L. Deng, T. Jiang, G. Vivone, and J. Chanussot,
“Hyperspectral image super-resolution via deep spatiospectral
attention convolutional neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., 2022.

[79] W. Dong, C. Zhou, F. Wu, J. Wu, G. Shi, and X. Li, “Model-guided
deep hyperspectral image super-resolution,” IEEE Trans. Image
Process., vol. 30, pp. 5754–5768, 2021.

[80] J. Hu, T. Huang, L. Deng, H. Dou, D. Hong, and G. Vivone, “Fus-
former: A transformer-based fusion network for hyperspectral
image super-resolution,” IEEE Geosci. Remote Sens. Lett., vol. 19,
pp. 1–5, 2022.

[81] T. Huang, W. Dong, J. Wu, L. Li, X. Li, and G. Shi, “Deep
hyperspectral image fusion network with iterative spatio-spectral
regularization,” IEEE Trans. Comput. Imaging, vol. 8, pp. 201–214,
2022.

[82] S.-Q. Deng, L.-J. Deng, X. Wu, R. Ran, D. Hong, and G. Vivone,
“PSRT: Pyramid shuffle-and-reshuffle transformer for multispec-
tral and hyperspectral image fusion,” IEEE Trans. Geosci. Remote
Sens., vol. 61, pp. 1–15, 2023.

[83] Q. Ma, J. Jiang, X. Liu, and J. Ma, “Learning a 3d-cnn and
transformer prior for hyperspectral image super-resolution,” Inf.
Fus., vol. 100, p. 101907, 2023.

[84] S. Deng, L.-J. Deng, X. Wu, R. Ran, and R. Wen, “Bidirectional
dilation transformer for multispectral and hyperspectral image
fusion,” in IJCAI, 2023.

[85] J. Fang, J. Yang, A. Khader, and L. Xiao, “Mimo-sst: Multi-input
multi-output spatial-spectral transformer for hyperspectral and
multispectral image fusion,” IEEE Trans. Geosci. Remote Sens.,
vol. 62, pp. 1–20, 2024.

[86] G. Vivone, R. Restaino, and J. Chanussot, “Full scale regression-
based injection coefficients for panchromatic sharpening,” IEEE
Trans. Image Process., vol. 27, no. 7, pp. 3418–3431, 2018.

[87] S. Lolli, L. Alparone, A. Garzelli, and G. Vivone, “Haze correction
for contrast-based multispectral pansharpening,” IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 12, pp. 2255–2259, 2017.

[88] Z.-C. Wu, T.-Z. Huang, L.-J. Deng, J. Huang, J. Chanus-
sot, and G. Vivone, “LRTCFPan: Low-rank tensor completion
based framework for pansharpening,” IEEE Trans. Image Process.,
vol. 32, pp. 1640–1655, 2023.

[89] L. He, Y. Rao, J. Li, J. Chanussot, A. Plaza, J. Zhu, and B. Li,
“Pansharpening via detail injection based convolutional neural
networks,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12,
no. 4, pp. 1188–1204, 2019.

[90] L.-J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail injection-
based deep convolutional neural networks for pansharpening,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 8, pp. 6995–7010,
2020.

[91] Z.-R. Jin, T.-J. Zhang, T.-X. Jiang, G. Vivone, and L.-J. Deng,
“LAGConv: Local-context adaptive convolution kernels with
global harmonic bias for pansharpening,” in AAAI, vol. 36, no. 1,
Jun. 2022, pp. 1113–1121.

[92] M. Zhou, X. Fu, J. Huang, F. Zhao, A. Liu, and R. Wang, “Ef-
fective pan-sharpening with transformer and invertible neural
network,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, 2022.

[93] X. Tian, K. Li, W. Zhang, Z. Wang, and J. Ma, “Interpretable
model-driven deep network for hyperspectral, multispectral, and
panchromatic image fusion,” IEEE Trans. Neural Netw. Learn.
Syst., pp. 1–14, 2023.

[94] Q. Meng, W. Shi, S. Li, and L. Zhang, “Pandiff: A novel pansharp-
ening method based on denoising diffusion probabilistic model,”
IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–17, 2023.

[95] L.-j. Deng, G. Vivone, M. E. Paoletti, G. Scarpa, J. He, Y. Zhang,
J. Chanussot, and A. Plaza, “Machine learning in pansharpening:
A benchmark, from shallow to deep networks,” IEEE Geosci.
Remote Sens. Mag., vol. 10, no. 3, pp. 279–315, 2022.

[96] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao,
“Depth anything v2,” arXiv:2406.09414, 2024.

[97] T. Dao, “FlashAttention-2: Faster attention with better parallelism
and work partitioning,” in ICLR, 2024.

[98] Black Forest Labs, “Flux: A powerful tool for text generation,”
https://huggingface.co/black-forest-labs/FLUX.1-dev, 2024, ac-
cessed: 2024-09-26.

[99] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and
P. Luo, “Segformer: Simple and efficient design for semantic

segmentation with transformers,” Advances in neural information
processing systems, vol. 34, pp. 12 077–12 090, 2021.

[100] X. Ding, X. Zhang, J. Han, and G. Ding, “Scaling up your kernels
to 31x31: Revisiting large kernel design in cnns,” in CVPR, 2022,
pp. 11 963–11 975.

Zi-Han Cao was born in Zhongxiang, Hubei
province, China. He received his B.S. degree
from the School of Information and Commu-
nication Engineering, University of Electronic
Science and Technology of China (UESTC),
Chengdu, China, in 2023. He is currently pur-
suing his M.S. degree under the supervision of
Prof. Liang-Jian Deng in the School of Mathe-
matics at UESTC. His research interests include
computer vision, machine learning, and appli-
cations in low-level vision tasks, such as image

fusion, inverse problems, and radar signal processing.

Yu-Jie Liang is currently a third-year master’s
student. She received her B.S. degree in In-
formation and Computational Science from the
School of Science, Yanshan University, Qin-
huangdao, China, in 2022. She is now pursuing
her M.S. degree under the supervision of Prof.
Liang-Jian Deng at the School of Mathemati-
cal Sciences, University of Electronic Science
and Technology of China (UESTC) in Chengdu,
China. Her research interests focus on computer
vision and image processing, including image

fusion and image super-resolution.

Liang-Jian Deng (Senior Member, IEEE) re-
ceived the B.S. and Ph.D. degrees in applied
mathematics from the School of Mathematical
Sciences, University of Electronic Science and
Technology of China (UESTC), Chengdu, China,
in 2010 and 2016, respectively. He is currently
a Research Fellow with the School of Mathe-
matical Sciences, UESTC. From 2013 to 2014,
he was a Joint-Training Ph.D. student with the
Case Western Reserve University, Cleveland,
OH, USA. In 2017, he was a Postdoc at Hong

Kong Baptist University (HKBU). In addition, he also stayed at Isaac
Newton Institute for Mathematical Sciences, Cambridge University and
HKBU for short visits. His research interests include the use of partial
differential equations (PDE), optimization modeling, and deep learning
to address several tasks in image processing, and computer vision, e.g.,
resolution enhancement and restoration.

Gemine Vivone (Senior Member, IEEE) re-
ceived the B.Sc. and M.Sc. degrees (summa
cum laude), and the Ph.D. degree in informa-
tion engineering from the University of Salerno,
Fisciano, Italy, in 2008, 2011, and 2014, respec-
tively. He is a senior researcher at the National
Research Council (Italy). His main research in-
terests focus on image fusion, statistical sig-
nal processing, deep learning, and classifica-
tion and tracking of remotely sensed images.
Dr. Vivone is an ex-officio member of the IEEE

Geoscience and Remote Sensing Society (GRSS) Administrative Com-
mittee, a Co-chair of the IEEE GRSS Image Analysis and Data Fusion
Technical Committee, a member of the IEEE Task Force on “Deep
Vision in Space”. Dr. Vivone is currently the Editor in Chief for IEEE
Geoscience and Remote Sensing eNewsletter, an Area Editor for El-
sevier Information Fusion, and Associate Editor for IEEE Transactions
on Geoscience and Remote Sensing (TGRS), IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing (JSTARS),
and IEEE Geoscience and Remote Sensing Letters (GRSL). Moreover,
he is an Advisory Board Member for ISPRS Journal of Photogrammetry
and Remote Sensing, and an Editorial Board Member for MDPI Remote
Sensing. Dr. Vivone received the IEEE GRSS Early Career Award in
2021, the Symposium Best Paper Award at IEEE International Geo-
science and Remote Sensing Symposium (IGARSS) in 2015 and the
Best Reviewer Award of the IEEE Transactions on Geoscience and
Remote Sensing in 2017. Moreover, he is listed in the World’s Top 2%
Scientists by Stanford University.

https://huggingface.co/black-forest-labs/FLUX.1-dev

	1 Introduction
	2 Related Works
	2.1 Image Fusion and High-level Semantic Guidance
	2.2 Emerging Trends in Image Fusion Network Design
	2.3 RWKV

	3 RWKVFusion: Image Fusion with RWKV Backbone Guided by Language and Masks
	3.1 Language and Mask Guidance in RWKVFusion
	3.2 RWKVFusion Backbone Overview
	3.3 Spatial and Channel Mixing
	3.4 Efficient Scanning Strategy (ESS) for 2D Images
	3.5 Multi-modal Fusion Module (MFM)
	3.6 Loss Functions
	3.7 Mask Merging: Dealing with Unsatisfactory Masks

	4 Experimental Analysis
	4.1 Datasets
	4.1.1 Data
	4.1.2 Mask Generation

	4.2 Benchmarks
	4.3 Results for VIF and MIF
	4.4 Results for MEF and MFF
	4.5 Results for Pansharpening and HMIF

	5 Ablation Study
	5.1 BRWKV and Attention Mechanisms
	5.2 Scanning Types
	5.3 MFM Design
	5.4 Semantic Guidance and Mask Merging
	5.5 The Settings of Prompting for Masking

	6 Discussion
	6.1 Plain Against Multi-scale Backbones
	6.2 RWKV Effective Receptive Field
	6.3 Downstream Tasks for VIF

	7 Conclusion
	8 Acknowledgement
	References
	Biographies
	Zi-Han Cao
	Yu-Jie Liang
	Liang-Jian Deng
	Gemine Vivone


