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Abstract—Detailed information regarding the proposed approach is included in this supplementary material. We first cover the datasets
utilized, followed by explanations of caption generation, mask creation, and network configurations specific to each dataset. The
proposed mask merging algorithm, developed to mitigate issues with suboptimal mask generation, is then discussed in detail. For
fair comparison, we provide implementation specifics for the compared methods and the plain RWKV backbone. Differences between
global attention and traditional attention are subsequently discussed. Additional experimental visualization results conclude the material.

✦

1 DATASETS

We provide some basic information about various image
fusion datasets used in our experimental analysis:
i) Visible-infrared image fusion (VIF): We used MSRS1 [1]
and M3FD2 [2] training sets for training, and MSRS, M3FD,
and TNO3 test sets for testing. The MSRS training set in-
volves 1083 visible/infrared image pairs for model training,
the MSRS and TNO test set has 361 and 41 pairs, respec-
tively. The M3FD training set has 3900 visible/infrared
image pairs for training, and the test set consists of 300
pairs. Since the M3FD dataset does not provide mask labels,
we generated and merged both modality masks using the
proposed semantic branch. When training, the image pair
is randomly cropped and resized into patches of size of
224 × 280. Moreover, 80 MSRS detection image pairs are
used to validate the downstream detection and monocular
depth estimation tasks.
ii) Medical image fusion (MIF): We chose the medical
Harvard4 dataset to conduct the MRI-SPECT image fusion
task. We did not crop images even for training. 285 pairs are
used for training and 71 pairs are used for testing.
iii) Multi-exposure image fusion (MEF): For the MEF task,
we selected the SICE5 [3] and the MEFB6 datasets [4], using
288 images from the SICE dataset and 60 from the MEFB
dataset for training. Instead, 72 and 40 images are used for
the SICE and the MEFB datasets, respectively, for testing.
We did not use normally exposed images as ground-truth
(GT), i.e., we considered an unsupervised training. During
training, each image was randomly cropped and resized
into patches of size of 256 × 256, with a crop scale range
of [0.8, 1] and an aspect ratio range of [0.8, 1.4]. Following
the approach in SwinFusion [5], the model fuses only the

1. https://github.com/Linfeng-Tang/MSRS
2. https://github.com/JinyuanLiu-CV/TarDAL
3. https://figshare.com/articles/dataset/TNOImage Fusion

Dataset/1008029
4. https://www.med.harvard.edu/AANLIB/home.html
5. https://github.com/csjcai/SICE
6. https://github.com/xingchenzhang/MEFB

Y channel of color images. The fused Y channel is then
concatenated with the weighed Cb and Cr channels of over-
exposed and underexposed images, before being mapped
back to the RGB space.
iv) Multi-focus image fusion (MFF): For the MFF task,
the RealMFF7 [6] and the MFI-WHU8 [7] datasets have
been used for both training and testing. More specifically,
639 images from the RealMFF dataset have been used for
training and 71 for testing, while 92 images from the MFI-
WHU dataset have been used for training and 30 for testing.
The remaining processing steps are the same as in the MEF
task.
v) Pansharpening: The Pancollection9 dataset for pan-
sharpening is derived from three satellites: WorldView-3 (8
bands), GaoFen-2 (4 bands), and QuickBird (4 bands). The
WorldView-3 (WV3) satellite captures panchromatic (PAN)
and low resolution multispectral images (LRMS) at 0.31 m
and 1.24 m spatial resolution, respectively. The WV3 dataset
contains 9714 samples for training and 1080 samples for
validation. Each sample consists of PAN/LRMS/GT image
pairs with size of 64×64×1, 16×16×8, and 64×64×8. The
GaoFen-2 (GF2) satellite captures PAN and LRMS images at
0.8 m and 3.2 m spatial resolution, respectively. The GF2
dataset consists of 19809 training samples and 2201 valida-
tion samples. Each sample includes PAN/LRMS/GT image
pairs with size of 64×64×1, 16×16×4, and 64×64×4. The
QuickBird (QB) satellite captures PAN and LRMS images
at 0.7 m and 2.8 m spatial resolution, respectively. The
QB dataset contains 20685 training samples and 48 test
samples, with each sample consisting of PAN/LRMS/GT
image pairs of the size of 64 × 64 × 1, 16 × 16 × 4, and
64×64×4. Additionally, we followed Wald’s protocol [8] to
simulate reduced resolution datasets from the original (full
resolution) ones. Experiments for the three test cases (i.e.,

7. https://github.com/Zancelot/Real-MFF
8. https://github.com/HaoZhang1018/MFI-WHU
9. https://liangjiandeng.github.io/PanCollection.html.

https://github.com/Linfeng-Tang/MSRS
https://github.com/JinyuanLiu-CV/TarDAL
https://figshare.com/articles/dataset/TNO Image_Fusion_Dataset/1008029
https://figshare.com/articles/dataset/TNO Image_Fusion_Dataset/1008029
https://www.med.harvard.edu/AANLIB/home.html
https://github.com/csjcai/SICE
https://github.com/xingchenzhang/MEFB
https://github.com/Zancelot/Real-MFF
https://github.com/HaoZhang1018/MFI-WHU
https://liangjiandeng.github.io/PanCollection.html
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Algorithm 1: maskMerging function
Input: M1, c1: masks and classes from modality 1,

M2, c2: masks and classes from modality 2, d̃:
IoU threshold

Output: Mmerge, cmerge: merged masks and classes
1 Mmerge, cmerge ← emptyList, emptyList;
2 for M1, c1 ←M1, c1 do
3 d← IoU(M1,M2); ▷ IoU with all masks
4 if length(d ≤ d̃) = 0 then

▷ Append in the list
5 Mmerge ←M1, cmerge ← c1;
6 continue;
7 end
8 for i, d← enumerate(d) do
9 M2, c2 ←M

(i)
2 , c

(i)
2 ; ▷ i-th mask and class

10 if d ≤ d̃ then
11 cmerge ← c1; ▷ Append in the list
12 if c1 = c2 then
13 Mmerge ←M1 ∪M2;
14 else
15 Mmerge ←M1;
16 end
17 end
18 end
19 end
20 return Mmerge, cmerge

WV3, GF2, and QB) are conducted at both reduced and full
resolution.
vi) Hyperspectral-multispectral image fusion (HMIF): We
evaluated the performance of our RWKVFusion on two
remote sensing datasets: the Chikusei [9] and the Pavia [10]
datasets. The Chikusei dataset consists of 2517×2335 pixels
with 128 spectral bands spanning from 363 nm to 1018 nm.
We selected the upper-left region of size of 1000 × 2200
pixels to train the network, extracting 64 × 64 overlapping
patches from this region as ground-truth. The high resolu-
tion multispectral image patch size is 64×64×3 and the low
resolution hyperspectral image patch size is 16 × 16 × 128.
The Pavia dataset consists of 102 spectral bands (reduced
from the original 115 bands by removing water absorption
and noisy bands) and has a spatial size of 1096×1096 pixels.
We selected a region from the top of the captured area as
training set, cropping patches of size of 64 × 64, with the
remaining area used as test set. The test set consists of two
non-overlapping hyperspectral patches of size of 400× 400
pixels.

2 IMPLEMENTATION DETAILS

We first present the building of training and test datasets
followed by the architectural designs and training configu-
rations for the different tasks and datasets.

For all datasets, we generated captions with a maxi-
mum sentence length of 512, encoded them within the pre-
trained T5 model [11]. Masks have been generated for all
explored tasks except for HMIF and pansharpening, where
they have not been generated because of the small patch
size (i.e., 64 × 64). More specifically, for the VIF task, we

Algorithm 2: Masks using SAM and merging

Input: Seg(·): SAM model, DINO(·): DINO model,
S1, S2: input modalities, d̃: IoU threshold,
and C: grounding prompt

Output: Mmerge,2, cmerge,2: merged masks and
classes

1 Seg(·), DINO(·)← load pre-trained weights();
▷ Predict bounding boxes B and box class c.

2 B1, c1 ←DINO(S1,C);
3 B2, c2 ←DINO(S2,C);
▷ Segment the first and second modality masks in

the boxes.
4 M1 ←Seg(B1), M2 ←Seg(B2);
▷ Merge the first and second modality masks using

Algo. 1.
5 Mmerge,1, cmerge,1 ←

maskMerging(M1,M2, c1, c2, d̃);
6 Mmerge,2, cmerge,2 ←

maskMerging(M2,M1, c2, c1, d̃);
▷ Remove duplicated masks

7 for i← range(length(Mmerge,1)) do
8 for j ← range(i+ 1, length(Mmerge,2)) do
9 if IoU(M

(i)
merge,1,M

(j)
merge,2) ≤ d̃ then

▷ Remove the j-th mask and class
10 pop(Mmerge,2, j), pop(cmerge,2, j);
11 end
12 end
13 end
14 return Mmerge,2, cmerge,2

VIF MIF MEF MFF HMIF Pansharpening

Basic chan. 32
Chan. upscale (1, 1) (1, 1) (1, 1) (1, 1) (2, 1, 1) (2, 1, 1)

Enc. layers (1, 1) (1, 1) (2, 1) (1, 1) (2, 1, 1) (2, 1, 1)
Mid. layers 1 1 1 1 1 1
Dec. layers (1, 1) (1, 1) (2, 1) (1, 1) (2, 1, 1) (2, 1, 1)

FFN hidden (2, 2) (2, 2) (2, 2) (2, 2) (2, 2, 2) (2, 2, 2)
Drop path 0.2 0.3 0.1 0.1 0.2 0.2

λ in Eq. (19) — — — — 0.1
(η1, η2, η3) in

Eq. (20) (10, 2, 20) — —

Batch size 10 12 12 12 64 64
Optimizer AdamW(LR= 1e−3, β1 = 0.95, β2 = 0.99)

LR scheduler Cosine Annealing(LR: 1e−3 → 1e−5)
Weight decay 1× 10−6

Epochs 200 50 50 50 800 800

TABLE 1: Model configurations for the different tasks.
Chan., Enc., Mid., Dec., and LR stand for channel, encoder,
middle, decoder, and learning rate, respectively.

employed an additional mask merging process to combine
masks from visible and infrared images, while for the other
tasks, open-vocabulary segmentation has been performed
using Florence. These procedures enabled us to build im-
age/caption/mask pairs for model training and testing.

The configurations of our RWKVFusion for the different
image fusion tasks are reported in Tab. 1. In the following,
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we will provide some additional details about RWKVFu-
sion. In particular, the proposed network is a U-net like
architecture, which has encoder, middle layers, and decoder.
Encoder and decoder have multiple stages, and each stage
has several layers. For instance, in the VIF configuration,
the encoder layers (Enc. Layers in Tab. 1) are set to (1,
1), which means the encoder has 2 stages and the first
stage has 1 BRWKV layer. Channel upscale means that the
number of hidden channels will be multiplied by a factor
after a stage. Drop path indicates the use of the drop path
technique to prevent overfitting. Cosine annealing [12] is
used to change the learning rate from the initial value, 1e−3,
to the minimum, 1e−5.

We implemented the proposed RWKVFusion using Py-
torch on a workstation with an Intel 13700k CPU and two
NVIDIA RTX 3090 GPUs. All training procedures can be
performed within three 3090 GPU days. We implemented
the ESS proposed in Sect. 3.4 of the main paper by Triton [13]
and compiled it as CUDA kernel for fast training.

3 MASK MERGING ALGORITHM

In Sect. 3.7 of the main paper, we introduced a mask gen-
eration pipeline to automatically segment objects for image
pairs. In cases where there are significant differences be-
tween modalities, such as visible/infrared images, we found
that the generated masks often result in missing objects and
incomplete segmentation. Therefore, we proposed a mask
merging algorithm to deal with these unsatisfactory masks.
As shown in Algos. 1 and 2, the core of this algorithm
checks the object class and the intersection of union (IoU).
If two objects have the same class and the IoU is less than a
threshold, then we merge the two masks.

4 BENCHMARK DETAILS

This section is devoted to an introduction to the quality
metrics used, with some implementation details for the
compared methods. We provided many widely used quality
metrics to assess performance for the VIF, MIF, MEF, and
MFF tasks: i) information theory-based metrics: mutual in-
formation (MI), visual information fidelity (VIF), and spatial
frequency (SF); ii) human perception inspired metrics: Qcb,
Qy , Qcv , and Qabf ; iii) deep model perceptual metrics:
LPIPS [14]. We refer readers to previous image fusion litera-
ture [4], [15] to gain a comprehensive understanding of the
metrics employed. For the MI, VIF, SF, Qcb, Qy , and Qabf

metrics, a higher value means better fusion performance.
Conversely, for the Qcv and LPIPS metrics, a lower value
indicates better performance.

As suggested in [16], [17], for the pansharpening task,
we considered the spectral angle mapper (SAM) [18], the
erreur relative globale adimensionnelle de synthèse (ER-
GAS) [19], universal image quality index for multiband
images (Q2n) [20], and the spatial correlation coefficient
(SCC) [21] as quality metrics at reduced resolution. SAM
is primarily used to measure spectral similarity in hyper-
spectral images. ERGAS is used to assess the global error
of spectral images. It takes into account both spectral and
spatial information errors and is commonly used for the
quality evaluation of multispectral and hyperspectral im-
ages. Q2n is an extension of the universal image quality

index (UQI) designed specifically for multispectral images.
It evaluates the quality of a fused image by considering both
spatial and spectral distortions. SCC measures the spatial
correlation between the reference and the fused images.
Since there is no reference at full resolution, we used Dλ, Ds,
and the (overall) hybrid quality with no reference (HQNR)
index for quality assessment at full resolution. Dλ and Ds

are the spectral and spatial distortion indexes, respectively.
HQNR combines Dλ and Ds to simultaneously represent
both spectral and spatial quality.

As for the HMIF task, we employ the SAM, the ERGAS,
the peak signal-to-noise ratio (PSNR) [22], and the Structural
similarity index measure (SSIM) [21] as quality assessment
metrics. The higher the values of PSNR and SSIM, the better
the fusion results.

For most of the methods, we employed pre-trained
weights provided in their codebases. If pre-trained weights
were unavailable, we retrained models using the default
configurations specified in their original code implementa-
tions/papers. In particular, we have:

1) For the VIF task: U2Fusion [23], MGDN [24], and
TC-MOA [25] have been retrained;

2) For the MIF task: all methods have been trained
from scratch;

3) For the MEF task: U2Fusion and TC-MOA have
been retrained;

4) For the MFF task: TC-MOA has been trained using
the original paper configuration;

5) For the HMIF and pansharpening tasks: all models
have been trained from scratch.

We did not compare our method with FILM on the
WHI-WFU and TNO datasets, as FILM neither released
the descriptions generated by ChatGPT [26] nor the feature
maps extracted by BLIP2 [27], making a direct comparison
infeasible.

5 IMPLEMENTATION DETAILS OF PLAIN RWKV
BACKBONE

In Sect. 6.1 of the main paper, we introduced a straight-
forward RWKV architecture similar to SwinIR [28]. This
architecture is depicted in Fig. 1. The network consists of:
i) shallow feature extraction; ii) several RWKV layers; and
iii) high-quality image reconstruction. The shallow feature
extraction employs a 3 × 3 convolutional layer to handle
early visual processing. For the RWKV layers, we set the
number of layers to 4 for the MSRS dataset in the abla-
tion study, and to 8 for the Pavia dataset, to ensure the
parameter count matches each default setting. For high-
quality image reconstruction, we directly applied sub-pixel
convolution [29] to map the fused features to pixel space. We
empirically omit the long skip-connection between shallow
feature extraction and high-quality image reconstruction in
SwinIR since the tasks are different.

6 DIFFERENCES ON ATTENTION MASKS

Standard cross-attention mechanisms indeed produce
sequence-length-squared (L× L) attention weight maps,

A = Softmax

(
Q ·K⊤
√
d

)
∈ RL×L, (1)
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Fig. 1: An overview of the compared plain RWKV architec-
ture. Guidance including language and masks, is injected in
every RWKV layer.

that can be visualized as fine-grained masks correlating
queries and keys (e.g., text and image regions), the WKV
(Weighted Key Value) operator used within the spatial mix-
ing blocks of our RWKV backbone operates differently. As
detailed in the WKV operator,

At = OWKV (Ks,Vs)t

=

∑L
i=1,i̸=t e

−(|t−i|−1)/L·w+kivi + eu+ktvt∑L
i=1,i̸=t e

−(|t−i|−1)/L·w+ki + eu+kt

,
(2)

WKV relies on channel-wise learnable decay parameters
(w) and relative positional encoding, calculated efficiently,
often via a recurrent formulation. This mechanism models
long-range spatial dependencies with linear complexity but
does not inherently compute or store an explicit matrix
of pairwise token attention scores comparable to those in
standard Transformers. Therefore, it does not directly yield
the same kind of fine-grained attention masks.

However, our RWKVFusion framework is designed to
incorporate fine-grained spatial and semantic guidance ex-
plicitly through the Multi-modal Fusion Module (MFM), as
detailed in Sect. 3.5 and illustrated in Fig. 5 (c). The MFM
directly integrates user-provided or automatically generated
object masks (M) for precise spatial guidance and encoded
image captions (T) for global semantic context into each
encoder layer. As visualized in Fig. 6 (of the main text), this
explicit guidance effectively modulates the network’s fea-
tures (e.g., Xmask highlighting masked objects), achieving
the desired semantic control over the fusion process.

Our design choice prioritizes the efficiency benefits of
the RWKV architecture (linear FLOPs and space complexity
w.r.t. sequence length, see Tab. 1) while ensuring rich se-
mantic and spatial guidance through the dedicated MFM,
rather than relying on implicit attention maps derived from
the backbone’s internal workings.

7 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results
for the Pansharpening, VIF, and MFF tasks, which have been
conducted on datasets mentioned in the main paper, i.e., the
GF2, QB, RoadScene, and Lytro datasets.

The Lytro10 [30] dataset has 20 images, just used for test-
ing MFF approaches. Instead, the RoadScene11 [31] dataset

10. https://mansournejati.ece.iut.ac.ir/content/
lytro-multi-focus-dataset

11. https://github.com/hanna-xu/RoadScene

TABLE 2: Performance of recent state-of-the-art fusion meth-
ods on the Lytro MFF and RoadScene VIF datasets. The best
results are in red, the second-best results are in blue.

Methods Lytro MFF Dataset
MI↑ VIF↑ SF↑ Qcb↑ Qabf↑ Qy↑ Qcv↓ LPIPS↓

U2Fusion [23] 4.24 1.05 12.71 0.60 0.58 0.92 190.2 0.366
DeFuse [32] 4.23 1.03 11.42 0.58 0.53 0.91 228.1 0.375
DDFM [33] 4.07 0.98 13.41 0.60 0.60 0.85 159.0 0.398
ZMFF [34] 4.35 0.98 18.88 0.71 0.68 0.97 52.5 0.381

IF-MT-SSL [35] 2.19 0.18 19.06 0.42 0.18 0.53 292.3 0.650
TC-MOA [25] 4.07 0.96 13.33 0.64 0.59 0.93 112.8 0.383

Proposed 4.70 1.09 19.51 0.72 0.73 0.98 48.3 0.356
Methods RoadScene VIF Dataset

U2Fusion [23] 1.92 0.46 9.41 0.51 0.29 0.76 606.0 0.660
DeFuse [32] 2.29 0.72 9.57 0.57 0.43 0.86 356.1 0.637

SwinFusion [5] 2.04 0.61 14.81 0.57 0.61 0.91 369.9 0.601
CDDFuse [36] 2.13 0.57 15.05 0.47 0.52 0.90 328.7 0.619

DDFM [33] 2.13 0.58 10.34 0.52 0.39 0.84 356.2 0.700
SegMIF [37] 2.00 0.55 17.12 0.55 0.59 0.91 328.9 0.647
MGDN [24] 2.13 0.66 10.56 0.54 0.38 0.83 383.5 0.591

TC-MOA [25] 2.09 0.59 11.01 0.55 0.49 0.88 295.9 0.761
FILM [38] 1.70 0.25 15.84 0.47 0.30 0.69 873.7 0.772
TextIF [39] 2.09 0.61 17.25 0.57 0.64 0.93 303.6 0.632
Proposed 2.58 0.69 17.48 0.61 0.68 0.95 300.0 0.605

has 22 pairs of visible and infrared images, just used for
testing VIF methods. Details of the GF2 and QB datasets are
provided in Sect. 1.

The results of the RoadScene and Lytro datasets are
reported in Tab. 2. It can be seen that our RWKVFusion
can largely outperform previous state-of-the-art methods,
keeping at least the second-best results for six out of eight
quality metrics. The results of the GF2 and QB datasets are
reported in Tab. 3. Moreover, the related visual comparisons
are provided in Sect. 9.

8 MORE CAPTION AND MASK EXAMPLES

More examples of image captions and segmented masks are
depicted in Fig. 2.

9 MORE VISUAL RESULTS

In this section, we include more visual results related to the
MSRS, TNO, RoadScene, WFI-WHU, Lytro, GF2, QB, Pavia,
and medical Harvard datasets in Figs. 3 , 4, 5, 6, 7 and 8,
respectively.

As shown in Fig. 3, it is evident that U2Fusion [23],
SwinFusion [5], and DDFM [33] struggle to clearly present
road landmarks due to underexposure in the visible images.
While other methods can show the arrow landmarks in a
clearer way, they inevitably compromise salient targets. For
example, pedestrians within the red and yellow circles are
blurred in DeFuse [32] and color distortion issues appear
in the MGDN [24] and SegMIF [37] results. Instead, our
method fully integrates complementary information from
the source images, providing a more comprehensive de-
scription of scenes with insufficient lighting.

Fig. 4 presents an example from the TNO dataset, con-
taining two targets as highlighted by the related mask.
Observing the overall results, many methods exhibit clear

https://mansournejati.ece.iut.ac.ir/content/lytro-multi-focus-dataset
https://mansournejati.ece.iut.ac.ir/content/lytro-multi-focus-dataset
https://github.com/hann a-xu/RoadScene
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TABLE 3: The averages and standard deviations of the adopted quality metrics for the pansharpening task calculated on
the GF2 and QB test sets. The best results are in red and the second-best results are in blue.

Methods Reduced Resolution (RR): Avg±std Full Resolution (FR): Avg±std #Params↓ #FLOPs↓
SAM↓ ERGAS↓ Q2n↑ SCC↑ Dλ↓ Ds↓ HQNR↑

G
ao

Fe
n2

(G
F2

,4
-b

an
d)

MTF-GLP-FS [40] 1.68±0.35 1.60±0.35 0.891±0.026 0.939±0.020 0.035±0.014 0.143±0.028 0.823±0.035 — —
BT-H [41] 1.68±0.32 1.55±0.36 0.909±0.029 0.951±0.015 0.060±0.025 0.131±0.019 0.817±0.031 — —

LRTCFPan [42] 1.30±0.31 1.27±0.34 0.935±0.030 0.964±0.012 0.033±0.027 0.090±0.014 0.881±0.023 — —
DiCNN [43] 1.05±0.23 1.08±0.25 0.959±0.010 0.977±0.006 0.041±0.012 0.099±0.013 0.864±0.017 0.23M 0.19G

FusionNet [44] 0.97±0.21 0.99±0.22 0.964±0.009 0.981±0.005 0.040±0.013 0.101±0.013 0.863±0.018 0.047M 0.32G
LAGConv [45] 0.78±0.15 0.69±0.11 0.980±0.009 0.991±0.002 0.032±0.013 0.079±0.014 0.891±0.020 0.15M 0.54G
Invformer [46] 0.83±0.14 0.70±0.11 0.977±0.012 0.980±0.002 0.059±0.026 0.110±0.015 0.838±0.024 2.77M 3.46G
DCFNet [47] 0.89±0.16 0.81±0.14 0.973±0.010 0.985±0.002 0.023±0.012 0.066±0.010 0.912±0.012 2.77M 3.46G
HMPNet [48] 0.80±0.14 0.56±0.10 0.981±0.030 0.993±0.003 0.080±0.050 0.115±0.012 0.815±0.049 1.09M 2.00G
PanDiff [49] 0.89±0.12 0.75±0.10 0.979±0.010 0.989±0.002 0.027±0.020 0.073±0.010 0.903±0.021 45.33M 14.83G

PanMamba [50] 0.68±0.12 0.64±0.10 0.982±0.008 0.985±0.006 0.016±0.008 0.045±0.009 0.939±0.010 0.48M 1.31G
Proposed 0.62±0.12 0.55±0.11 0.986±0.007 0.993±0.002 0.019±0.009 0.045±0.010 0.936±0.012 1.21M 2.34G

Q
ui

ck
Bi

rd
(Q

B,
4-

ba
nd

)

MTF-GLP-FS [40] 8.11±1.96 7.51±0.79 0.830±0.091 0.900±0.020 0.049±0.015 0.138±0.024 0.820±0.034 — —
BT-H [41] 7.19±1.55 7.40±0.84 0.833±0.088 0.916±0.015 0.230±0.072 0.165±0.017 0.643±0.065 — —

LRTCFPan [42] 7.19±1.71 6.93±0.81 0.855±0.087 0.917±0.013 0.023±0.012 0.071±0.035 0.909±0.044 — —
DiCNN [43] 5.38±1.03 5.14±0.49 0.904±0.094 0.962±0.013 0.092±0.014 0.107±0.021 0.811±0.031 0.23M 0.19G

FusionNet [44] 4.92±0.91 4.16±0.32 0.925±0.090 0.976±0.010 0.059±0.019 0.052±0.009 0.892±0.022 0.047M 0.32G
LAGConv [45] 4.55±0.83 3.83±0.42 0.934±0.088 0.981±0.009 0.084±0.024 0.068±0.014 0.854±0.018 0.15M 0.54G
Invformer [46] 4.66±0.78 3.70±0.29 0.932±0.007 0.983±0.007 0.174±0.033 0.073±0.024 0.766±0.043 2.77M 3.46G
DCFNet [47] 4.54±0.74 3.83±0.29 0.933±0.090 0.974±0.010 0.045±0.015 0.124±0.027 0.836±0.016 2.77M 3.46G
HMPNet [48] 4.72±0.38 3.66±0.40 0.930±0.110 0.980±0.009 0.183±0.054 0.079±0.025 0.754±0.065 1.09M 2.00G
PanDiff [49] 4.58±0.74 3.74±0.31 0.935±0.090 0.982±0.090 0.059±0.022 0.064±0.025 0.881±0.042 45.33M 14.83G

PanMamba [50] 5.14±0.90 4.95±0.42 0.921±0.086 0.976±0.009 0.036±0.012 0.067±0.015 0.900±0.010 0.48M 1.31G
Proposed 4.36±0.73 3.53±0.27 0.938±0.090 0.984±0.007 0.037±0.016 0.065±0.017 0.900±0.015 1.21M 2.34G

color bias. For instance, U2Fusion [23] and CDDFuse [36]
closely resemble the visible image, while SwinFusion [5],
DDFM [33], and MGDN [24] are overly influenced by the
infrared counterpart. These methods fail to achieve effective
fusion. Both DeFuse [32] and TC-MOA [25] also suffer
from significant color deviations. Our method stands out
by better highlighting targets with respect to the compared
approaches, clearly distinguishing the sky and the building,
and preserving more details.

Fig. 5 displays a nighttime image pair from the Road-
Scene dataset. We focus on two specific details: the cars on
the road and the slogans posted on the wall. Our method
achieves the highest clarity for vehicles, closely resembling
the infrared image. The slogans on the wall are also en-
hanced after fusion. From a global perspective, our fusion
results effectively retain the road’s zebra crossings from the
visible image and the tree details from the infrared image.
Compared to the other recent methods, our approach clearly
demonstrates benefits.

Fig. 6 shows some visual results for the MFI-WHU and
Lytro datasets. Fig. 6 (left panel) shows a golf course with
a red flag in the foreground and houses and trees in the
background. Comparing our approach with the other state-
of-the-art methods, the proposed solution clearly preserves
the cables in the blue box, while the distant houses remain
unaffected by the foreground focus. The green box high-
lights the integration of the foreground and background
objects, where our method achieves high clarity for both the
red flag and the background houses. Instead, other methods
exhibit lower clarity and introduce artifacts, such as the
additional sky gap in ZMFF [34]. Fig. 6 (right panel) shows
a golfer in a yellow polo shirt in the foreground and a
yellow checkered flag in the background. Key details, such

as the golfer’s hand and the far flag, have been chosen for
analysis. While most of the methods achieve successful fu-
sion, DeFuse [32] and DDFM [33] show poor fusion quality.
Observing the hand details (blue box) and the green lawn
in the background, our method achieves higher fidelity. The
checkered flag in the green box also demonstrates successful
color reconstruction by incorporating details from the near
image.

Fig. 7 provides visual comparisons for the pansharp-
ening task on the GF2 and QB datasets. Error maps are
characterized by significant spectral transformations among
buildings. Fig. 7 (left panel) shows the white and blue
buildings in the red and green boxes representing challenges
for fusion. Our approach gets high fusion quality in these
areas, while the other methods exhibit poor performance.
In Fig. 7 (right panel), we focus on cars on the harbor road
(green box) and isolated buildings near the coastline. Our
method mainly obtains deep blue pixels in the related error
map, indicating small errors. In the close-ups (red and green
boxes), our approach avoids fusion defects, commonly seen
in the other compared methods.

Fig. 8 illustrates fusion results for various methods on
the Pavia dataset. The selected image showcases dense
building clusters, where retaining the structural distribution
of the building clusters poses a major challenge for this task.
Both traditional and deep-learning methods generate error
maps with large high-error regions. However, our method
obtains overall low-error areas and preserves the structural
distribution of the building clusters. This demonstrates that
our RWKVFusion performs well even for the HMIF task.

Fig. 9 depicts the fusion results on two pairs of MRI-
SPECT images. In the top two rows of Fig. 9, one can
observe that the fused images produced by SwinFusion [5],
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VIS caption: The image shows a street with two people walking on it. The street is lined with trees on both 
sides and there is a building on the left side of the image. The trees have green leaves and the ground is 
covered in fallen leaves. The sky is blue and the sun is shining through the trees, casting a warm glow on the 
street. The people are walking side by side, with one person in the foreground and the other in the background. 
They are both wearing casual clothes and appear to be walking towards the camera.
IR captions: The image is a black and white photograph of two people walking on a street at night. The street 
is lined with trees on both sides and there are buildings on the left side of the image. The sky is dark and the 
street appears to be empty. The two people are walking side by side, with one person in the front and the other 
in the back. They are both wearing jackets and appear to be walking towards the camera. The image is taken 
from a low angle, looking down the street towards the buildings.

VIS caption: The image shows a busy street with cars driving on it. The street is lined with trees on both sides 
and there is a traffic light on the right side of the road. The sky is overcast and the street appears to be wet, 
suggesting that it may have recently rained. The car in the foreground is a black car with a license plate. There 
are other cars on the street and a few people walking on the sidewalk. The overall mood of the image is gloomy 
and rainy.

IR captions: The image is a black and white photograph of a street at night. The street is lined with trees on 
both sides and there are several cars parked on the side of the road. In the center of the image, there is a car 
driving on the road with its headlights on. On the right side, there are a few people walking on the sidewalk. 
The sky is dark and the street appears to be wet, suggesting that it has recently rained. The image is taken 
from a low angle, looking up at the car in the foreground.

captions: The image shows an old cannon on display in a courtyard. The courtyard is made of stone and has a 
wooden ceiling with arches. The walls are painted in a light beige color and there is a large mural on the right 
side of the wall. The mural depicts a group of people and animals, and there are tables and chairs set up under 
umbrellas in the background. The cannon is mounted on a wooden cart and appears to be old and weathered. 
The floor is covered in cobblestones.

captions: The image shows a small candle holder with a lit candle on a wooden table. The candle is in the 
center of the image and is placed on a small plate with a small piece of butter on it. Next to the candle holder, 
there is a yellow bowl and a blue mug. On the table, there are also a few other items such as a water bottle 
and a plant. The background is blurred, but it appears to be a kitchen or dining area with a window.

Fig. 2: Additional examples of image captions and segmented masks for the VIF, MEF, and MFF tasks. The two image
modalities are shown on the left. Instead, the mask is on the right and the captions are shown in the bottom panel.

CDDFuseU2Fusion SwinFusionDeFuse

DDFM SegMIF

InfraredVisible

MGDN TC-MOA ProposedFILM TextIF

Captions: The image shows a group of people walking on a street at night. The street is lined with trees and buildings on both sides, and there are street lamps on 
the right side of the image. The sky is dark and the street is lit up with street lamps, creating a warm glow. The people are walking in a line, and they appear to be 
walking towards the camera. The image is taken from a low angle, looking down the street towards the buildings.

Mask

Fig. 3: Visual results for the compared approaches on the MSRS dataset (VIF task). Several close-ups are shown in the
dashed circles.

DeFuse

DDFM SegMIF

U2Fusion SwinFusion CDDFuse

MGDN TC-MOA Proposed

Visible Infrared Mask

FILM TextIF

Captions：The image is a black and white photograph of a small house in the woods. The house is a two-story structure with a sloping roof and a chimney. It appears to be 
old and dilapidated, with peeling paint and broken windows. There is a small porch on the front of the house with a door and a window on the second floor. A man and a 
woman are standing outside the house, looking at the camera. The ground is covered in fallen leaves and there are trees in the background. The image is taken from a low 
angle, looking up at the house. 

Fig. 4: Visual results for the compared approaches on the TNO dataset (VIF task). Close-ups are shown in the blue and red
boxes.
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U2Fusion SwinFusion

CDDFuse DeFuse DDFM SegMIF MGDN

TC-MOA Proposed

Visible Infrared Mask

FILM TextIF

Captions: The image is a black and white photograph of a street at night. The street is lined with trees and buildings on both sides, and there are street 
lamps on the right side of the image. In the center of the street, there is a white building with a sign that reads "Cafe". The building appears to be a 
restaurant or a bar, and the street is wet, suggesting that it has recently rained. There are a few cars driving on the street and a few people walking on 
the sidewalk. The sky is dark and the overall mood of the photograph is gloomy.  

Fig. 5: Visual results for the compared approaches on the RoadScene dataset (VIF task). Close-ups are shown in the blue
and red boxes.

DeFuse DDFM ZMFF

Near Far U2Fusion

IF-MT-SSL TC-MOA Proposed

Near Far U2Fusion

DeFuse DDFM ZMFF

IF-MT-SSL TC-MOA Proposed

Captions: The image shows a beautiful golf course with a well-manicured 
green. The sky is blue and the weather appears to be sunny and clear. In the 
center of the image, there is a red flag with the letter "E" on it, indicating 
that the course is well-maintained. On the left side of the flagpole, there are 
two large trees, and on the right side, there appears to have a few houses or 
buildings in the background. The grass on the green is neatly trimmed and 
well-groomed.

Captions: The image shows a man playing golf on a golf 
course. He is wearing a yellow striped polo shirt and a black 
cap. The man is holding a golf club and is in the process of 
hitting a golf ball. In the background, there is a yellow and 
black checkered flag on a tee. The grass on the golf course is 
well-manicured and there are trees in the distance. The sky is 
blue and the weather appears to be sunny.

Fig. 6: Visual results for the compared approaches on “44” from the MFI-WHU test set (MFF task; left panel) and “1” from
the Lytro test set (MFF task; right panel). Close-ups are depicted in the green and blue boxes.

CDDFuse [36], DDFM [33], and MGDN [24] (see the close-
ups in the green boxes) all exhibit varying degrees of arti-
facts at the interface between the brain’s internal structures
and the exoskeleton, caused by SPECT pixel blocks. TC-
MOA [25], due to its excessively blurred fused images,
is likely to hinder medical experts from making further
accurate judgments. This issue is also evident in the last two
rows (second example) in Fig. 9. In contrast, our method not
only eliminates these artifacts but also preserves the color
information from SPECT while retaining the rich texture
details from MRI.

10 COMPUTATIONAL BURDEN

To assess the computational burden, we comprehensively
evaluate the number of parameters, computational com-
plexity (FLOPs), and throughput. Taking the visible-infrared
fusion (VIF) task as an example, Tab. 4 compares these met-
rics across multiple methods. The proposed RWKVFusion,
leveraging its global receptive field and efficient CUDA im-
plementation, demonstrates differentiated advantages un-
der three configurations:
∗ configuration (fusion network only) achieves a high

throughput of 136.6 images/s with an ultra-low parameter
count of 0.35M, delivering near-SOTA performance (see
ablation study in Tab. 7 (iii) of the main paper.);
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MTF-GLP-FS  BT-H  LRTCFPan DiCNN FusionNet
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PanMamba Proposed LRMS PAN GT

Fig. 7: Error maps for the compared approaches on “area 19” of the GF2 test set (left panel) and on “area 2” of the QB test
set (right panel). Close-ups are depicted in the green and red boxes.

 Bicubic CSTF-FUS  LTMR IR-TenSR HSRNet MogDCN Fusformer  DHIF

 PSRT 3DT-Net DSPNet BDT MIMO-SST Proposed GT
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0.20

0.00

Fig. 8: Error maps for the compared approaches on “area 2” of the Pavia test set. Close-ups are depicted in the red boxes.

MRI

SPECT U2Fusion SwinFusion CDDFuse DDFM

MATR MGDN ProposedTC-MOA

U2Fusion SwinFusion CDDFuse DDFM

MATR MGDN TC-MOA Proposed

MRI

SPECT

Fig. 9: Visual comparisons on the medical Harvard dataset.
Close-ups are depicted in the green and blue boxes.

† configuration (offline semantic generation) maintains

competitiveness at 112.7 images/s, exhibiting 139% higher
efficiency than offline methods like FILM (47.1 images/s);
‡ configuration (full online processing, including cap-

tion and masks), while requiring higher parameters/FLOPs,
concurrently provides an image caption and a unified seg-
mentation mask subsequent to mask merging, validating
the enhancement of fusion quality by high-level semantics.
While in this setting, the view shows our pipeline might not
be superior solely based on parameter count and FLOPs, it
is essential to consider the unique value proposition of our
method. Beyond achieving SOTA fusion performance, our
approach concurrently provides an image caption and a
unified segmentation mask subsequent to mask merging.
These constitute key advantages. This outcome validates
our foundational premise that high-level semantic infor-
mation from captions and masks can significantly improve
fusion quality, a research avenue rarely explored in image
fusion.

11 MORE RESULTS OF DOWNSTREAM TASKS

In this section, we provide more results of RWKVFusion on
downstream tasks and comparisons with other models.

Fig. 10 presents monocular depth estimation results
using Depth Anything v2 [52] across multiple image fu-
sion tasks. The first row displays fused images and their
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TABLE 4: Comparisons of the model parameters, FLOPs,
and throughput for fusing a 256 × 256 image. “A+B” (of
previous FILM, TextIF, and proposed†) indicates that A
represents the fusion network’s parameters (or FLOPs),
while B corresponds to the language model’s parameters
(or FLOPs). “A+B+C+D” for the proposed‡ method means
parameters and FLOPs of RWKVFusion model, T5 model,
Florence and DINO model, and SAM model. N/A, M,
G, and s stand for not available, million, giga, and sec-
ond, respectively. Gray color indicates methods of image
processing-based. Proposed∗ indicates that do not use se-
mantic information (i.e., without caption and masks), the
performance of this model is shown in Tab. 7 (iii) of the
main paper.

Architecture Params (M) FLOPs (G) Throughput (images/s)
DeFuse [32] 7.87 15.17 139.2

U2Fusion [23] 0.66 43.31 315.8
SwinFusion [5] 0.97 59.41 16.4
CDDFuse [36] 1.19 118.2 25.4

DDFM [33] 553.1 1112 20.1
MATR [51] 0.013 3.36 51.4
MGDN [24] 0.91 65.0 12.0

TC-MOA [25] 340.9 524.3 26.6
Proposed∗ 0.352 15.08 136.6
FILM [38] 2.1+N/A 209.1+N/A 47.1
TextIF [39] 64.8+151.2 336.1+2.91 35.8
Proposed† 0.352+35.3 15.08+11.27 112.7

Proposed‡ 0.352+35.3 15.08+11.27 0.742+765.2+481.8 +934.3+179.9

depth maps generated by our RWKVFusion, which exhibit
precise geometric structures and coherent depth hierarchy
for distant backgrounds. The last two rows compare input
modalities (visible, infrared, etc.) and corresponding depth
estimations for MEF, MFF, and visible-VIF tasks. As can be
seen, the fused images generated by the proposed RWKV-
Fusion under challenging illumination (e.g., overexposed
regions) and cross-modal scenarios (e.g., low-visibility in-
frared images) yield depth maps that align with human
spatial perception.

The object detection outcomes obtained using
YOLOv5 [53] on our fusion results for the MSRS dataset are
depicted in Fig. 11. The YOLOv5 model, pretrained on the
COCO dataset, has been directly applied to detect objects
in the fused images. It can be observed that some objects
remain undetected, and this issue can be attributed to the
distribution shift between the COCO and MSRS datasets.
To address this limitation, the fine-tuning of the detector on
the fused images can be considered a promising solution.

As for the semantic segmentation task, we employ
the Segformer [54] architecture with a pretrained MiT-B3
backbone. Models are trained and evaluated on fused im-
age/mask pairs generated by different VIF methods from
the MSRS VIF dataset. Fig. 12 demonstrates an additional
visual segmentation result on fused images generated by
different fusion methods. As shown in the figure, the
segmentation results of our proposed method align most
closely with the ground truth labels. The primary limitations
of other methods include edge fragmentation in complex
scenes (e.g., bicycles) and incomplete segmentation of small-
scale objects (e.g., distant pedestrians and road curves).

Comprehensive downstream experiments demonstrate

RWKVFusion’s superiority in fusion performance and
downstream adaptability.

12 CODE AND DATA

We will release the code and data, including image modal-
ities, captions, and masks, at https://github.com/
294coder/RWKVFusion.
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