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Abstract

The denoising diffusion model has received increasing attention in the field of image generation in recent years, thanks to its
powerful generation capability. However, diffusion models should be deeply investigated in the field of multi-source image fusion,
such as remote sensing pansharpening and multispectral and hyperspectral image fusion (MHIF). In this paper, we introduce a
novel supervised diffusion model with two conditional modulation modules, specifically designed for the task of multi-source
image fusion. These modules mainly consist of a coarse-grained style modulation (CSM) and a fine-grained wavelet modulation
(FWM), which aim to disentangle coarse-grained style information and fine-grained frequency information, respectively, thereby
generating competitive fused images. Moreover, some essential strategies for the training of the given diffusion model are well
discussed, e.g., the selection of training objectives. The superiority of the proposed method is verified compared with recent state-
of-the-art (SOTA) techniques by extensive experiments on two multi-source image fusion benchmarks, i.e., pansharpening and
MHIF. In addition, sufficient discussions and ablation studies in the experiments are involved to demonstrate the effectiveness of
our approach. Code will be available after possible acceptance.

Keywords: Denoising diffusion model, wavelet transformation, pansharpening, multi-source image fusion, multispectral and
hyperspectral image fusion, end-to-end network, remote sensing

1. Introduction

Recently, multi-source image fusion (MSIF) has attracted
much attention in the area of image processing and computer
vision. The MSIF leverages on different images with domain-
specific information to generate a fused image that cannot be
obtained under practical conditions, such as a high-resolution
multi-spectral image (HRMS), or a high-resolution hyperspec-
tral image (HRHS). In this work, we mainly focus on two prac-
tical MSIF tasks, i.e., pansharpening [1] and multispectral and
hyperspectral image fusion (MHIF) [2], to propose our method.

Pansharpening, as a relevant problem in remote sensing im-
age processing, is attracting more and more interest from the
research community and commercial companies. Specifically,
pansharpening requires the fusion of a high spatial resolu-
tion panchromatic (PAN) image and a low spatial resolution
multispectral (LRMS) image to obtain a high spatial resolu-
tion multispectral image (HRMS), which preserves the advan-
tages of the two images belonging to two different domains.
Most satellites can simultaneously capture PAN and MS im-
ages, such as WorldView-3 and GaoFen-2. Pansharpening
methods can be divided into four categories [3], i.e., compo-
nent substitution (CS) methods [4, 5, 6, 7], multi-resolution
analysis (MRA) methods [8, 9, 10, 11], variational optimized
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Figure 1: (a) Previous DL-based methods directly learn a non-linear mapping to
fuse under the one-step preconditioned framework. The M, P, and Ĥ indicate
the LRMS, the PAN, and the fused HRMS in pansharpening. (b) The denoising
diffusion model is enabled with a multistep denoising process while breaking
the preconditioned learning process. The q(xt |xt−1), pθ(xt−1 |xt , c), and c repre-
sent the noise adding forward process, the denoising backward process, and the
condition, respectively.
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(VO) techniques [12, 13, 14, 15], and deep learning (DL) ap-
proaches [16, 17, 18, 19, 20, 21]. The first three conventional
approaches have their own advantages and disadvantages, but
they frequently result in spectral or spatial distortions because
of the limitations of the various techniques. CS methods of-
ten consider a linear projection into a transformed domain of
the MS image by substituting the separated MS spatial infor-
mation with the PAN image. MRA methods relied upon a mul-
tiscale decomposition (often exploiting linear filtering) to the
PAN image to extract its spatial components and inject them
into the MS image. Thus, both are based on linear operations
and, hence, they cannot accurately extract spectral/spatial in-
formation suffering from spectral and/or spatial distortions. VO
methods introduce regularization terms to take into account of
prior information. However, regularization terms that are not
well-designed can cause degraded pansharpening performance.
About the DL-based approaches, which are mostly related to
this work, we will discuss their advantages and disadvantages
in conjunction with the DL-based methods for MHIF.

MHIF techniques aim to fuse multispectral and hyperspec-
tral images captured from the same scene to get information
from phenomena that cannot be detected by the sole HRMS.
More specifically, MHIF can also be seen as a preprocessing
method for further high-level applications, such as change de-
tection [22, 23], mineral exploration [24, 25], and segmenta-
tion [26]. The recent literature of MHIF [2] mainly involves
model-based methods [27, 28, 29, 30] and DL-based meth-
ods [31, 32, 33]. Although the model-based methods utilize
various image priors, it is still difficult to obtain high-fidelity,
less distorted high-resolution hyperspectral fusion images due
to the lack of training with large-scale datasets.

Over recent years, supervised DL-based methods have
achieved significant advances in various vision tasks, such as
convolution neural networks (CNNs) [34, 35] and Vision Trans-
formers (ViTs) [36, 37]. In the task of MSIF, supervised DL-
based methods can fuse an image by learning a non-linear
functional mapping from spatial and spectral degradation re-
lated to pansharpening or MHIF task. Previous supervised DL-
based methods can be regarded as the preconditioned fusion
framework, which injects the image features and priors into the
learnable mapping process. To promote the non-linear capa-
bility, these DL-based works mainly focus on better architec-
ture designing (e.g., [17, 38, 39, 19, 40] for pansharpening and
[41, 42, 32, 43] for MHIF), more effective modules [44, 45, 46],
and more novel model-driven networks [33, 47, 48, 49]. How-
ever, the learnable mapping process tries to fuse the image fea-
tures and priors in just one step (i.e., model evaluation) based
on the preconditioned fusion framework (see Fig. 1-a). More-
over, supervised DL-based methods cannot leverage the learn-
ing ability of the network based on the one-step preconditioned
framework, exacerbating the domain gap of the multi-source
image. Additionally, the conditions for the network are entan-
gled and may not be suitable for the fusion task. Recently, many
unsupervised methods have been proposed by exploiting adver-
sarial learning [50, 51], novel spatial/spectral loss [52], cycle
consistency [53], and learning degraded processes [54]. In this
work, we mainly focus on supervised methods, and some dis-

cussions about unsupervised methods can be found in Sect. 5.5.
Diffusion denoising probability model (DPM), as proposed

for unconditional image generation [23, 55], conditional image
generation [23, 56], text-to-image generation [57, 58], image-
to-image translation [59], and discrete nature language gener-
ation [60] tasks, has shown its power providing extra feature
details and good generation ability. Another advantage is that
DPM owns a more stable training process and no model col-
lapse compared to the GAN-based model. More specifically,
the training and testing phases of DPM are dubbed as the for-
ward process and backward process [61, 62]. In the forward
process, the input image is corrupted by a pure Gaussian noise,
then the model tries to denoise and recover the original input
during the training. In the backward process, the input is a pure
Gaussian noise and the trained model is responsible for remov-
ing, step-by-step, a little noise. Finally, after large enough time
steps, the noise is recovered to the generated images. Further-
more, to control the generated images, Ho et al. [63] proposed
the conditional DPM where the condition is fed into the diffu-
sion model to control the trajectory of the stochastic differen-
tial equation (SDE) [23, 61, 62] ordinary differential equation
(ODE) [64, 65]. DPM, which has a multistep forward/backward
process (see Fig. 1-b), produces intermediate time-dependent
variables and breaks the one-step preconditioned framework.
However, a few works noted that DPM can be applied to the
task of MSIF. The methods that are most closely related to our
work are DDPM-CD [66], Dif-fuse [67], and PanDiff [68]. The
common design of the first two works is that they both utilize
a trained diffusion model and an additional task-specific path-
way, i.e., detection head and fusion head that involve a tedious
two-stage training. PanDiff directly inputs the PAN and LRMS
images as conditions for diffusion model and designs a task-
agnostic architecture to complete the pansharpening task, but
neglecting the entangled conditions.

To address the aforementioned issues, we propose a novel
diffusion model with two conditional modulation modules,
named DDIF, specifically designed for the task of MSIF. The
two modules mainly include a coarse-grained style modulation
(CSM) and a fine-grained wavelet modulation (FWM), aim-
ing to disentangle coarse-grained style information and fine-
grained frequency information, thus overcoming the limitation
that the entangled conditions are not suitable for the fusion task.
The issue of the degraded learning ability is addressed by the
multistep denoising process inherited by the diffusion model.
Experiments show that our DDIF can fuse images with bet-
ter visual quality and performance metrics. Moreover, DPM
with SDE sampling can introduce new noise that contains many
high-frequency components when sampling for better fusion.
Compared with existing diffusion models, our DDIF is specifi-
cally designed for the multi-source fusion task, as well as it is
able to yield better fusion outcomes.

The contribution of this work is three-fold:

1. We propose a novel supervised diffusion model with disen-
tangled modulations for sharpening multispectral and hy-
perspectral images (dubbed as DDIF), which can address
the degraded learning ability brought by the one-step pre-
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conditioned framework in previous DL-based models. A
preliminary manuscript can be found on the preprint web-
site1.

2. The given DDIF contains two novel modulation mod-
ules, i.e., coarse-grained style modulation (CSM) and fine-
grained wavelet modulation (FWM). These two modules
disentangle style information and frequency components
from different domain conditions, thus suiting the fusion
task and bringing improved fusion results.

3. Our DDIF gets state-of-the-art (SOTA) performance on
the pansharpening task considering two widely used pan-
sharpening datasets, as well as yields competitive perfor-
mance on one benchmark MHIF dataset. Discussions and
ablation studies assess the effectiveness of the proposed
method.

The remaining of the paper is organized as follows. Sect. 2
describes the related works. The proposed methodology is pre-
sented in Sect. 3. A broad experimental analysis is shown in
Sect. 4. Discussions are provided to the readers in Sect. 5. Fi-
nally, conclusions are drawn in Sect. 7.

2. Related Works

This section mainly introduces supervised DL-based and dif-
fusion methods that are mostly related to our work, as well as
mainstream generative tasks and methods related to diffusion
models.

2.1. Supervised Preconditioned Models for Image Fusion

Previous DL-based methods are mainly based on a pre-
conditioned fusion framework. Ma et al [69] first proposed
transformer-based framework for image fusion, in which ex-
plains the importance of transformer’s long distance depen-
dence on image fusion tasks. Tang et al [70] integrated image
matching, fusion and semantic awareness into a unified frame-
work, and gets promising outcomes. While unsupervised meth-
ods have led to significant advancements in recent years, it is
important to note that our work is related to supervised learn-
ing. Thus, in this paper, we mainly focus on supervised meth-
ods. For pansharpening, PNN [17], inspired by a related sin-
gle image super-resolution technique, proposed first a convo-
lutional neural network for pansharpening. To enable the net-
work to handle the high-frequency information, PanNet [18]
was proposed to explicitly inject high-passed information from
the PAN image into the upsampled LRMS image, resulting in
a better performance. Furthermore, DiCNN [38] has been pre-
sented as a details-inject-based CNN, which is powerful in pre-
serving frequency details. Another approach, the so-called Fu-
sionNet [19], implemented an end-to-end residual network, al-
lowing it to explicitly learn high-frequency details.

To deal with the static kernel of conventional convolutional
operators, LAGNet [45] introduced a dynamic kernel based

1https://arxiv.org/abs/2304.04774

on the input. Building on this idea, AKD [44] further ex-
plored the concept of LAGNet and proposed two dynamically
generated branches responsible for spectral and spatial details
extraction, respectively. SpanConv [71] presented an inter-
pretable span strategy, which effectively constructed a kernel
space and reduced the redundancy of the convolution while
maintaining good performance. Besides, PMACNet [72], a
parallel convolutional neural network structure, has been em-
ployed with a pixel-wise attention constraint module and a
novel multireceptive-field attention block. This architecture
successfully addressed the small receptive field issue caused by
CNNs.

Moving on to MHIF, CNN-FUSE [31] learned the subspace
from the low-resolution hyperspectral (LRHS) image via sin-
gular value decomposition and then approximated the high-
resolution hyperspectral (HRHS) image with subspace coef-
ficients. Furthermore, SSRNet [42] proposed three models
for MHIF, including a cross-mode message inserting model
for producing preliminary fused HRSR, a spatial reconstruc-
tion model, and a spectral reconstruction model. Recently,
DHIF [33] analyzed the importance of physical imaging mod-
els for MHIF and introduced a spatio-spectral regularized deep
hyperspectral fusion model.

The aforementioned works conducted deep research on fea-
tures of DL-based methods helping models in generating better
fusion results. However, these DL-based models require fixed
priors and then fuse the image features, which means they are
under the preconditioned framework. In contrast, denoising dif-
fusion models produce a predicted distribution as close as pos-
sible to the posterior distribution in each step of optimization,
breaking the preconditioned learning process.

2.2. Diffusion Models
Diffusion models have recently been proposed for the gen-

eration task, including conditional or unconditional genera-
tion [23, 55, 61], text-to-image translation [58, 73], image
super-resolution [74], image restoration [75, 76], and other
high-level image manipulation tasks [77, 78, 59]. Wherein,
Song et al. [79] introduced first a score-based model that pro-
duces samples via Langevin dynamics using gradients of the
data distribution estimated with score matching. Ho et al. [23]
proposed DDPM from the direction of weighted variational
bound, and their equivalence is proven in [62]. To accelerate the
sampling of DPM, DDIM [64] designed a non-Markov chain
sampling process. In addition, DPM-solver [65] simplified the
solution to an exponentially weighted integral of the neural net-
work by computing the linear part of the ODE and applying
change-of-variable, further accelerating the sampling process.
To free the design of DPM from cumbersome mathematical re-
quirements, EDM [56] decoupled various design components
of the diffusion model and designed a second-order ODE sam-
pler, which further improved the performance of the diffusion
model to reach state-of-the-art performance.

Besides, generative approaches mainly consist of GAN-
based and flow-based models (beyond diffusion models). GAN-
based models [80, 81, 82, 83] generate a sample following a
data distribution using a discriminate model, D, having the role
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of estimating the probability that a sample comes from the train-
ing data rather than the generative model, G. Instead, flow-
based models [84, 85] learn the underlying distribution of data
by transforming a simple input distribution (e.g., Gaussian) into
the target distribution through a series of invertible transforma-
tions. Compared to the two above-mentioned generative mod-
els, diffusion models can generate images with more details and
higher fidelity. The advantages of diffusion models include sta-
ble training, minimal mode collapse, and the ability to train
with only a single mean squared error (MSE) loss. In compari-
son to GAN-based models, which suffer from instability issues
in their adversarial training, and flow-based models, which are
limited in their network performance due to the reversibility re-
quirement, diffusion models are easier to train and design.

Despite being so powerful in the field of image generation,
diffusion models have not received much attention in the field
of MSIF. The most related works are as follows. DDPM-
CD [66] utilized diffusion models for landform change detec-
tion. Firstly, an unconditional diffusion model is trained on a
large dataset, and the features of a specific layer of the diffu-
sion model during the sampling process are used as additional
information input to the segmentation head, producing segmen-
tation results. As a result, DDPM-CD has achieved satisfactory
performance in the field of landform change detection. Similar
to DDPM-CD, Dif-fuse [67] fused red-green-blue (RGB) and
near-infrared images getting clear advances. These works focus
on using deep semantic feature maps of DPM feeding them into
another segmentation or fusion head, which is not straightfor-
ward, also (unnecessary) requiring a two-stage training. These
previous works raise a question that is how and if we can fuse
images from two different domains by exploiting just a unique
diffusion model, training it in an end-to-end manner.

2.3. Motivations
Diffusion models in the MSIF task are mostly based on a

straightforward approach. They exploit an ideal image cor-
rupted by noise as input, i.e., the noised version of the ground-
truth (GT) image. Afterwards, the combination of multi-source
images is fed into the diffusion model as the condition. Ob-
viously, the noised GT can be concatenated with them to fuse
the two domains, which has been proven to be effective in [86].
However, we believe that this condition, just using concatena-
tion, is entangled and will lead to insufficient convergence and
poor results (see Sect. 4 for details). To achieve better results,
we consider conditional style and frequency modulation to dis-
entangle conditions in the denoising diffusion process, thus well
adapting to the fusion task.

About the style modulation, the related style information is
encoded as a condition to help the model control the general
features of objects, such as, shapes and colors, which has been
inspired by the extracting style code proposed in [82]. In the
context of sharpening multispectral and hyperspectral images,
we describe style information as the coarse-grained spectral
changes that are intertwined with low-frequency spatial infor-
mation as shown in Fig. 4-a. The frequency modulation can be
introduced by the added Gaussian noise in the backward pro-
cess of the diffusion model and the domain-related image (e.g.,

Table 1: Some notations used in this work.

Notation Explanation

t The timestep
xt An image at diffusion timestep t
ϵ Gaussian noise
v Training objective defined in Eq. (11)
M The upsampled LRMS
P The PAN image
H The original HRMS
Ĥ The fused HRMS
Fl The l-th layer’s feature map
c The diffusion condition
LL, LH,
HL,HH The wavelet coefficients

Z The scale used for style modulation in CSM
S The shift used for style modulation in CSM
(·)↓l Bilinear downsample with factor l

the PAN image). Based on this, a condition can be disentangled
into the style codes and frequency information. It is feasible
to employ the diffusion model with two conditioning modules
that handle coarse-grained style information and fine-grained
frequency information, respectively. Benefiting from this dis-
entanglement, we can make the diffusion U-Net encoder and
decoder responsible for style and frequency information sepa-
rately, thus easing the learning process. Finally, the combina-
tion of the multi-source images is injected into the final (gener-
ated) fused image.

3. Methodology

This section introduces first some notations that will be used
in the description of the proposed method. Then, we will briefly
review the mechanism of the diffusion denoising model. Sub-
sequently, a detailed introduction to the architecture of the dif-
fusion model and the two conditional disentangled modulation
modules will be shown. Finally, the effects of the proposed
two modules and some discussions about training and sampling
techniques will be provided.

3.1. Notations

Tab. 1 reports all the related notations used in the paper,
focusing on the pansharpening task. From the table, we de-
note the PAN image, the upsampled LRMS image, the original
HRMS image, and the fused HRMS image as P ∈ RH×W×c,
M ∈ RH×W×C , H ∈ RH×W×C , and Ĥ ∈ RH×W×C , respectively,
where, H, W, and C (or c) indicate the image spatial size and
the channel (or spectral) number, respectively.

Considering the MHIF task, P correspondingly represents
the HRMS image, M is the upsampled LRHS image, H is the
original HRHS image, and Ĥ is the fused HRHS image.
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Figure 2: The flowchart of our DDIF. The input is the residual related to the difference between HRMS and LRMS images. A Gaussian noise ϵt =
√

1 − ᾱtϵ is
sampled to be added to the residual. The diffusion U-Net exploiting our effective disentangled modulations (i.e., CSM and FWM) produces the undegraded x0.
Finally, x0 is added to LRMS to get the HRMS image. “wavelet coeffs.” are LLM , LHP, HLP, HHP as presented in Eq. (10), and (·)l is the bilinear downsample
operator by a factor of l.

3.2. A Brief Review of Diffusion Model

Diffusion models can generate a realistic image from a Gaus-
sian distribution by reversing a noise process. The diffusion
model accomplishes its task in two steps, i.e., forward and back-
ward processes, which are illustrated in Fig. 1.

The forward process aims to make the origin image, x0 ∼

pdata(x0), noisy due to a T step Markov chain that gradually
converts it into a Gaussian distribution. The forward step is
defined as:

q(xt |xt−1) = N(xt;
√

1 − βtxt−1, βtI), (1)

where t ∈ [0,T ], βt ∈ (0, 1) is a pre-defined variance, that is
function of the steps, N is a Gaussian distribution with mean,√

1 − βtxt−1, and standard deviation, βtI, and I is the identity
matrix. Through the reparameterization trick, it can get xt as
follows:

q(xt |x0) =
√
ᾱtx0 +

√
1 − ᾱtϵ, (2)

where ϵ ∼ N(0, 1) is the standard Gaussian noise, and ᾱt =∏t
i=0 αi with αt = 1 − βt.
Then, the backward process is related to the denoising of xt

by the following procedure:

pθ(xt−1|xt) = N(xt−1; µθ(xt, t),Σθ(xt, t)), (3)

where θ denotes the learnable model parameters, and µθ(xt, t)
and Σθ(xt, t) are the mean and the standard deviation, respec-
tively, of the Gaussian distribution.

In summary, the forward process degrades the data distribu-
tion into a standard Gaussian distribution. Instead, the back-
ward process, modeled by a neural network, aims to learn how
to remove the degradation generated in the forward process, i.e.,
the denoising task.

The training of a diffusion model, by maximizing its varia-
tional lower bound (VLB), is done exploiting a simple super-
vised loss [23], written as follows:

min
θ

Lsimple = E[∥ϵ − ϵθ(xt, t)∥22]. (4)

Please, note that in Eq. (4), the model prediction of the added
Gaussian noise, ϵθ(xt, t), is used as the training objective, but it
can be substituted by the original input, x0, or the “velocity”, v
(see [57] and the ablation study in Sect. 4 for more information).

After training the model, we can sample data starting from a
standard Gaussian noise, xT ∼ N(0, I), and, according to Eq.
(3), the mean and variance can be computed as follows:

µθ(xt, t) =
1
√
αt

xt −
βt

√
1 − ᾱt

ϵθ(xt, t)
 , (5)

Σθ(xt, t) =
1 − ᾱt−1

1 − ᾱt
βt. (6)

To this aim, the image xt can be sampled from the previous
step. Through T iterative sampling steps, the initial image, x0,
can be obtained.

In the MSIF task, there are usually two (or even more) input
images from different domains. Focusing on pansharpening,
the PAN and LRMS images are from different domains (specif-
ically from different sensors) and the HRMS image is from the
target domain. To guide the diffusion model, we empirically set
the PAN, the LRMS, and the constructed wavelet coefficients
(presented in Sect. 3.5) to conditions denoted as c. Afterwards,
Eqs. (3)-(6) have to be conditioned to c.

3.3. Overall Model Architecture

As shown in Fig. 2, the overall network architecture of our
DDIF consists of an encoder, decoder, and two middle self-
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attention modules, which resemble a U-Net architecture of con-
volutional layers. There are two downsampling operations be-
tween the two layers of the encoder to reduce the spatial resolu-
tion and increase the number of channels. Similarly, there is an
upsampling operation by a factor of 2 between the two layers
of the decoder to increase the spatial resolution and reduce the
number of channels.

The encoder and decoder have the same number of layers.
The encoder takes in input, not only the encoded features from
the previous layer, but also the modulated coarse-grained style
conditions (see Sect. 3.4). The features of the encoder at the
corresponding layer will be concatenated with the input fea-
tures of the decoder at the corresponding layer and the addi-
tional wavelet features (see Sect. 3.5) along the channel dimen-
sion, feeding them into the decoder. The related output can be
modeled as the added Gaussian noise, ϵ, the original image, x0,
or the “velocity”, v, which will be discussed in Sect. 3.7.

3.4. Coarse-grained Style Modulation (CSM)
As mentioned above, we consider disentangling the style and

the detailed information in the MS and PAN images proposing
a CSM as shown in Fig. 3-a. More specifically, the MS and
PAN images are concatenated along the channel dimension and
are considered conditional guidance. We add this conditional
guidance into CSM, then feeding the output feature into each
layer of the encoder to modulate the encoder feature, Fl. It is
worth noting that we avoid encoding a too much detailed spatial
information, but reconstructing it in the decoder. To this end,
the encoder only needs to consider the overall style information
without the detailed spatial information. It is also meaningful
for the encoder to progressively decrease the spatial size of the
feature map while increasing the number of channels. By incor-
porating style information into the encoder, the model can focus
on style-related aspects without being influenced by irrelevant
spatial information.

For CSM, it is feasible to generate the corresponding style
feature by outputting the scale, Z, and the shift, S, based on the
concatenation of the PAN and the MS images. Thus, we have:

Z,S = Split(MLP([P,M])),

Fl = Fl · (I + Z) + S,
(7)

where “Split” splits the feature into two parts with equal size
along the channel dimension. The MLP is implemented with
several convolutional layers, where a SiLU [87] activation and
a GroupNorm [88] are added in-between. More specifically,
the scale, Z ∈ Rh×w×d, and the shift, S ∈ Rh×w×d, are produced
by an MLP. Besides, Fl ∈ Rh×w×d is the CSM output, linearly
modulated by Z and S, where h,w, d are determined by the size
of the feature outputted from the previous encoder layer.

3.5. Fine-grained Wavelet Modulation (FWM)
The encoder is responsible for encoding style information

into a high dimensional, low spatial resolution feature by treat-
ing the LRMS and PAN images as conditions. The decoder
(whose objective is to decode high-dimensional, low spatial res-
olution features from the encoder as faithfully as possible) uses
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Figure 3: Two conditioning modulations that have been proposed: (a) coarse-
grained style modulation (CSM), (b) fine-grained wavelet modulation (FWM).
Q, K,V are query, key, and value defined in Eq. 10. For the other notations,
please refer to Tab. 1.

the features encoded from the encoder to support style infor-
mation and frequency components disentanglement. However,
relying solely on the features outputted by the encoder is not
enough for the decoder. We found that introducing appropriate
high-frequency spatial components during the decoding stages
is instead advantageous to produce images with richer details.
An intuitive approach is to concatenate the high-frequency de-
tailed components extracted from the PAN image with the fea-
tures outputted by the encoder along the channel dimension,
then feeding the concatenated features into the decoder for de-
coding. Considering that previous traditional methods of-
ten exploit wavelet information [89, 90, 91] to complement
additional frequency details, we can decompose images into
wavelets and incorporate them into the diffusion model.

Based on this cue, we apply wavelet decomposition on the
PAN image to extract the horizontal, vertical, and diagonal
high-frequency components and to use a cross-attention mech-
anism in the decoder to introduce these high-frequency de-
tails into the decoding process. However, considering only
high-frequency details could be inadequate, thus, we also in-
troduced the low-frequency main component of the LRMS,
which is also extracted using wavelet decomposition. The
high-frequency and low-frequency components are concate-
nated along the channel dimension, then passing them through
the fine-grained attention module on the U-Net skip connection.
We refer to this process as FWM, see Fig. 3-b. The advantage of
this modulation is that it separates the low-frequency and high-
frequency components, with PAN providing the high-frequency
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details and LRMS providing the low-frequency spatial compo-
nent, thus making the learning process easier for the decoder.

To decompose both the LRMS and PAN images into four
components, we used the DB1 wavelet decomposition [92],
which includes one main (low-frequency) component and three
details components in the horizontal, vertical, and diagonal di-
rections. Thus, we have:

LLM, LHM,HLM,HHM = DB1(M),
LLP, LHP,HLP,HHP = DB1(P),

(8)

where LL ∈ R H
2 ×

W
2 ×d denotes the main (low-frequency) com-

ponent, LH ∈ R H
2 ×

W
2 ×d, HL ∈ R H

2 ×
W
2 ×d, and HH ∈ R H

2 ×
W
2 ×d

indicate the details components in the horizontal, vertical, and
diagonal directions, respectively.

Afterward, the attention operation can be used in FWM for
modulation. However, the memory complexity of the attention
is O(n2), where n = HW. When approaching the head of the
decoder, the output image size increases and it can become un-
acceptable when dealing with large images due to the quadratic
complexity with respect to the image size. Hence, we adopt
a linear-memory cross-attention mechanism to incorporate the
frequency components into the decoder. The linear-memory at-
tention mechanism is as follows:

Q = Reshape(Softmax(Q, 1)),
K = Reshape(Softmax(K, 2)),
V = Reshape(V),
A = K ⊙ V⊤,
O = A⊤ ⊙ Q,

(9)

where the “Reshape” operation is employed to flatten the spa-
tial dimensions of Q, K, and V, into a single dimension, i.e.,
RH×W×d → RHW×d, and Softmax(·, i) represents the Softmax
operation along the i-th dimension. As a result, we reduce the
memory complexity to O

(
d2

)
, where d is much smaller than n.

This significantly reduces memory usage while ensuring the ef-
fective introduction of the conditions. In the above equations,
Q is the query tensor, and K and V are the tensors obtained by
concatenating the LLM, LHP, HLP and the HHP components
along the channel dimension. These latter terms are projected
by several convolutional layers as follows:

Q =WQ ⊗ F + bQ,

[K,V] =WK,V ⊗ [LLM, LHP, HLP, HHP] + bK,V ,
(10)

where ⊗ is the convolution operation, W∗ is the weight, b∗ is the
bias, and F is the feature from the corresponding encoder layer.
This linear-memory cross-attention in the proposed FWM can
be used to learn a global response related to the frequency in-
formation. However, it exhibits some limitations in adequately
capturing spatial information. Recognizing that the vanilla self-
attention mechanism has enough representational capability to
recover spatial details and offers the advantage of a quadratic
computational overload, we chose to harness the linear-memory
cross-attention mechanism along the spectral dimension. In
doing so, we introduced frequency components extracted by
wavelet coefficients to modulate features from the correspond-
ing encoder layer, employing a cross-attention approach.

Input Feature Scale Shift CSM Feature

(a) Features by CSM modulation

Encoder Feature Feature Feature FWM Feature

(b) Features by FWM modulation

Figure 4: Feature maps of the two proposed modulations.

3.6. The Effects of CSM and FWM

CSM generates the scale, Z, and the shift, S, for modula-
tion. The scale term controls the amplitude of the encoder
feature, Fl, and the shift directly injects the condition into the
feature. As depicted in Fig. 4-a, the input feature has low con-
trast (buildings, forest, and lands have similar feature intensity).
Moreover, the CSM feature has higher contrast than the input
feature under the control of the scale, as well as the color and
shape (e.g., buildings) share some similarities with the shift.
Exploiting this strategy, the style information is decomposed
into the scale and shifted to coarse-grained modulating the en-
coder feature.

FWM uses wavelet coefficients extracted from the MS and
PAN images. The MS image contributes to the low-frequency
coefficient, LLM, and the PAN image contributes to the high-
frequency coefficients, LHP, HLP, HHP. As shown in Fig. 4-
b, the input encoder feature gets meaningful contrastive regions
due to CSM, but still lacking fine-grain frequency information.
Thanks to the help of the wavelet coefficients, the modulated
FWM feature has higher spatial fidelity.

In summary, the style and frequency information are well
disentangled with the proposed two modulation modules and
separately handled in the encoder and decoder. This can solve
the preconditioned fusion problem of the previously developed
DL-based methods.

3.7. Boost the Performance Further

Residual Learning. Because of CNNs tend to learn
low-frequency information, they lack in representing high-
frequency information. Previous works attempted to address
this issue by filtering the input with high-pass filters and di-
rectly incorporating the related details as input [18] by design-
ing specialized high-frequency injection modules or supervis-
ing the process in the frequency domain [93]. Here, we do
not aim to design complex high-frequency modules that signif-
icantly increase the number of parameters in the network, nor
do we want to perform complex operations such as computing
loss in the frequency domain.
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Algorithm 1: Training stage of our method.
Data: LRMS image, M, PAN image, P, GT image, x0,

diffusion model, xθ, with its parameters, θ,
timestep, t, and denoised objective, x̂0.

Result: Optimized diffusion model x∗θ.
1 c← P,M,DB1(P,M); // Modulation

2 while until convergence do
3 t ← Uniform(0,T );
4 ϵ ∼ N(0, I);
5 xt ←

√
ᾱt(x0 − M) +

√
1 − ᾱtϵ;

6 x̂0 ← xθ(xt, c) + M; // Residual learning

7 θ ← ∇θLsimple(x̂0, x0). // Eq. (12)
8 end

Inspired by FusionNet [19], we change the input of the dif-
fusion model during the training process from HRMS to the
difference between HMRS and LRMS, i.e., HRMS-LRMS, and
then adding Gaussian noise as in Eq. (2). We find that using
noisy residuals as input, it converges faster and produces better
results than when HRMS is used as input. Regarding to the use
of residual learning, the related ablation experiments are shown
in Sect. 4.8.2.
Training Objective There are three choices for the training ob-
jective of the diffusion model2, i.e., ϵ, x0, and v [57]. Note that
v is a combination of ϵ and x0 defined as follows:

v =
√
ᾱtϵ −

√
1 − ᾱtx0. (11)

In the previous diffusion works [23, 55], the training objective
has often been selected as the added Gaussian noise, ϵ, which
is suitable for large-scale datasets. However, datasets for MSIF
are much smaller than the ones related to natural images. We
will show, in Sect. 3.7, that for small datasets, predicting x0 is a
better choice than ϵ and v.

Thus, considering x0 as goal, we have that the loss is:

Lsimple = E
[
∥x0 − xθ(xt, t, c)∥22

]
. (12)

Fast Iterative Sampling Regarding to the backward process
(sampling process), the diffusion model needs to iterate hun-
dreds or thousands of times to generate an image, leading to
a slow generation speed. To solve this problem, we convert
the original DDPM SDE sampler [23] of the original backward
sampling process into the DDIM ODE sampler [64], which al-
lows for fast sampling in a non-Markov chain form as:

xt−1 =
√
ᾱt−1xθ(xt, t, c)+

√
1 − ᾱt−1 − σ

2
t ϵθ(xt, t, c)+σ2

t ϵ, (13)

where σt is an established function of t, xθ(xt, t, c) is the model
prediction of x0, and

ϵθ(xt, t, c) =
xt −

√
ᾱtxθ(xt, t, c)
√

1 − ᾱt
. (14)

2We do not discuss the score function [62] ∇xt log p(xt) = −
ϵθ(xt)
√

1 − ᾱt
, since

it has a similar form as ϵ.

Algorithm 2: Inference stage of our method.
Data: LRMS image, M, PAN image, P, trained

diffusion model, xθ∗ , with its parameters, θ∗,
sampled image, xt, at timestep t.

Result: Sampled image x0.
1 t ← T ;
2 c← P,M,DB1(P,M); // Modulation

3 while t > 0 do
4 xt−1 ← DDIM Sample(xt, c); // Eq. (13)
5 t ← t − 1.
6 end
7 x0 ← x0 + M.

From Eq. (13), the denoised xt−1 can be a combination of the
predicted xθ, the inferred noise, ϵθ, based on Eq. (14), and the
new noise, ϵ ∼ N(0, I). Therefore, we can accelerate sampling
by τ = [τ1, τ2, · · · , τdim(τ)]. More specifically, τ is a subset of
[1, 2, · · · ,T ], and we can make a fast sampling after using τ:

xθ(xτi , τi, c) :=
xτi −

√
1 − ᾱτiϵθ(xτi , τi, c)
√
ᾱτi

. (15)

According to the above sampling equations, the sampling speed
can be improved. The overall training and sampling stages are
presented in Algs. 1 and 2. The existing efficient ODE solvers
can still be employed to accelerate our DDIF, such as the DPM
solver [65], PNDM solver [94], and Heun solver [56]. However,
we opted for the straightforward DDIM approach to accelerate
the sampling process, ensuring both simplicity and excellent
sharpening performance.

4. Experiments

In this section, we will provide a comprehensive overview
of the implementation details, including the methodologies and
the technical details. Furthermore, we will delve into the
datasets, aiming to highlight their characteristics and relevance
to this work. Additionally, we will present the benchmarks em-
ployed to evaluate the performance of our approach on two im-
age fusion tasks, i.e., pansharpening, and multispectral and hy-
perspectral image fusion (MHIF). Finally, the main results and
ablation studies will be provided to quantitatively illustrate the
effectiveness of the proposed method.

4.1. Implementation Details
The proposed DDIF method is implemented in PyTorch

1.13.1 and Python 3.10.9 using AdamW [95] optimizer with
a learning rate of 1 × 10−4 to minimize Lsimple on a Linux oper-
ating system with two NVIDIA GeForce RTX4090 GPUs. The
initialization of convolution modules is based on a Kaiming
initialization [96]. To obtain wavelet coefficients, we use the
DB1 wavelets decomposition method decomposing the image
into four wavelet coefficients. The chosen diffusion denoising
model is a cosine schedule [55] for αt:

ᾱt =
f (t)
f (0)
, f (t) = cos

(
t/T + α
1 + α

·
π

2

)
, (16)
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where we set α to 8 × 10−3. The model does not learn the vari-
ance term Σθ introduced in [55]. The total training diffusion
timestep is set to 500 for both pansharpening and MHIF exper-
iments. Additionally, the exponential moving average (EMA)
ratio is set to 0.995. Moreover, the total training iterations for
the WorldView-3 (WV3), GaoFen-2 (GF2), and CAVE datasets
are set to 100k, 100k, and 300k iterations, respectively. Ac-
cording to Eqs. (14) and (15), we set the number of sampling
steps to 25 for the pansharpening task, and 100 for the MHIF
task, rather than 1000 or 2000 DDPM sampling steps as in [97]
and [68]. Regarding our diffusion model configuration, we em-
ployed 4 layers each for both the encoder and decoder. The
initial number of channels in the encoder layer is set to 32. Fol-
lowing each encoder/decoder layer, the number of channels is
adjusted by multiplication or division using the factors 1, 2, 2,
and 4, which correspond to the sequence of 4 encoder/decoder
layers.

4.2. Datasets
To show the effectiveness of our DDIF, we conduct experi-

ments over a standard pansharpening data-collection (i.e., Pan-
Collection dataset3), which includes WV3 (8 bands) and GF2
(4 bands) data. To evaluate the performance, we perform the
reduced-resolution and full-resolution experiments to compute
the reference and non-reference metrics, respectively. Note that
the same training and data augmentation strategy are applied to
Pancollection for a fair comparison.

For the MHIF, we choose the CAVE indoor dataset4 to fur-
ther evaluate our DDIF. The CAVE dataset contains 31 hyper-
spectral images (HSIs) captured under controlled illumination
with a spatial size of 512 × 512 and 31 spectral bands ranging
from 400nm to 700nm at 10 nm steps. The multispectral im-
ages (consisting of RGB bands) can be generated by using HSIs
and the spectral response functions of the Nikon D700 camera,
which has a spatial size of 512 × 512 × 3. 20 images are ran-
domly selected for training and validation, and the remaining
11 images are used for testing. The test set is shown in Fig. 5.
Afterward, we cropped 20 selected HSIs and MSIs into 3920
overlapping patches for training and validation with the size of
64 × 64. A Gaussian blurred kernel (size 3 × 3) with a standard
deviation of 0.5 is used to get blurred HSIs that are decimated
by a factor of 4 to produce the LRHS images. The cropped
MSIs are used as HRMS and the original cropped HSIs are used
as GT. Finally, the pairs are divided into training (80%) and val-
idation (20%). To verify the performance of each method on
hyperspectral real remote sensing data, we utilize the GF5-GF1
public dataset [98]. The GF5-GF1 dataset contains HSIs and
MSIs, where the spatial size of MSIs is twice that of HSIs (i.e.,
1161×1120×150 for HSIs and 2332×2258×4 for MSIs). We
randomly cropped HSIs and MSIs into patches of size 40 × 40
and 80 × 80 with an overlap of 10 and 20, respectively, to gen-
erate real data. Based on the same patching scheme, further-
more, we can get the HRHSI (80×80) and HRMSI (160×160)

3https://liangjiandeng.github.io/PanCollection.html
4https://www.cs.columbia.edu/CAVE/databases/

multispectral/

patches for simulated data. We applied the provided modu-
lated transfer functions (MTFs) to the patched HRHSI and the
patched HRMSI following Wald’s protocol. To get the final
HRMSI, we adjusted the simulated HRMSI by using the mod-
ified M = (M − B · R)/A (as proposed in [98]), where A and
B are the correlated weight tensors, and R is the spectral re-
sponse function. Finally, we obtained 150 simulated LRHSI
and HRMSI patches with sizes 40 × 40 × 150 and 80 × 80 × 4,
respectively, with the original LRHSI serving as ground-truth.
We divided the 150 patches into train/validation/test sets using
the following percentages 80%/10%/10%.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5: Testing images from the CAVE dataset: (a) Balloons, (b) Compact
disc (CD), (c) Jelly beans, (d) Chart and stuffed toy, (e) Clay, (f) Fake and real
beers, (g) Fake and real lemon slices, (g) Fake and real tomatoes, (i) Feathers.
(j) Flowers, (k) Hairs. The true color representation is used to depict the im-
ages.

4.3. Benchmark

To assess the performance of our DDIF, we compare it
with previous state-of-the-art pansharpening methods (on the
WV3 and GF2 datasets) and MHIF approaches (on the CAVE
dataset).

For the pansharpening task, we choose some representa-
tive model-based methods as optimized Brovey transform with
haze correction method (BT-H) [99], band-dependent spatial-
detail with physical constraints approach (BDSD-PC) [100],
generalized Laplacian pyramid (GLP) with modulation transfer
function-matched filters and a full scale (FS) regression-based
injection model (MTF-GLP-FS) [101] and a set of some com-
petitive DL-based methods including PNN [17], DiCNN [38],
MSDCNN [39], MMNet [102], FusionNet [19], CTINN [103],
LAGConv [45], and DCFNet [40]. A recently proposed
diffusion-based pansharpening method, PanDiff [68], is also
compared. We compare them with our DDIF under the bench-
mark in [16]. Note that we do not compare our approach with
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other GAN-based models as we found that almost all the GAN-
based models are designed for unsupervised pansharpening. A
comparison with them leads to unfairness, but we still discuss
on pros and cons in Sect. 5.5.

For the MHIF task, we also chose model-based and DL-
based methods for comparisons, where model-based meth-
ods include the coupled sparse tensor factorization (CSTF)
method [30], the fast fusion of multi-band images based
on solving a Sylvester equation approach (FUSE) [104], the
modulation transfer function-matched generalized Laplacian
pyramid hyper-sharpening (MTF-GLP-HS) [101], the itera-
tive regularization method based on tensor subspace repre-
sentation method (IR-TenSR) [29], the low tensor-train rank-
based (LTTR) method [27] and the subspace-based low ten-
sor multi-rank regularization method (LTMR) [105]. For
real MHIF data, we chose some other competitive methods in-
cluding the coupled nonnegative matrix factorization unmix-
ing method (CNMF) [106], the subspace-based regularization
method (Hysure) [107], and a component substitution method,
i.e., the Gram-Schmidt adaptive (GSA) [108]. Regarding
to DL-based methods, we perform a comparison with CNN-
FUSE [31], SSRNet [42], ResTFNet [41], FusFormer [32],
HSRNet [109], and the recent state-of-the-art DHIF [33] tech-
nique. To ensure a fair comparison, all the DL-based methods
are retrained using identical input pairs and trained until con-
vergence.

4.4. Quality Metrics and Runtime
For reduced-resolution datasets in pansharpening, we use the

spectral angle mapper (SAM) [110], the relative dimensionless
global error in synthesis (ERGAS) [111], the universal image
quality index (Q2n) [112], and the spatial correlation coefficient
(SCC) [113] as metrics. The ideal values for Q2n and SCC
are 1, and for SAM and ERGAS are 0. Since these metrics
require the GT, they are considered reference metrics and are
used in the reduced-resolution test case. For the full-resolution
datasets, since there is no GT available, we use non-reference
metrics to validate the accuracy of our DDIF. These metrics in-
clude Dλ, Ds, and hybrid quality with no reference (HQNR) [1].
The HQNR index has an ideal value of 1, while Dλ and Ds have
ideal values of 0.

For the MHIF dataset, we use another two commonly-
used metrics for the evaluation, i.e., the peak signal-to-noise
ratio (PSNR) and the structural similarity index measure
(SSIM) [114]. The optimal values for PSNR and SSIM are +∞
and 1, respectively.

The runtime of traditional pansharpening methods is evalu-
ated using an Intel 12900k CPU on a reduced-resolution im-
age from the WorldView-3 dataset, while DL-based methods
are tested on an NVIDIA 3090 GPU. Likewise, the runtimes of
the MHIF algorithms are assessed on the CAVE dataset using
the same hardware devices.

4.5. Results on WorldView-3 Dataset
In this section, we conduct experiments to evaluate our DDIF

on the WV3 dataset assessing performance on 20 testing im-
ages from the PanCollection dataset. We compared our method

with three traditional methods and some recent state-of-the-art
DL-based methods. The reduced-resolution and full-resolution
results are reported in Tab. 2. To clearly demonstrate the ad-
vantages of our method, we present the visual comparisons in
Fig. 6, proposing some close-ups to better show some details.
Additionally, the error maps are shown accordingly.

On average, it can be seen that DL-based methods have sig-
nificantly better performance than traditional methods. Among
DL-based methods, our approach achieves the best perfor-
mance on the reduced-resolution dataset and competitive per-
formance on the full-resolution dataset. Our DDIF can reach
the values of 2.73 (SAM) and 2.02 (ERGAS) on the reduced
dataset, which outperforms all the compared DL-based tech-
niques. The error maps also indicate that the image fused by
DDIF is closer to the GT (as it has darker blue colors). The
full-resolution images obtained by DDIF on the WV3 dataset
can achieve state-of-the-art performance. Fig. 9 shows the full-
resolution outcomes, as well as their HQNR maps, where a
HQNR score closer to 1 indicates better fusion quality for the
full-resolution image. The obtained results indicate that our
DDIF can fuse HRMS images reducing spatial and spectral dis-
tortions, thus demonstrating that it has a good generalization at
full-resolution.

4.6. Results on GaoFen-2 Dataset

In this section, we test the performance of the compared ap-
proaches on 20 GaoFen-2 test samples from the PanCollection
dataset. As shown in Tab. 3, our DDIF outperforms the bench-
mark for almost all the reference and the non-reference met-
rics for reduced-resolution and full-resolution datasets. More
specifically, we observe an improvement of ≈ 18%/17%/0.5%
in the SAM/ERGAS/Q4 metrics when comparing with the sec-
ond best method, i.e., LAGConv [45]. Compared with the
third best method, i.e., DCFNet [40], our DDIF improves ≈
28%/29%/1.3% on the SAM/ERGAS/Q4 metrics. The high
performance on the full-resolution dataset reflects the one at re-
duced resolution. Besides, Fig. 7 depicts some close-ups in the
rectangular boxes and the error maps among the compared DL-
based methods. The colors and edge details of the objects in
the figure are closer to the GT. Moreover, the error maps in-
dicate that the residual between the outcome of DDIF and the
GT is minimal since the color of the map is the darkest blue
one. In terms of runtime, our method achieves state-of-the-art
performance while maintaining favorable execution times com-
pared to other DL-based methods. Since DDIF is an iterative
approach, an increase in runtime is expected. However, our
method significantly reduces the sampling time by employing
Alg. 2 for accelerated sampling, enhancing its practical utility.
In contrast, PanDiff [68] as a diffusion model, utilizing 2000
steps of DDPM sampling, incurs substantial time consumption
for sampling.

4.7. Results on QuickBird Dataset

We also conducted experiments on the QB dataset assessing
the performance both at reduced-resolution and full-resolution.
Similarly, the reference and non-reference metrics are obtained
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Figure 6: Visual comparisons with pansharpening methods on the WV3 dataset. The first and third rows show the RGB bands of the fused images. The second and
fourth rows show the error maps between the GT and fused images. Some close-ups are depicted in red and yellow rectangles. The numerical errors are displayed
on the color bar, with darker colors indicating closer proximity to the ground-truth (GT) (i.e., better fusion performance).

Table 2: Results on the WV3 reduced-resolution and full-resolution datasets. Some conventional methods (the first four rows) and DL-based approaches are
compared. The best DL-based results are in red and the second best results are in blue.

method Reduced Full Runtime(s)SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

BDSD-PC [100] 5.4675±1.7185 4.6549±1.4667 0.8117±0.1063 0.9049±0.0419 0.0625±0.0235 0.0730±0.0356 0.8698±0.0531 0.059
MTF-GLP-FS [101] 5.3233±1.6548 4.6452±1.4441 0.8177±0.1014 0.8984±0.0466 0.0206±0.0082 0.0630±0.0284 0.9180±0.0346 0.023
BT-H [99] 4.8985±1.3028 4.5150±1.3315 0.8182±0.1019 0.9240±0.0243 0.0574±0.0232 0.0810±0.0374 0.8670±0.0540 0.321

PNN [17] 3.6798±0.7625 2.6819±0.6475 0.8929±0.0923 0.9761±0.0075 0.0213±0.0080 0.0428±0.0147 0.9369±0.0212 0.042
DiCNN [38] 3.5929±0.7623 2.6733±0.6627 0.9004±0.0871 0.9763±0.0072 0.0362±0.0111 0.0462±0.0175 0.9195±0.0258 0.083
MSDCNN [39] 3.7773±0.8032 2.7608±0.6884 0.8900±0.0900 0.9741±0.0076 0.0230±0.0091 0.0467±0.0199 0.9316±0.0271 0.112
FusionNet [19] 3.3252±0.6978 2.4666±0.6446 0.9044±0.0904 0.9807±0.0069 0.0239±0.0090 0.0364±0.0137 0.9406±0.0197 0.065
CTINN [103] 3.2523±0.6436 2.3936±0.5194 0.9056±0.0840 0.9826±0.0046 0.0550±0.0288 0.0679±0.0312 0.8815±0.0488 1.329
LAGConv [45] 3.1042±0.5585 2.2999±0.6128 0.9098±0.0907 0.9838±0.0068 0.0368±0.0148 0.0418±0.0152 0.9230±0.0247 1.381
MMNet [102] 3.0844±0.6398 2.3428±0.6260 0.9155±0.0855 0.9829±0.0056 0.0540±0.0232 0.0336±0.0115 0.9143±0.0281 0.348
DCFNet [40] 3.0264±0.7397 2.1588±0.4563 0.9051±0.0881 0.9861±0.0038 0.0781±0.0812 0.0508±0.0342 0.8771±0.1005 0.548

PanDiff [68] 3.2968±0.6010 2.4667±0.5837 0.8980±0.0880 0.9800±0.0063 0.0273±0.0123 0.0542±0.0264 0.9203±0.0360 261.410
DDIF(ours) 2.7386±0.5080 2.0165±0.4508 0.9202±0.0824 0.9882±0.0031 0.0258±0.0187 0.0231±0.0075 0.9517±0.0173 2.602

Ideal value 0 0 1 1 0 0 1 0

on 20 testing samples, randomly selected from the QB dataset.
Tab. 4 reports the quality indexes. It is clear that our DDIF
method significantly outperforms all the compared approaches

at reduced resolution, leading to a substantial improvement in
SAM scores, ranging from 4.538 to 4.349. Also, our DDIF can
get competitive performance for full-resolution test cases. To
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Figure 7: Visual comparisons on the GF2 dataset. The first and third rows show the RGB bands of the fused images. The second and fourth rows show the error
maps between the GT and fused images. Some close-ups are depicted in red and yellow rectangles. The numerical errors are displayed on the color bar, with darker
colors indicating closer proximity to the ground-truth (GT) (i.e., better fusion performance).

Table 3: Result on the GF2 reduced-resolution and full-resolution datasets. Some conventional methods (the first four rows) and the DL-based approaches are
compared. The best results are in red and the second best results are in blue.

method Reduced Full
SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

BDSD-PC [100] 1.7110±0.3210 1.7025±0.4056 0.9932±0.0308 0.9448±0.0166 0.0759±0.0301 0.1548±0.0280 0.7812±0.0409
MTF-GLP-FS [101] 1.6757±0.3457 1.6023±0.3545 0.8914±0.0256 0.9390±0.0197 0.0336±0.0129 0.1404±0.0277 0.8309±0.0334
BT-H [99] 1.6810±0.3168 1.5524±0.3642 0.9089±0.0292 0.9508±0.0150 0.0602±0.0252 0.1313±0.0193 0.8165±0.0305

PNN [17] 1.0477±0.2264 1.0572±0.2355 0.9604±0.0100 0.9772±0.0054 0.0367±0.0291 0.0943±0.0224 0.8726±0.0373
DiCNN [38] 1.0525±0.2310 1.0812±0.2510 0.9594±0.0101 0.9771±0.0058 0.0413±0.0128 0.0992±0.0131 0.8636±0.0165
MSDCNN [39] 1.0472±0.2210 1.0413±0.2309 0.9612±0.0108 0.9782±0.0050 0.0269±0.0131 0.0730±0.0093 0.9020±0.0128
FusionNet [19] 0.9735±0.2117 0.9878±0.2222 0.9641±0.0093 0.9806±0.0049 0.0400±0.0126 0.1013±0.0134 0.8628±0.0184
CTINN [103] 0.8251±0.1386 0.6995±0.1068 0.9772±0.0117 0.9803±0.0015 0.0586±0.0260 0.1096±0.0149 0.8381±0.0237
LAGConv [45] 0.7859±0.1478 0.6869±0.1125 0.9804±0.0085 0.9906±0.0019 0.0324±0.0130 0.0792±0.0136 0.8910±0.0204
MMNet [102] 0.9929±0.1411 0.8117±0.1185 0.9690±0.0204 0.9859±0.0024 0.0428±0.0300 0.1033±0.0129 0.8583±0.0269
DCFNet [40] 0.8896±0.1577 0.8061±0.1369 0.9727±0.0100 0.9853±0.0024 0.0234±0.0116 0.0659±0.0096 0.9122±0.0119

PanDiff [68] 0.8881±0.1197 0.7461±0.1032 0.9792±0.0097 0.9887±0.0020 0.0265±0.0195 0.0729±0.0103 0.9025±0.0209
DDIF(ours) 0.6408±0.1203 0.5668±0.1010 0.9855±0.0078 0.9859±0.0035 0.0201±0.0109 0.0408±0.0103 0.9398±0.0137

Ideal value 0 0 1 1 0 0 1

better visualize the performance gap, Fig. 8 depicts the fused
images and the error maps.
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maps between the GT and fused images. Some close-ups are depicted in red and yellow rectangles. The numerical errors are displayed on the color bar, with darker
colors indicating closer proximity to the ground-truth (GT) (i.e., better fusion performance).

Table 4: Quantitative results on the QuickBird reduced-resolution and full-resolution datasets. Some conventional methods (the first three rows) and DL-based
methods are compared. The best results are in red and the second best results are in blue.

method Reduced Full
SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

BDSD-PC [100] 8.2620±2.0497 7.5420±0.8138 0.8323±0.1013 0.9030±0.0181 0.1975±0.0334 0.1636±0.0483 0.6722±0.0577
MTF-GLP-FS [101] 8.1131±1.9553 7.5102±0.7926 0.8296±0.0905 0.8998±0.0196 0.0489±0.0149 0.1383±0.0238 0.8199±0.0340
BT-H [99] 7.1943±1.5523 7.4008±0.8378 0.8326±0.0880 0.9156±0.0152 0.2300±0.0718 0.1648±0.0167 0.6434±0.0645

PNN [17] 5.2054±0.9625 4.4722±0.3734 0.9180±0.0938 0.9711±0.0123 0.0569±0.0112 0.0624±0.0239 0.8844±0.0304
DiCNN [38] 5.3795±1.0266 5.1354±0.4876 0.9042±0.0942 0.9621±0.0133 0.0920±0.0143 0.1067±0.0210 0.8114±0.0310
MSDCNN [39] 5.1471±0.9342 4.3828±0.3400 0.9188±0.0966 0.9689±0.0121 0.0602±0.0150 0.0667±0.0289 0.8774±0.0388
FusionNet [19] 4.9226±0.9077 4.1594±0.3212 0.9252±0.0902 0.9755±0.0104 0.0586±0.0189 0.0522±0.0088 0.8922±0.0219
CTINN [103] 4.6583±0.7755 3.6969±0.2888 0.9320±0.0072 0.9829±0.0072 0.1738±0.0332 0.0731±0.0237 0.7663±0.0432
LAGConv [45] 4.5473±0.8296 3.8259±0.4196 0.9335±0.0878 0.9807±0.0091 0.0844±0.0238 0.0676±0.0136 0.8536±0.0178
MMNet [102] 4.5568±0.7285 3.6669±0.3036 0.9337±0.0941 0.9829±0.0070 0.0890±0.0512 0.0972±0.0382 0.8225±0.0319
DCFNet [40] 4.5383±0.7397 3.8315±0.2915 0.9325±0.0903 0.9741±0.0101 0.0454±0.0147 0.1239±0.0269 0.8360±0.0158

PanDiff [68] 4.5754±0.7359 3.7422±0.3099 0.9345±0.0902 0.9818±0.0902 0.0587±0.0223 0.0642±0.0252 0.8813±0.0417
DDIF(ours) 4.3496±0.7313 3.5223±0.2703 0.9375±0.0904 0.9845±0.0069 0.0583±0.0126 0.0492±0.0103 0.8954±0.0206

Ideal value 0 0 1 1 0 0 1

4.8. Ablation Study
In this section, ablation studies are conducted on CSM,

FWM, and the other performance-boosting techniques to ver-

ify their effectiveness.
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Figure 9: Fused WV3 full-resolution data and their corresponding HQNR map. The high value in the HQNR map means better full-resolution fusion performance.

4.8.1. Disentangled Modulation
We propose two disentangled conditional modulation mod-

ules, dubbed CSM and FWM, which are respectively responsi-
ble for coarse-grain style condition modulation and fine-grain
frequency modulation. Without using them, one intuitive way
is to concatenate conditions (i.e., the LRMS and PAN images)
with the noisy input along the channel dimension. We ablate
the proposed two modulations by training the diffusion U-Net
in the following forms:

1. Only concatenating conditions and input together as pro-
posed in [86, 74].

2. Only using CSM.
3. Conducting two modulations (i.e., CSM and FWM) in the

diffusion U-Net.

Each of the above-mentioned models has been trained until
convergence for a fair comparison. The performance on the
WV3 reduced-resolution test set is reported in Tab. 5. With the
addition of the style modulation and the wavelet modulation,
the fusion performance exhibits a monotonically increase. It
should be noted that without these two modulations, our DDIF
degrades to DDPM [23] just adding the residual learning, thus
indicating that directly applying DDPM to the fusion task has
poor performance.

Table 5: Ablation study on the two modulation modules. Best results are in red.
Style Transfer
Modulation

Wavelet
Modulation SAM(±std) ERGAS(±std) Q8(±std) SCC(±std)

✗ ✗ 3.2851±0.6828 2.5501±0.6141 0.8981±0.0904 0.9796±0.0067
✓ ✗ 3.1418±0.5789 2.3527±0.5116 0.8971±0.0940 0.9837±0.0047
✓ ✓ 2.7386±0.5080 2.0165±0.4508 0.9202±0.0824 0.9882±0.0031

Table 6: Ablation study on using residual learning. Best results are in red.
Residual
Learning SAM(±std) ERGAS(±std) Q8(±std) SCC(±std)

✗ 3.2397±0.4546 3.2096±1.003 0.9061±0.0837 0.9729±0.0113
✓ 2.7386±0.5080 2.0165±0.4508 0.9202±0.0824 0.9882±0.0031

Table 7: Ablation study on training objectives of the diffusion model. Best
results are in red.

Objective SAM(±std) ERGAS(±std) Q8(±std) SCC(±std)

ϵ 3.7702±0.6397 2.7954±0.6516 0.8388±0.1181 0.9794±0.0064
v 3.4853±0.6080 2.6624±0.5912 0.8715±0.1025 0.9808±0.0052
x0 2.7386±0.5080 2.0165±0.4508 0.9202±0.0824 0.9882±0.0031

4.8.2. Residual Learning
To verify the effectiveness of the residual learning technique,

we return the input to the noisy GT as xt. Then, we retrain the

14



0 20k 40k 60k 80k 100k
(a)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

1e 2
Dif-PAN w/o res
Dif-PAN w/ res

0 20k 40k 60k 80k 100k
Iteration 

 (b)

2.8

3.0

3.2

3.4

3.6

3.8

SA
M

Dif-PAN w/o res
Dif-PAN w/ res

Figure 10: Changes in loss (a) and SAM metric (b) on the WV3 dataset of our
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Figure 11: The denoised xt and the related SAM metrics over different
timesteps for different training objectives focusing on pansharpening. (a), (b),
and (c) represent the training objectives x0, v, and ϵ, respectively.

diffusion model until the model converges calculating its per-
formance on the WV3 dataset as shown in Tab. 6. With residual
learning, the diffusion model can get fused images closer to the
GT. Besides, the loss convergence is faster, as shown in Fig. 10.
One hypothesis is that the residual distribution is simpler than
the GT distribution, thus learning in a more efficient manner. A
direct way to express the complexity of a distribution is the en-

tropy. We computed the pixel entropy of the GT and the resid-
ual image (i.e., HRMS − LRMS) and we found that the entropy
of the GT is 6.498 bits-per-pixel (bpp) and the one of the resid-
ual image is only 4.461 bpp, which indicates that the residual
image distribution is simpler. The entropy, HI , is defined as
follows:

HI =
1
C

C∑
c=0

∑
p∈Ic

p log2(p), (17)

where C is the number of channels, Ic denotes the channel im-
age, and p is the value of a pixel.

4.8.3. Training Objectives
The training objectives of the model can be ϵ, x0, or v, where

ϵ indicates that the model needs to predict the added Gaussian
noise, x0 denotes that the model predicts the original (noise-
less) image from the noisy image, and v reflects the fact that
the model predicts the weighted sum of ϵ and x0. We separately
treat these three training objectives, ensuring the convergence
of the diffusion model in all three cases on the WV3 dataset.
Their performance is reported in Tab. 7. As we can see, pre-
dicting x0 gets the best performance. The backward process of
the three objectives is illustrated in Fig. 11. Starting from the
same xT , the x0 objective denoises much faster than the other
two options. We guess that for small-scale datasets, x0 is more
straightforward than ϵ and v since the sample density is more
concentrated, but, for large-scale datasets, predicting ϵ and v
may force the network to learn detailed denoising trajectory,
which is useful to generate images with high-level conditions,
such as, classification labels [116], texts [58], and bounding
boxes [117].

5. Discussion

In this section, we will analyze the generalization ability, and
then extend our DDIF to the MHIF task. Finally, we will com-
pare the proposed approach with traditional deep regressive and
GAN-based models.

5.1. Generalization Ability on WorldView-2 Dataset

Thanks to the powerful fitting ability of neural networks, they
often perform well on data sharing the same domain. How-
ever, once test data are shifted to a different domain (never seen
by the network during the training), the network usually per-
forms poorly. To assess the generalization ability, we evaluate
our DDIF model, trained on the WV3 dataset, in a zero-shot
manner5 on WorldView-2 data. We also compare our method
with other DL-based methods as reported in Tab. 8. The pro-
posed method achieves competitive results, thus demonstrating
its good generalization. These results are in agreement with
some related works that apply the diffusion model in a zero-shot
manner to tasks as image inverse problem [76], image classifi-
cation [118], and semantic segmentation [119].

5“Zero-shot” means that we directly use the trained model to test on another
dataset without any fine-tuning.
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Figure 12: The first and third rows show the natural color results on “chart and stuffed toy”. Some close-ups are depicted in the red and yellow rectangles. The
second and fourth rows show the error maps between the GT and the fused images. The darker blue error maps indicate better performance.

Table 8: Generalization ability of DL-based methods. The best results are in red and the second best results are in blue.

method Reduced Full
SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

PNN [17] 7.1158±1.6812 5.6152±0.9431 0.7619±0.0928 0.8782±0.0175 0.1484±0.0957 0.0771±0.0169 0.7869±0.0959
DiCNN [38] 6.9216±0.7898 6.2507±0.5745 0.7205±0.0746 0.8552±0.0289 0.1412±0.0661 0.1023±0.0195 0.7700±0.0505
MSDCNN [39] 6.0064±0.6377 4.7438±0.4939 0.8241±0.0799 0.8972±0.0109 0.0589±0.0421 0.0290±0.0138 0.9143±0.0516
FusionNet [19] 6.4257±0.8602 5.1363±0.5151 0.7961±0.0737 0.8746±0.0134 0.0519±0.0292 0.0559±0.0146 0.8948±0.0187
CTINN [103] 6.4103±0.5953 4.6435±0.3792 0.8172±0.0873 0.9147±0.0102 0.1722±0.0373 0.0375±0.0065 0.7967±0.0360
LAGConv [45] 6.9545±0.4739 5.3262±0.3185 0.8054±0.0837 0.9125±0.0101 0.1302±0.0856 0.0547±0.0159 0.8229±0.0884
MMNet [102] 6.6109±0.3209 5.2213±0.2133 0.8143±0.0790 0.9136±0.0201 0.0897±0.0340 0.0688±0.0209 0.8476±0.0569
DCFNet [40] 5.6194±0.6039 4.4887±0.3764 0.8292±0.0815 0.9154±0.0083 0.0649±0.0357 0.0700±0.0219 0.8690±0.0233

DDIF(ours) 5.3827±0.5737 4.6712±0.4155 0.8217±0.0777 0.8993±0.0129 0.0313±0.0376 0.0312±0.0111 0.9388±0.0453

Ideal value 0 0 1 1 0 0 1

5.2. Extension to the MHIF Task

We additionally conduct experiments on the CAVE dataset.
The results and comparisons with other methods are provided
in Tab. 9. It is worth noting that, compared to the state-of-the-
art MHIF method, i.e., DHIF [33], our method achieves a 0.1dB

higher PSNR and a higher Q2n, as well as competitive perfor-
mance on the other metrics. Fusion images and error maps are
depicted in Fig. 12. To analyze the spectral accuracy, the spec-
tral signatures, obtained by extracting two different pixels in
two testing images, are compared in Fig. 13 showing that our
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Table 9: Quantitative results on the CAVE (×4) dataset. Some conventional methods and DL-based approaches are compared. The best results are in red and the
second best results are in blue.

method PSNR(± std) SSIM(± std) Q2n(± std) SAM(± std) ERGAS(± std) Runtime(s)

CSTF-FUS [30] 34.4632±4.2806 0.8662±0.0747 0.6659±0.1586 14.3683±5.3020 8.2885±5.2848 12.766
IR-TenSR [29] 35.6081±3.4461 0.9451±0.0267 0.7774±0.1228 12.2950±4.6825 5.8969±3.0455 14.073
LTTR [27] 35.8505±3.4883 0.9562±0.0288 0.8404±0.0979 6.9895±2.5542 5.9904±2.9211 241.207
LTMR [105] 36.5434±3.2995 0.9631±0.0208 0.8416±0.1031 6.7105±2.1934 5.3868±2.5286 174.807
MTF-GLP-HS [115] 37.6920±3.8528 0.9725±0.0158 0.8716±0.0847 5.3281±1.9119 4.5749±2.6605 12.766
UTV [28] 38.6153±4.0640 0.9410±0.0434 0.7752±0.1416 8.6488±3.3764 4.5189±2.8173 613.535

CNN-FUSE [31] 42.4281±3.1994 0.9782±0.0079 0.9419±0.0240 5.7599±2.1509 2.8420±1.7590 0.481
ResTFNet [41] 45.5842±5.4647 0.9939±0.0055 0.9581±0.0315 2.7643±0.6988 2.3134±2.4377 0.485
SSRNet [42] 48.6196±3.9182 0.9954±0.0024 0.9598±0.0309 2.5415±0.8369 1.6358±1.2191 0.594
Fusformer [32] 49.9831±8.0965 0.9943±0.0114 0.9624±0.0362 2.2033±0.8510 2.5337±5.3052 17.143
HSRNet [109] 50.3805±3.3802 0.9970±0.0015 0.9666±0.0290 2.2272±0.6575 1.2002±0.7506 0.690
DHIF [33] 51.0721±4.1648 0.9973±0.0017 0.9695±0.0267 2.0080±0.6304 1.2216±0.9653 0.837

DDIF(ours) 51.1758±4.6148 0.9971±0.0026 0.9737±0.0106 2.0952±0.6471 1.2996±1.2822 10.706

Ideal value ∞ 1 1 0 0 0
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Figure 13: Spectral vectors of the compared approaches: (a) spectral vectors
in “feather” located at position (400, 200), (b) spectral vectors in “chart and
stuffed toy” located at position (400, 200). The horizontal and vertical axes
represent the band number and the pixel values, respectively.

DDIF has a more accurate spectral consistency.
To better illustrate the superiority of our DDIF on real hy-

perspectral data, we conducted fusion experiments on the GF5-
GF1 dataset. As shown in Tab. 10, our approach achieves state-
of-the-art performance on reduced-resolution data, also demon-
strating excellent results at full-resolution.

We test the runtime of various methods on the CAVE dataset.
Although our method exhibits a slightly longer runtime com-

pared to other DL-based methods, considering that DDIF is
an iterative approach, the proposed method’s runtime remains
within an acceptable range. It is worth noting that the run-
time of FusFormer [32] is significantly higher than that of other
methods. This is attributed to FusFormer’s inability to directly
operate on a 512× 512 image. It requires the image to be parti-
tioned into smaller patches, and the network performs fusion on
each patch before assembling them back together, resulting in
an extended runtime. Our designed network does not encounter
this issue.

5.3. Comparisons with Other Unsupervised Methods
Unsupervised methods are directly trained at full-resolution,

thus getting good performance when full-resolution metrics
are considered. In contrast, our DDIF only accesses reduced-
resolution data during its training. This train-test resolution
mismatch poses challenges for supervised methods. We se-
lected a recent state-of-the-art unsupervised regressive method,
LDPNet [54], and a representative GAN-based method, Zer-
GAN [51], for comparison. Tab. 11 shows the comparisons
with LDPNet and ZerGAN at full-resolution. It can be seen
that, even without accessing full-resolution data during the
training, our DDIF can still generalize well and obtain high
performance on full-resolution data in comparison with state-
of-the-art unsupervised methods.

5.4. Differences with Regressive Models
Regressive models can be trained in both the supervised and

unsupervised manner. The mainstream works, such as [19, 40],
focus on designing powerful architectures or neural opera-
tors [45] and then training the model in a supervised manner.
Other works [120] chose to bound the regressive mapping by
adding a regularized loss on fused outcomes training in an un-
supervised way. The proposed DDIF is still a supervised train-
ing model, which benefits from the noiseless supervised sig-
nal from the GT rather than more complex regularized terms.
However, our method can also be transformed into an approach
that relies upon unsupervised training by adding constraints on
the training loss, Lsimple (as done by most of the unsupervised
works).
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Table 10: Result on the GF5-GF1 reduced-resolution and full-resolution datasets. Some conventional methods (the first six rows) and the DL-based approaches are
compared. The best results are in red and the second best results are in blue.

method Simulated Real
PSNR(± std) SSIM(± std) Q2n(± std) SAM(± std) ERGAS(± std) Dλ(± std) Ds(± std) HQNR(± std)

CNMF [106] 44.2525±3.8884 0.9823±0.0122 0.7420±0.1767 0.8509±0.2133 2.7609±0.7674 0.0447±0.0830 0.0592±0.0500 0.8979±0.0842
Hysure [107] 42.5184±4.5175 0.9728±0.0137 0.7323±0.1464 1.3046±0.4059 3.6770±1.3169 0.0414±0.0760 0.0741±0.1046 0.8865±0.1169
GSA [108] 44.9948±5.3369 0.9795±0.0119 0.7544±0.1313 1.2003±0.3322 2.8978±0.9557 0.0526±0.1029 0.0674±0.0615 0.8818±0.1006
LTTR [27] 47.1451±2.9068 0.9897±0.0028 0.8442±0.0983 2.1593±0.2858 5.8080±2.7321 0.0989±0.1231 0.0465±0.0233 0.8596±0.1063
LTMR [105] 45.5163±2.4245 0.9898±0.0030 0.8494±0.1079 1.5950±0.3435 2.7199±1.2766 0.0567±0.1029 0.0361±0.0177 0.9098±0.1048
MTF-GLP-HS [115] 45.5954±5.8205 0.9837±0.0120 0.7772±0.1462 0.8561±0.2646 2.8475±1.1541 0.0303±0.0482 0.0747±0.1054 0.8966±0.1063

ResTFNet [41] 46.9763±2.1124 0.9934±0.0022 0.8504±0.1000 0.9060±0.1301 3.3234±3.1232 0.0423±0.0782 0.0880±0.0587 0.8742±0.0994
SSRNet [42] 45.4872±2.6866 0.9880±0.0047 0.8500±0.0942 1.0389±0.2101 4.8631±4.1605 0.1169±0.1401 0.0538±0.0190 0.8357±0.1341
Fusformer [32] 49.7373±4.6446 0.9914±0.0031 0.8908±0.0762 0.6382±0.1552 4.7612±0.5921 0.0302±0.0558 0.0401±0.0250 0.9312±0.0636
HSRNet [109] 49.8109±3.0477 0.9964±0.0016 0.8883±0.0806 0.6925±0.1386 0.9006±0.4513 0.0377±0.0734 0.0473±0.0201 0.9170±0.0748
DHIF [33] 55.3538±4.2007 0.9982±0.0009 0.9285±0.0758 0.3088±0.0622 0.8852±0.3882 0.0312±0.0574 0.0335±0.0215 0.9365±0.0624

DDIF(ours) 56.4022±3.8194 0.9984±0.0007 0.9382±0.0638 0.2726±0.0489 0.8449±0.5053 0.0327±0.0571 0.0350±0.0213 0.9333±0.0573

Ideal value +∞ 1 1 0 0 0 0 1

Table 11: Quantitative comparisons with recent state-of-the-art unsupervised
methods on the WV3 full-resolution dataset.

method Dλ Ds HQNR

LDPNet [54] 0.0235±0.0085 0.0364±0.0192 0.9411±0.0192
ZerGAN [51] 0.0221±0.0092 0.0210±0.0082 0.9574±0.0170
DDIF(ours) 0.0258±0.0187 0.0231±0.0075 0.9517±0.0173

5.5. Differences with Unsupervised GAN-based Models
GAN-based pansharpening models can be seen as an exten-

sion of an unsupervised regressive model by adding one or mul-
tiple discriminators and a GAN loss6 [50, 51]. Benefiting from
additional supervised discriminator signals, those models can
get more realistic images. However, GAN-based models suffer
from training instability and need careful tuning because of the
adversarial training. Our DDIF does not use adversarial train-
ing exploiting a corrupt-reconstruct supervised training, which
avoids unstable training but still produces high-quality fused
images.
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7. Conclusions

In this paper, we proposed a denoising diffusion model, the
so-called DDIF, for two MSIF tasks. Our motivation is that su-
pervised DL-based methods suffer from degraded learning abil-
ity under the preconditioned framework and the conditions are
entangled, which is not suitable for the fusion task. Hence, we
designed two novel feature modulation modules, i.e., CSM and

6Note that GAN-based models can also be trained in a supervised manner,
but, unfortunately, we did not find these kinds of works in the related literature.

FWM, to leverage on the learning ability by using DPM. Exper-
iments conducted on widely used pansharpening datasets and
an additional MHIF set of data demonstrated that the proposed
approach can outperform (both qualitatively and quantitatively)
recent state-of-the-art image fusion approaches. Furthermore,
we provided to the readers some discussions on the proposed
method, even showing ablation studies to verify the effective-
ness of the proposed technique.
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