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Abstract— Spiking neural networks (SNNs) are attracting
widespread interest due to their biological plausibility, energy
efficiency, and powerful spatiotemporal information represen-
tation ability. Given the critical role of attention mechanisms
in enhancing neural network performance, the integration of
SNNs and attention mechanisms exhibits tremendous poten-
tial to deliver energy-efficient and high-performance computing
paradigms. In this article, we present a novel temporal-channel
joint attention mechanism for SNNs, referred to as TCJA-SNN.
The proposed TCJA-SNN framework can effectively assess the
significance of spike sequence from both spatial and temporal
dimensions. More specifically, our essential technical contribution
lies on: 1) we employ the squeeze operation to compress the
spike stream into an average matrix. Then, we leverage two
local attention mechanisms based on efficient 1-D convolutions
to facilitate comprehensive feature extraction at the temporal
and channel levels independently and 2) we introduce the cross-
convolutional fusion (CCF) layer as a novel approach to model the
interdependencies between the temporal and channel scopes. This
layer effectively breaks the independence of these two dimensions
and enables the interaction between features. Experimental
results demonstrate that the proposed TCJA-SNN outperforms
the state-of-the-art (SOTA) on all standard static and neuromor-
phic datasets, including Fashion-MNIST, CIFAR10, CIFAR100,
CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Further-
more, we effectively apply the TCJA-SNN framework to image
generation tasks by leveraging a variation autoencoder. To the
best of our knowledge, this study is the first instance where
the SNN-attention mechanism has been employed for high-level
classification and low-level generation tasks. Our implementation
codes are available at https://github.com/ridgerchu/TCJA.

Index Terms— Attention mechanism, neuromorphic datasets,
spatiotemporal information, spiking neural networks (SNNs).

I. INTRODUCTION

SPIKING neural networks (SNNs) have emerged as a
promising research area, offering lower energy consump-

tion and superior robustness compared to conventional arti-
ficial neural networks (ANNs) [1], [2]. These characteristics
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make SNNs highly promising for temporal data processing
and power-critical applications [1], [3]. In recent years, sig-
nificant progress has been made by incorporating backpropa-
gation into SNNs [3], [4], [5], [6], [7], [8], [9], [10], which
allows the integration of various ANN modules into SNN
architectures, including batch normalization blocks [11] and
residual blocks [12]. By leveraging these ANN-based methods,
it becomes possible to train large-scale SNNs while preserving
the energy efficiency associated with SNN’s binary spiking
nature.

Despite significant progress, SNNs have yet to fully exploit
the superior representational capability of deep learning, pri-
marily due to their unique training mode, which struggles to
model complex channel-temporal relationships effectively. To
address this limitation, Zheng et al. [11] introduced a batch
normalization method for the temporal dimension, overcom-
ing issues of gradient vanishing and threshold-input balance.
On the other hand, Wu et al. [13] proposed a method named
NeuNorm to address the channel-wise challenges. NeuNorm
includes an auxiliary neuron that adjusts the stimulus strength
generated by the preceding layer, enhancing performance
while mimicking the activity of the retina and nearby cells for
added bio-plausibility. However, existing methods handle tem-
poral and channel information separately, leading to limited
joint information extraction. Given that SNNs reuse network
parameters at each time step, there exists untapped potential
for recalibration at both the temporal and channel dimensions.
Especially, TA-SNN proposed by Yao et al. [14].

Previous studies in ANNs [15], [16] have often utilized the
attention mechanism as a means to address the challenges
posed by multidimensional dynamic problems. The attention
mechanism, inspired by human cognitive processes, enables
the selective focus on relevant information while disregarding
irrelevant data. This approach has shown promise in the realm
of SNNs and merits further exploration [14]. For instance,
in the domain of neuroscience, an attention-based spike-
timing-dependent plasticity (STDP) SNN was proposed by
Bernert and Yvert [17] to solve the spike-sorting problem.
Furthermore, Yao et al. [14] incorporated a channel attention
block into the temporal-wise input of an SNN, as depicted
in Fig. 1(a), enabling the assessment of frame significance
during training and the exclusion of irrelevant frames during
inference. Despite employing attention solely in the temporal
dimension, this attention mechanism significantly improves the
network’s performance.
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Fig. 1. How our TCJA differs from existing temporal-wise attention [14], which estimates the saliency of each time step by squeeze-and-excitation module.
T denotes the time step, C denotes the channel, and H, W represents the spatial resolution. By utilizing two separate 1-D convolutional layers and the CCF
operation, our TCJA establishes the association between the time step and the channel. (a) Temporal-wise attention. (b) TCJA.

In this article, we involve both temporal and channel atten-
tion mechanisms in SNNs, which is implemented by efficient
1-D convolution. Fig. 1(b) shows the whole structure, we argue
that this cooperative mechanism can enhance the discrimina-
tion of the learned features and can make the temporal-channel
learning in SNNs easier. The main contribution of this work
can be summarized as follows.

1) We introduce a plug-and-play block into SNNs by
considering the temporal and channel attentions cooper-
atively, which model temporal and channel information
in the same phase, achieving better adaptability and
bio-interpretability. To the best of our knowledge, this
is the first attempt to incorporate the temporal-channel
attention mechanism into the most extensively used
model, leaky-integrate-and-fire (LIF)-based SNNs.

2) A cross-convolutional fusion (CCF) operation with a
cross-receptive field is proposed to make use of the
associated information. It not only uses the benefit of
convolution to minimize parameters but also integrates
features from both temporal and channel dimensions in
an efficient fashion.

3) Experimental results show that the temporal-channel
joint attention mechanism for SNN (TCJA-SNN) out-
performs previous methods on static and neuromorphic
datasets for classification tasks. It also performs well in
generation tasks.

II. RELATED WORKS AND MOTIVATION

A. Training Techniques for SNNs

In recent years, the direct application of various ANN
algorithms for training deep SNNs, including gradient-descent-
based methods, has gained traction. However, the nondifferen-
tiability of spikes poses a significant challenge. The Heaviside
function, commonly used to trigger spikes, has a derivative that
is zero everywhere except at the origin, rendering gradient-
based learning infeasible. To overcome this obstacle, the

commonly employed solutions are ANN-to-SNN [18], [19],
[20] and the surrogate gradient descent method [21], [22], [23],
[24], [25], [26], [27], [28].

During the forward pass, the Heaviside function is retained,
while a surrogate function replaces it during the backward
pass. One simple choice for the surrogate function is the
Spike-Operator [29], which exhibits a gradient resembling
a shifted ReLU function. In our work, we go beyond the
conventional surrogate gradient method and introduce two
additional surrogate functions: the ATan surrogate function and
the triangle-like surrogate function designed by Fang et al. [30]
and Bellec et al. [31]. These surrogates possess the capability
to activate a specific range of samples, making them partic-
ularly suitable for the training of deep SNNs. By expanding
the repertoire of surrogate functions, we aim to enhance the
training process and improve the performance of deep SNNs.

B. Attention Mechanism in Convolutional Neural Networks

In the realm of ANNs, the squeeze and excitation (SE)
block, introduced by Hu et al. [15], has proven to be a
highly effective module for enhancing representation. The SE
block can be seamlessly incorporated into a network, requiring
only a minimal increase in parameters to recalibrate channel
information. Employing squeezing and fully connecting oper-
ations allows the network to learn a trainable scale factor for
each channel. This recalibration process significantly improves
the discriminative power of individual channels. Recently,
Yao et al. [14] extended the application of the SE block to
SNNs by formulating a temporal-wise attention mechanism.
This innovative approach enables SNNs to identify critical
temporal frames of interest without being adversely affected
by noise or interference. By incorporating temporal-wise atten-
tion, the proposed technique achieves state-of-the-art(SOTA)
performance across various datasets. This accomplishment
serves as compelling evidence for the immense potential of
attention mechanisms within SNNs. The utilization of SE
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Fig. 2. Correlation between proximity time steps and channels. The top row is the input frame selected from the DVS128 Gesture dataset. Each figure in the
nine-pattern grid of the bottom row denotes a channel output from the first 2-D convolutional layer. It is clear that a significant correlation exists in channels
with varying time steps, motivating us to merge the temporal and channel information.

blocks and the introduction of temporal-wise attention rep-
resent significant advancements in the field of SNNs. These
techniques not only enhance the representation capability of
SNNs, but also offer insights into effectively leveraging atten-
tion mechanisms for improved performance. In the following
sections, we aim to explore and further leverage these atten-
tion mechanisms to improve the performance of SNNs and
unlock their full potential in complex temporal data processing
tasks.

C. Motivation

Based on the aforementioned analysis, the utilization of
a temporal-wise attention mechanism in SNNs has exhibited
substantial progress in effectively processing time-related data
streams. Moreover, it has been observed in both biological
neural networks [32] and ANNs [15] that recalibrating channel
features within convolutional layers hold considerable poten-
tial for enhancing performance. Nevertheless, the existing
SNNs-based works only process the data with either temporal
or channel dimensions, thereby constraining the capacity for
joint feature extraction. To illustrate the relationship between
temporal steps and channel dimensions, we provide a visual
representation. This is achieved by displaying the input frame
alongside several adjacent channel outputs, which originate
from the initial 2-D convolutional layer, as demonstrated
in Fig. 2. As the circles indicate, a similar firing pattern
can be distinguished from the surrounding time steps and
channels. To fully use this associated information, we pro-
pose the temporal-channel joint attention (TCJA) module,
a novel approach for modeling temporal and channel-wise
frame correlations. Furthermore, considering the inevitable
increases in the model parameters caused by the attention
mechanism, we attempt to adopt the 1-D convolution operation
to gain a reasonable tradeoff between model performance and
parameters. Furthermore, existing SNN attention mechanisms
primarily prioritize classification tasks, neglecting the needs
of generation tasks. Our goal is to introduce an attention
mechanism that can proficiently handle both classification and
generation tasks, thereby establishing a universal attention
mechanism for SNNs.

III. METHODOLOGY

A. Leaky Integrate and Fire Model

Various spiking neuron models have been proposed to
simulate the functioning of biological neurons [33], [34],
and among them, the LIF model [35] achieves a commend-
able balance between simplicity and biological plausibility.
The membrane potential dynamics of an LIF neuron can be
described as [13]

τ
dV (t)

dt
= −(V (t) − Vreset) + I (t) (1)

where τ denotes a time constant, V (t) represents the mem-
brane potential of the neuron at time t , and I (t) represents the
input from the presynaptic neurons. For better computational
tractability, the LIF model can be described as an explicitly
iterative version [1]

V n
t = Hn

t−1 +
1
τ

(
In

t−1 −
(
Hn

t−1 − V reset
))

Sn
t = 2

(
V n

t − V threshold
)

Hn
t = V n

t ·
(
1 − Sn

t

) (2)

V n
t represents the membrane potential of neurons within the

nth layer at time t . τ is a time constant, S is the spiking tensor
with binary value, I denotes the input from the previous layer,
2(·) denotes the Heaviside step function, and H represents
the reset process after spiking.

As a mainstream neuron model, LIF-based SNN models can
be trained directly using surrogate gradient methods [24] to
attain SOTA performance [14], [30], [36]. Moreover, the LIF
model is well-suited to common machine-learning frameworks
because it allows forward and backward propagation along
spatial and temporal dimensions. In our method, the parame-
ters of the LIF model are set as follows: τ = 2, V reset = 0,
and V threshold = 1.

B. Temporal-Channel Joint Attention

As mentioned above, we contend that the frame at the
current time step exhibits a significant correlation with its
neighboring frames in both the channel and temporal dimen-
sions. This correlation opens up the possibility of employing
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Fig. 3. Growth curve of parameters between the FC layer and the TCJA
layer when channel size C = 64.

a mechanism to establish a connection between these two
dimensions. Initially, we employed a fully connected (FC)
layer to establish the correlation between the temporal and
channel information, as it provides the most direct and promi-
nent connection between these dimensions. However, as the
number of channels and time steps increases, the number of
parameters grows rapidly with a ratio of T 2

× C2, as illus-
trated in Fig. 3. Our subsequent attempt involved utilizing a
2-D convolutional layer for building this attention mechanism.
Nevertheless, this approach encountered a limitation due to
the fixed kernel size, which restricts the receptive field to
a confined local area. In conventional CNNs, augmenting
the number of layers can expand the receptive field [37],
[38]. However, within the context of attention mechanisms,
the feasibility of layer stacking, analogous to convolutional
networks, is constrained, thereby limiting the receptive field
when employing 2-D convolutions. For this reason, it is nec-
essary to decrease the number of parameters while increasing
the receptive field. In Section IV-G5, we provide a detailed
theoretical analysis of the receptive field.

To effectively incorporate both temporal and channel
attention dimensions while minimizing parameter usage and
maximizing the receptive field, we present a novel attention
mechanism termed TCJA. This attention mechanism is dis-
tinguished by its global cross-receptive field and its ability
to achieve effective results with relatively fewer parameters,
specifically T 2

+ C2. Fig. 4 shows the overall structure of the
proposed TCJA, and we will introduce its key components
in detail in the following. In Section III-B1, we utilize the
squeezing operation on the input frame. Next, we introduce the
temporal-wise local attention (TLA) mechanism and channel-
wise local attention (CLA) mechanism in Sections III-B2
and III-B3, respectively. At last, we introduce the CCF mech-
anism to conjointly learn the information of temporal and
channel in Section III-B4.

1) Average Matrix by Squeezing: To efficiently capture the
temporal and channel correlations between frames, we first
perform the squeeze step on the spatial feature map of the
input frame stream X ∈ RT ×H×W×C , where C denotes the
channel size, and T denotes the time step. The squeeze step
calculates an average matrix Z ∈ RC×T and each element

Z(c,t) of the average matrix Z as

Z(c,t) =
1

H × W

H∑
i=1

W∑
j=1

X (c,t)
i, j (3)

where X (c,t) is the input frame of the cth channel at time step t .
2) Temporal-Wise Local Attention: Following the squeeze

operation, we propose the TLA mechanism for establishing
temporal-wise relationships among frames. We argue that
the frame in a specific time step interacts substantially with
the frames in its adjacent positions. Therefore, we adopt a
1-D convolution operation to model the local correspondence
in the temporal dimension, as shown in Fig. 4. In detail,
to capture the correlation of input frames at the temporal
level, we perform C-channel 1-D convolution on each row of
the average matrix Z , and then accumulate the feature maps
obtained by convolving different rows of the average matrix
Z . The whole TLA process can be described as

Ti, j =

C∑
n=1

KT −1∑
m=0

W m
(n,i)Z(n, j+m). (4)

Here, KT (KT < T ) denotes the size of the convolution kernel,
which indicates the number of time steps considered for the
convolution operation. The parameter W m

(n,i) is a learnable
parameter that represents the mth parameter of the i th channel
when performing a 1-D convolution operation with C channels
on the nth row of the input tensor Z . T ∈ RC×T is the attention
score matrix after the TLA mechanism.

3) Channel-Wise Local Attention: As aforementioned, the
frame-to-frame saliency score should not only take into
account the temporal dimension but also take into considera-
tion the information from adjacent frames along the channel
dimension. To construct the correlation of different frames
with their neighbors channel-wise, we propose the CLA mech-
anism. Similarly, as shown in Fig. 4, we perform T -channel
1-D convolution on each column of the matrix Z , and then
sum the convolution results of each row. This process can be
described as

Ci, j =

T∑
n=1

KC −1∑
m=0

Em
(n, j)Z(i+m,n) (5)

where KC (KC < C) represents the size of the convolution
kernel, and Em

(n,i) is a learnable parameter, representing the
mth parameter of the i th channel when performing T -channel
1-D convolution on the nth column of Z . C ∈ RC×T is the
attention score matrix after CLA mechanism.

To maintain dimensional consistency between the input and
output, a “same padding” technique is employed in both the
TLA and CLA mechanisms. This padding strategy ensures that
the output dimension matches the input dimension by adding
an appropriate number of zeros to the input data. Specifically,
this technique involves padding the input array with zeros on
both sides, where the number of zeros added is determined
based on the kernel size and the stride.

4) Cross-Convolutional Fusion: After TLA and CLA oper-
ations, we get the temporal (TLA matrix T ) and channel (CLA
matrix C) saliency scores of the input frame and its adjacent
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Fig. 4. Framework of SNN with the TCJA module. In SNNs, information is transmitted in the form of spike sequences, encompassing both temporal and
spatial dimensions. In temporal-wise, the spiking neuron with a threshold feed-forward in membrane potential (V ) and spike (S) as the (2), and backpropagation
with the surrogate function. Spatial-wise, data flows between layers as ANN. The TCJA module operates by initially compressing information along both
temporal and spatial dimensions, then applying TLA and CLA to establish the relationship in both temporal and channel dimensions and blend them by CCF
layer.

frames, respectively. Next, to learn the correlation between
temporal and channel frames in tandem, we propose a cross-
domain information fusion mechanism, that is, the CCF layer.
The goal of CCF is to calculate a fusion information matrix
F , and F(⟩, |) is used to measure the potential correlation
between the i th channel of the j th input temporal frame
and other frames. Specifically, the joint relationship between
frames can be obtained by performing an element-wise mul-
tiplication of T and C as follows:

Fi, j = σ
(
Ti, j · Ci, j

)
= σ

(
C∑

n=1

KT −1∑
m=0

W m
(n,i)Z(n, j+m) ·

T∑
n=1

KC −1∑
m=0

Em
(n, j)Z(i+m,n)

)
(6)

where σ represents the Sigmoid function. Fig. 5 is provided to
enhance the understanding of the entire computational process.

C. Training Framework

We integrate the TCJA module into the existing bench-
mark SNNs and propose the TCJA-SNN. Since the process
of neuron firing is nondifferentiable, we utilize the derived
ATan surrogate function σ ′(x) = (α/(2(1 + ((π/2)αx)2)))

and the derived triangle-like surrogate function ϵ′(x) =

(1/γ 2)max(0, γ − |x − 1|) for backpropagation, which is

proposed by Fang et al. [30] and Bellec et al. [31], respec-
tively. This latter function is particularly applied in the TCJA-
TET-SNN, in alignment with the default surrogate function
specification for temporal efficient training (TET)-based archi-
tectures. In our method, the spike mean-square-error (SMSE)
[21], [30] is chosen as the loss function, which can be
expressed as

L =
1
T

T −1∑
t=0

Lt =
1
T

T −1∑
t=0

1
E

E−1∑
i=0

(
st,i − gt,i

)2 (7)

where T denotes the simulation time step, E is the number of
labels, s represents the network output, and g represents the
one-hot encoded target label. We also employ the TET [36]
loss, which can be represented as

L =
1
T

·

T∑
t=1

LCE
[
s(t), g(t)

]
(8)

where T is the total simulation time, LCE denotes the cross-
entropy loss, s is the network output, and g represents the
target label. The cross-entropy loss here can be represented
by

LCE(p, y) = −

M∑
c=1

yo,c log
(

po,c
)

(9)
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Fig. 5. Illustration of the proposed TCJA. We give an average matrix Z ∈ R6×5, and the goal of TCJA is to calculate a fusion matrix F integrating temporal
and channel information. For instance, for a specific element in F : F3,2, its calculation pipeline is as follows: 1) calculate T3,2 through TLA mechanism [(4)];
2) utilize CLA mechanism [(5)] to calculate C3,2, and the calculation results are shown in the black dotted box in the figure; and 3) adopt CCF mechanism [(6)]
to jointly learn temporal and channel information to obtain F3,2. In addition, we can also find that after the CCF mechanism, F3,2 integrates the information
of the elements in the cross receptive field (colored areas in F ) as the anchor point, which indicates the cross-convolutional fusion.

where M is the number of classes, yo,c is a binary indicator
(0 or 1) if class label c is the correct classification for obser-
vation o, and po,c is the predicted probability of observation
o being of class c.

To estimate the classification accuracy, we define the pre-
dicted label lp as the index of the neuron with the highest
firing rate lp = maxi (1/T )

∑T −1
t=0 st,i . Since the TCJA module

simply utilizes the 1-D convolutional layer and Sigmoid func-
tion, it can be effortlessly introduced into the current network
architecture as a plug-and-play module without adjusting to
backpropagation.

IV. EXPERIMENTS

We evaluate the classification performance of TCJA-SNN
on both neuromorphic datasets (CIFAR10-DVS, N-Caltech
101, and DVS128 Gesture) and static datasets (Fashion-
MNIST, CIFAR10, and CIFAR100). Note that all neuromor-
phic datasets are collected from the event sensor. To verify the
effectiveness of the proposed method, we integrate the TCJA
module into several architectures [30], [36] with competitive
performance to see if the integrated architecture can generate
significant improvement.

A. Dataset

1) Dataset Introduction: We have conducted experiments
on both event-stream and static datasets for object classifica-
tion. The summaries of the datasets involved in the experiment
are listed below.

1) CIFAR10-DVS: The CIFAR10-DVS [39] dataset is an
adapted event-driven version from the popular static
dataset CIFAR10. This dataset converts 10 000 frame-
based images of ten classes into event streams with the
dynamic vision sensor. Since the CIFAR10-DVS dataset
does not divide training and testing sets, we split the
dataset into 9k training images and 1k test images and
reduced the spatial resolution from 128 × 128 to 48 ×

48 as [36], [40], [41], and [42].

2) N-Caltech 101: The N-Caltech 101 [43] dataset is also
converted from the original version of Caltech 101 [44]
with a slight change in object classes to avoid confusion.
The N-Caltech 101 consists of 100 object classes plus
one background class. We apply the 9:1 train-test split
as CIFAR10-DVS.

3) DVS128 Gesture: The DVS128 Gesture [45] dataset is
an event-stream dataset composed of 11 kinds of hand
gestures from 29 subjects under three different illumi-
nation conditions, directly captured with the DVS128
camera. In this article, we employ all 11 gesture cate-
gories for classification.

4) Fashion-MNIST: The Fashion-MNIST [46] is a tiny
but demanding static dataset designed to serve as a
straight replacement for the original MNIST dataset for
more complicated visual patterns. The Fashion-MNIST
dataset contains 70 000 grayscale images of ten kinds of
fashion products, all in a 28 × 28 size.

5) CIFAR10/100: The CIFAR10/100 dataset [47] consists
of 60 000 32 × 32 images with three channels in 10/100
classes. There are 50 000 training images and 10 000
testing images.

2) Neuromorphic Dataset Preprocessing: We use the inte-
grating approach to convert event stream to frame data, which
is commonly used in SNNs [13], [14], [30], [48], to preprocess
neuromorphic datasets. The coordinate of an event can be
described as

E(xi , yi , pi ) (10)

where xi and yi event’s coordinate and pi represents the
event. To reduce computational consumption, we group events
into T slices, where T is the network’s time simulation
step. A frame in the integrated frame data, denoted as F( j),
refers to the pixel value at position (p, x, y), represented
as F( j, p, x, y). It is obtained by integrating events indexed
between jl and jr from the event stream, where jl represents
the initial timestamp for accumulation and jr denotes the final
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TABLE I
NETWORK ARCHITECTURE SETTING FOR EACH DATASET. xCy/MPy/APy DENOTES THE CONV2D/MAXPOOLING/AVGPOOLING LAYER WITH OUTPUT

CHANNELS = x AND KERNEL SIZE = y . nFC DENOTES THE FULLY CONNECTED LAYER WITH OUTPUT FEATURE = n, mDP IS THE SPIKING
DROPOUT LAYER WITH DROPOUT RATIO m . THE VOTING LAYER IS A 1-D AVERAGE POOLING LAYER

timestamp. The process can be described as

jl =

⌊
N
T

⌋
· j

jr =


⌊

N
T

⌋
· ( j + 1), if j < T − 1

N , if j = T − 1

F( j, p, x, y) =

jr −1∑
i= jl

Ip,x,y(pi , xi , yi ) (11)

where ⌊·⌋ is the floor operation and Ip,x,y(pi , xi , yi ) is an
indicator function and it equals 1 only when (p, x, y) =

(pi , xi , yi ). The function F( j) is primarily designed to accu-
mulate event data within a specified range. This accumulation
is then segmented into frames, facilitating a format that is more
conducive to the simulation of SNNs. This structured approach
in framing the data not only enhances the compatibility with
SNNs but also enables a more efficient analysis and processing
of the event data, aligning it with the inherent temporal
dynamics of SNNs.

3) Data Augmentation: To mitigate the apparent overfitting
on the CIFAR10-DVS dataset, we adopt the neuromorphic
data augmentation, which is also used in [36], [40], [41],
and [42] for training the same dataset. We follow the same
augmentation setting as [41]: we utilize horizontal Flipping
and Mixup [49] in each frame, where the probability of
Flipping is set to 0.5, and the Mixup interpolation factor is
sampled from a beta distribution where α = 0.5, β = 0.5.
Then, we randomly select one augmentation among Rolling,
Rotation, Cutout, and Shear, where random Rolling range
is five pixels, the degree of Rotation is sampled from the
uniform distribution where α = −15, β = 15, the side length
of Cutout is sampled from the uniform distribution where
α = 1, β = 8, and the shear degree is also sampled from
the uniform distribution where α = −8, β = 8.

B. Network Architecture

The architectures of networks corresponding to various
datasets are enumerated in Table I. In the construction of each
network, He et al. [50] initialization is methodically applied
to both convolutional and FC layers. For the DVS128 dataset,

we utilize the same network structure and hyperparameters as
the [30] and add the TCJA module before the last two pooling
layers. Dropout (DP) [51] rate is set to 0.5 in accordance with
the original network. We added a 1-D average pooling voting
layer in the last layer, which yielded a 10-D vector as the vote
outcome. This is because the preprocess of DVS128 Gesture
simulates a longer time step (T = 20), through such a voting
layer the robustness of the network can be improved [13].

For the CIFAR10-DVS dataset, we adopt the VGG11-like
architecture introduced in TET [36]. Due to the significant
overfitting, we adopt the data augmentation as [36] and [41].
To maintain the same training settings as [36] for TCJA-TET-
SNN, we use the triangle surrogate function, eliminate the
last LIF layer, and replace the SMSE loss with TET loss. For
TCJA-SNN, the TCJA module is added before the last two
pooling layers, and for TCJA-TET-SNN, the TCJA module is
included before the first pooling layer as the replacement of
surrogate function and loss.

For the N-Caltech 101 dataset, we combine two architec-
tures together and add the TCJA module before the last two
pooling layers. We first reserve a pooling for each layer; then,
with the network going deeper, spatial resolution is reduced
with the increasing channel number. To relieve the evident
overfitting, the ratio of the first dropout layer is increased
to 0.8.

For the Fashion-MNIST dataset, we follow the network
structure from [30]. Note that the first convolutional layer is a
static encoding layer, transforming the static image into spikes.

For the CIFAR10/100 dataset, we employ the MS-ResNet
architecture, as detailed in [52], to validate the effectiveness
of the TCJA on deep residual neural networks. Specifically,
we utilize the standard MS-ResNet-18 architecture for classi-
fying the CIFAR datasets. The TCJA module is integrated at
the bottom of each MS-ResNet block.

C. Network Implementation

We train and test our method on a workstation equipped
with two Tesla P4 and two Tesla P10 GPUs. As the memory
consumption, we use the Tesla P10 to train and test the
CIFAR10-DVS dataset, N-Caltech 101 dataset, and DVS128
Gesture dataset and use the Tesla P4 to train and test the
Fashion-MNIST and CIFAR10/100 dataset. In the various
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TABLE II
HYPERPARAMETER SETTINGS OF TCJA-SNN

Fig. 6. Architecture of FSVAE and how TCJA applied on it. During
training, input images are encoded into spiking inputs, obtaining features
µ1:T , σ1:T after an SNN encoder. Latent encoding z1:T is randomly generated
with a normal distribution. Finally, output images can be reconstructed
through a symmetric SNN decoder. By making the best of the abundant
temporal information of output spikes, our TCJA image decode performs
better. (a) Workflow of FSVAE. (b) Comparison between different image
decode.

datasets under consideration, the hyperparameters are detailed
in Table II. The learning rate has been empirically set to
1 × 10−3 for each dataset when utilizing the Adam opti-
mizer. Conversely, for the implementation involving ResNet
with the SGD optimizer, a higher learning rate of 1 × 10−1

has been employed, as the SGD optimizer necessitates a
more substantial learning rate and trains the same epochs
as [30] except N-Caltech 101, which is not tested in [30].
We enable the automatic mixed precision in N-Caltech 101 and
DVS128 Gesture for the excessive resolution (180 × 240 and
128 × 128). We strategically detach the reset process during
backpropagation, a technique increasingly recognized for its
effectiveness in optimizing SNNs. The detach operation decou-
ples the reset operation from the computational graph. Such a
detachment has been empirically validated to enhance network
performance, offering a more efficient approach to managing
the dynamics of SNNs [2], [21], [30]. This process ensures that
the essential learning dynamics are retained while unnecessary
computational complexities are minimized, thereby improving
the overall efficacy of the network.

D. Comparison With Existing Classification SOTA Works

The performance of two TCJA-SNN variants is compared
with some SOTA models in Tables III–V. We train and
test two variants with SpikingJelly [53] package based on
PyTorch [54] framework, resulting in enhanced performance
across all tasks. Some studies [14], [21], [55] substitute binary

Fig. 7. Generated images of ANN VAE, FSVAE, and ours TCJA on the
MNIST dataset.

Fig. 8. Generated images of ANN VAE, FSVAE, and ours TCJA on the
CelebA dataset.

spikes with floating-point (FP) spikes in whole or in part
and retain the same temporal forward pipeline as SNN to
obtain improved classification accuracy. Thus, we devise two
variants to validate the efficiency of TCJA-SNN by utilizing
the TET loss function. On CIFAR10-DVS, we obtain a 1.7%
advantage over the prior method with binary spikes. On the
N-Caltech 101 dataset, we achieved a classification accuracy
of 82.5%, surpassing previous work by 1.6%. On DVS128,
we get an accuracy of 99.0%, which is higher than TA-
SNN [14] using three times fewer simulation time steps.
Furthermore, by using a basic seven-layer CNN on the static
dataset Fashion MNIST, our method can achieve the highest
classification accuracy with the fewest simulation time steps.
In the context of the CIFAR10 and CIFAR100 datasets, the
implementation of TCJA demonstrates a significant improve-
ment over the baseline models [52] that do not incorporate
TCJA. Specifically, there is an enhancement of 2.08% and
3.83% in classification accuracy for CIFAR10 and CIFAR100,
respectively. Additionally, our method surpasses the current
SOTA models, as referenced in [56], by margins of 0.84%
for CIFAR10 and 0.93% for CIFAR100. Overall, with binary
spikes, TCJA-SNN simulates no more time steps while getting
higher performance. Furthermore, our method can achieve
higher classification accuracy by adopting the nonbinary spike
technique.
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TABLE III
COMPARISON BETWEEN THE PROPOSED METHODS AND EXISTING SOTA TECHNIQUES ON THREE

MAINSTREAM NEUROMORPHIC DATASETS (BOLD: THE BEST)

TABLE IV
COMPARISON BETWEEN THE PROPOSED METHODS AND EXISTING SOTA TECHNIQUES ON STATIC CIFAR DATASETS (BOLD: THE BEST)

TABLE V
STATIC FASHION-MNIST ACCURACY

E. Comparison With Existing Image Generation Works

In this experiment, we build a fully spiking variation autoen-
coder (FSVAE) for image generation with TCJA. Moreover,
we replace the original image decoding way with our novel
method by calculating the average output on the temporal
dimension after the TCJA block. The workflow chart of this
FSVAE with TCJA applied on image decoding is shown in
Fig. 6. We apply log-likelihood evidence lower bound (ELBO)

as the loss function

ELBO = Eq(z1:T |x1:T )

[
log p(x1:T |z1:T )

]
− KL

[
q(z1:T |x1:T )

∥∥p(z1:T )
]

(12)

where the first term is the reconstruction loss between the
original input and the reconstructed one, which is the mean
square error (MSE) in this model. The second term is the
Kullback–Leibler (KL) divergence, representing the closeness
of prior and posterior.

We employ the AdamW optimizer [68] for image-generating
tasks, which trains 300 epochs at 0.001 learning rate and
0.001 weight decay. The batch size is set to 256. More-
over, the time step is set to 16. The performance of the
TCJA image decode is compared with some SOTA models
in Table VI. Because this method can make full use of the
powerful temporal information, the inception score (IS) shows
SOTA results compared to the original FSVAE [69] and the
same structure ANN. Our TCJA image decoding outperforms
better on all metrics for CIFAR10 datasets. Moreover, results
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Fig. 9. Variation in test accuracy on DVS128 Gesture dataset as kernel size
increases.

Fig. 10. Convergence of compared SNN methods on DVS128 Gesture.

on CelebA and MNIST are further visualized in Figs. 7
and 8, which demonstrates that our generated images are
visually better than the previous method [69]. In addition to
the primary evaluations, our model was also compared with
other methods based on the Spiking VAEs, such as image
decoding based on temporal attention (TAID) [70] and effi-
cient spiking VAE (ESVAE) [71], which have been proposed
recently. Despite these methods being specifically designed for
low-level image reconstruction tasks, our approach remains
competitive. It demonstrates robust performance, reflecting its
adaptability and effectiveness in comparison to these special-
ized models.

F. Ablation Study

To thoroughly examine the impact of the TLA and CLA
modules, we conducted a series of ablation studies. The
results, as presented in Table VII, indicate that the CLA
module plays a crucial role in enhancing performance. This
can be attributed to the fact that, in most SNN designs,
the number of simulation time steps is significantly fewer
than the number of channels. Consequently, the CLA mod-
ule can extract additional relevant features compared to the
TLA module. Furthermore, it is worth noting that the TCJA
module consistently outperformed other models across all
tested datasets. This outcome underscores the effectiveness of
the CCF layer incorporated within the TCJA module, further
reinforcing its potential for achieving superior performance.

G. Discussion

1) Kernel Size: We initially investigated the kernel size in
the TCJA module. Intuitively, when the size of the kernel
rises, the receptive field of the local attention mechanism will
also expand, which may aid in enhancing the performance

TABLE VI
COMPARISON WITH ORIGINAL SNN’S WORK ON IMAGE GENERATION

FOR EACH DATASET

TABLE VII
ACCURACY OF DIFFERENT BLOCKS

TABLE VIII
TEST ACCURACY ON THREE DATASETS WITH DIFFERENT

CCF OPERATIONS

of TCJA-SNN. However, the experimental results in Fig. 9
overturn this conjecture. As the size of the kernel rises, the
performance of the model waves. When the kernel size is more
than 4, there is a perceptible decrease in overall performance.
One reasonable explanation is that a frame mainly correlates
with its nearby frames, and an excessively large receptive field
may lead to undesired noise.

2) Multiplication Versus Addition: To verify the effective-
ness of our proposed CCF mechanism, we devise a variant
method that substitutes addition for multiplication of Ti, j and
Ci, j in the (6). The results are shown in Table VIII.

As we observed, the addition operation achieves good
performance, nevertheless, when compared to the multipli-
cation operation, the final calculation result lacks the cross
term, which prevents a robust construction of the correlation
between frames; therefore, it is inferior.

3) Convergence: We also empirically demonstrate the con-
vergence of our proposed method, as shown in Fig. 10.
Specifically, Fig. 10 illustrates the performance trend of vanilla
LIF-SNN, Parametric LIF-based SNN [30] without TCJA
block and our proposed TCJA-SNN for 1000 epochs. As the
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Fig. 11. Attention distribution between time step and channel. The top row is the weight from the first TCJA module in TCJA-SNN working with the
DVS128 Gesture dataset. We select sparse and dense attention frames both temporal-wise (T = 3, 6) and channel-wise (C = 33, 77) in the bottom row.

training epoch increases, the performance trend of our pro-
posed method becomes more stable and converges to a
higher level. Moreover, the TCJA-SNN can achieve the SOTA
performance when only training about 260 epochs, which
demonstrates the efficacy of the proposed TCJA.

4) Complexity Analysis: Finally, we try to analyze the time
and space complexity of TLA and CLA. For TLA, it can be
concluded from the (4) that the time complexity of obtaining
each element of T is O(C K ) (K : Kernel size). Conse-
quently, the time complexity of the whole TLA mechanism
is O(T C2 K ). Moreover, the space complexity is composed of
the parameters and the memory occupied by variables. On the
one hand, for the parameters, C-channel 1-D convolution is
performed on each row of Z , so the total amount of parameters
required is C ∗ C ∗ K , on the other hand, for variables, in the
whole process, we only need to maintain a matrix of dimension
C × T . In conclusion, the space complexity is O(C2 K +CT ).
Similarly, for CLA, the time complexity is O(T 2C K ) and the
space complexity is O(T 2 K + CT ).

5) Theoretical Analysis on Receptive Field: The global
receptive field stands as a fundamental feature of our inno-
vative TCJA approach. Our approach surpasses the limitations
of dense layers by utilizing fewer parameters to achieve a
comprehensive global receptive field. Moreover, it surpasses
the capabilities of employing 2-D convolutions alone by effec-
tively obtaining a larger receptive field. To provide a deeper
comprehension of the salient aspects of our proposed method,
we present the following theoretical analysis concerning the
specific region where the network perceives and processes
information throughout the training phase, known as the
receptive field.

Lemma 1 (CCS of 1-D Convolution): For an input feature
map I ∈ RC×T , if the size of the 1-D convolution kernel is
defined as k, then its cross-correlation scope (CCS) can be
described as P ∈ Rk×T , where the T involves the information
along the second dimension of I .

Lemma 2 (CCS of Two Orthogonal 1-D Convolution): For
an input feature map I ∈ RC×T , the dot multiplication of two
orthogonal 1-D convolutions performed on I is equivalent to

expanding the CCS into a cross shape, that is, its CCS can be
described by two cross-overlaid matrices P ∗ Q (see, e.g., the
colored area of F in Fig. 5), where P ∈ Rk1×T , Q ∈ Rk2×C ,
and k1 and k2 are the sizes of the two convolution kernels,
respectively.

Referring to (6), Lemmas 1 and 2, we can obtain the
following corollary.

Corollary 1: Based on the broad CCS obtained by TCJA,
there exists information flow among T and C, cooperatively
considering the temporal and channel correlation, which is also
clued in (6).

Recalling (4) and (5), through two 1-D convolutions along
different dimensions, we construct two CCS in a vertical
relationship, which are stored in T and C. In particular, TCJA
is to construct a CCS, which can perceive a larger area while
realizing feature interaction in different directions. This cross-
receptive field can abolish the limitations caused by the mono-
tonic dimension, thus bringing performance improvements to
the network. As a corollary, when the kernel sizes of the two
dimensions are the same, we can obtain a square cross-shaped
receptive field similar to that of conventional 2-D convolution,
which is an effective scheme in 2-D convolution.

6) Attention Visualization: To make the attention mecha-
nism easier to understand, we finally visualize the output of the
first TCJA module in TCJA-SNN working with the DVS128
Gesture dataset, which can be seen in Fig. 11. Changes in
attention weights are primarily accumulated among channels,
verifying further the substantial role performed by the CLA in
the TCJA module. To embody the attention weights, we extract
some temporal-wise and channel-wise frames. The difference
in firing patterns in the channel dimension is more significant
than that in the temporal dimension.

7) Energy Consumption Analysis: Compared to the ANNs,
SNNs consume less energy due to their sparser firing and
poorer processing accuracy. Owing to the binary spikes, each
operation in SNNs consists of a single FP addition. In ANNs,
on the other hand, each operation computes a dot product as
a multiply-accumulate (MAC) calculation consisting of one
FP multiplication and one FP addition. Consequently, SNNs
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TABLE IX
SPIKING RATE, FLOPS, AND SNN SINGLE OPERATION ENERGY COST OF EACH LAYER IN THE NETWORK FOR CLASSIFYING THE DVS128 DATASET,

WHERE Convx DENOTES x TH 2-D CONVOLUTIONAL LAYER, A TTy DENOTES yTH TCJA MODULE, AND FCz REPRESENTS zTH FC LAYER OF
THE NETWORK. NOTICE THAT THE FIRST 2-D CONVOLUTIONAL LAYER IS AN ENCODING LAYER TO TRANSFORM THE

ANALOG INPUT INTO SPIKES

Fig. 12. Step-by-step propagation pattern and layer-by-layer propagation
pattern. Xm denotes the input in the mth time step and M i

j represents the i th
middle layer in the j th time step. Yn shows the output in the nth time step.

use less energy than ANNs in the same network design. This
discrepancy can also be validated in 45-nm CMOS technology,
where the energy cost of each SNN operation is 5.1× lower
than that of each 32-bit ANN MAC operation (0.9 versus
4.6 pJ) [72], allowing us to examine the energy consumption
of each network architecture.

We assess the energy consumption in the network for
classifying the DVS128 dataset with both ANN and SNN. first,
we assess the spiking rate, and floating-point operations per
second (FLOPS) of each layer, the result is shown in Table IX.
For ANNs, we can calculate the energy consumption by
FLOPS × MAC energy cost; for SNNs, the energy cost should
be quantified by FLOPS × SNN operation energy cost ×

spiking rate. The final power consumption calculation results
are 1.90 × 10−3 J (TCJA-SNN) and 10.00 × 10−3 J (ANN),
where our TCJA-SNN costs 5.26× lower energy consumption
compared to its ANN version.

8) Propagation Pattern: The forward propagation process
in SNNs encompasses both temporal and spatial domains.
Intuitively, the computation graph for SNN forward prop-
agation can be conceptualized as a sequential, step-by-step
pattern. This pattern is depicted in Fig. 12. In this context,
“step-by-step” refers to the process wherein the network’s
output at the initial time step is evaluated, along with updates
to the hidden states of the spiking neurons. Following this,
subsequent time steps are evaluated similarly, maintaining
this sequential progression. Besides, the layer-by-layer pattern
is also extensively used, which entails performing a spatial
forward propagation procedure in which we calculate the
output of the first layer at all time steps as the input of the
second layer, then retrieve the output of the last layer at all
time steps. Unlike parallel computing environments like GPU,
where the layer-by-layer pattern is preferred, neuromorphic
devices operate more like a step-by-step pattern. It can be
proved that the output of the network in the two patterns is
mathematically equivalent.

Although we train the network in TCJA using a layer-by-
layer pattern, the convolutional structure of the network still
benefits it when applied in a step-by-step manner. In terms of
temporal attention, the TLA module only needs to compute
a few adjacent time steps because of its convolutional nature,
in contrast to mechanisms like SE that require full information
at all time steps. Previous discussion reveals that TCJA reaches
its peak performance when the convolutional kernel size is set
to 2. Under this circumstance, TLA only needs to buffer one
time step while propagating step-by-step.

V. CONCLUSION

In this article, we propose the TCJA mechanism, which
innovatively recalibrates temporal and channel information
in SNNs. Specifically, instead of utilizing a generic fully
connected network, we use 1-D convolution to build the
correlation between frames, reducing the computation and
improving model performance. Moreover, we propose a CCF
mechanism to realize joint feature interaction between tempo-
ral and channel information. Experiments verify the effective-
ness of our method with SOTA results on four datasets, that
is, CIFAR10-DVS (83.3%), N-Caltech101 (82.5%), DVS128
(99.0%), Fashion-MNIST (94.8%), CIFAR10 (95.9%), and
CIFAR100 (78.3%). In addition to its outstanding performance
in classification tasks, TCJA-SNN also exhibits a competitive
performance in image generation tasks. To the best of our
knowledge, this study represents the pioneering application of
the SNN-attention mechanism to both high-level classification
and low-level generation tasks. Remarkably, our approach has
achieved SOTA performance in both domains, thus making a
significant advancement in the field. However, the insertion of
TCJA still resulted in a relatively sizable boost in the number
of parameters. In future work, we believe that this method
can easily be integrated into the neuromorphic chip for the
hardware-friendly 1-D convolution operation and the binary
spiking network structure.
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