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Abstract

Pansharpening is a significant image fusion technique that merges the spatial
content and spectral characteristics of remote sensing images to generate high-
resolution multispectral images. Recently, denoising diffusion probabilistic models
have been gradually applied to visual tasks, enhancing controllable image gener-
ation through low-rank adaptation (LoRA). In this paper, we introduce a spatial-
spectral integrated diffusion model for the remote sensing pansharpening task,
called SSDiff, which considers the pansharpening process as the fusion process of
spatial and spectral components from the perspective of subspace decomposition.
Specifically, SSDiff utilizes spatial and spectral branches to learn spatial details
and spectral features separately, then employs a designed alternating projection
fusion module (APFM) to accomplish the fusion. Furthermore, we propose a
frequency modulation inter-branch module (FMIM) to modulate the frequency
distribution between branches. The two components of SSDiff can perform fa-
vorably against the APFM when utilizing a LoRA-like branch-wise alternative
fine-tuning method. It refines SSDiff to capture component-discriminating fea-
tures more sufficiently. Finally, extensive experiments on four commonly used
datasets, i.e., WorldView-3, WorldView-2, GaoFen-2, and QuickBird, demonstrate
the superiority of SSDiff both visually and quantitatively. The code is available at
https://github.com/Z-ypnos/SSdiff_main.

1 Introduction

Due to physical limitations, satellite sensors cannot directly acquire high-resolution multispectral
images (HrMSI). Instead, they can obtain high-resolution panchromatic (PAN) images and low-
resolution multispectral images (LrMSI). Pansharpening techniques can merge PAN images with
LrMSI, generating HrMSI that possess both high spatial and spectral resolutions. Pansharpening,
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Figure 1: Schematic of (a) DL-based pansharpening approach in a supervised fashion, in which
the “network” can be any deep module, e.g., denoising diffusion probabilistic models (DDPM). The
comparison of (b) the LoRA based on DDPM and (c) the proposed APFM in our SSDiff. G and U
represent the spectral and spatial domains, respectively. The LoRA can expand learnable weights W0

with ∆W (but without applications to pansharpening), and the given APFM can obtain pansharpened
HrMSI from PAN image and LrMSI through alternating projections.

as a fundamental preprocessing method, has been widely utilized in various applications, including
change detection [37] and image segmentation [45].

Pansharpening methods are roughly categorized into four types: component substitution (CS) methods,
multi-resolution analysis (MRA) methods, variational optimization (VO) techniques, and deep
learning (DL) methods, as shown in Fig. 1 (a). The CS method [17, 22] involves projecting the
LrMSI into a specific domain and replacing the spatial components of the LrMSI in that domain with
the corresponding components from the PAN image. CS-based methods can generate fusion images
with high spatial fidelity but spectral distortion with fast runtime. MRA-based methods [24, 32]
extract spatial details from the PAN image through multiscale decomposition and inject them into
the LrMSI. While MRA-based methods effectively preserve spectral information, they may sacrifice
spatial details. Compared to CS-based and MRA-based methods, VO-based techniques [40, 41]
gain more mathematical guarantees but require handling a higher computational burden and more
adjustable parameters.

In recent years, DL-based methods [12, 39, 42, 38, 8, 19] have increasingly been applied across
various fields, including pansharpening tasks, yielding exciting results. Traditional DL-based methods
typically utilize a single-scale model to process information from PAN images and LrMSI. In a
single-scale network, PAN images and LrMSI are usually stacked together without distinguishing
the information contained within them, serving as inputs to the network. They overlook the dispar-
ities in the deep-level information inherent in both, potentially leading to the omission of crucial
discriminative features and subsequently influencing lower fusion performance. Then, dual-branch
methods [6, 18] based on deep learning can differentiate and hierarchically learn information from
PAN and LrMSI. Thanks to this design, it has shown outstanding performance in pansharpening
tasks. However, the cumbersome structure of dual-branch networks makes it challenging to perform
localized fine-tuning. Denoising diffusion probabilistic model (DDPM) [13] is attaining attention in
remote sensing pansharpening [21, 4]. Unfortunately, existing DDPM-based methods have not yet
designed models for the discriminative features required in the pansharpening task.

Considering the characteristics of the pansharpening task, we propose a novel SSDiff method based
on subspace decomposition, which leverages spatial and spectral branches to discriminatively capture
global spatial information and spectral features, respectively. Additionally, we further construct an
alternating projection fusion module (APFM) to fuse the captured spatial and spectral components.
Besides, a frequency modulation inter-branch module (FMIM) is designed to overcome the problem
of uneven distribution of frequency information between two branches in the denoising process.
Finally, through the proposed LoRA-like branch-wise alternating fine-tuning (L-BAF), our SSDiff can
further reveal spatial and spectral information not discovered in each branch. The main contributions
of this work are as follows:
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• Our SSDiff is based on subspace decomposition to divide the network into spatial and
spectral branches. In addition, for subspace decomposition, we give an illustration of vector
projection and construct an alternating projection fusion module (APFM). APFM transforms
the process of fusing HrMSI into the fusion process of spatial and spectral components.
Moreover, our SSDiff is tested on four widely used pansharpening datasets and achieves
state-of-the-art (SOTA) performance.

• The frequency modulation inter-branch module is used at the junction of spectral and spatial
branches to enrich extracted spatial information with more high-frequency information in
the denoising process.

• The proposed L-BAF method is used to fine-tune the network based on the proposed APFM,
where the spatial and spectral branches are updated alternately. This design allows us to
alternately fine-tune the two branches without increasing the parameter count, enabling the
learning of more discriminative features.

2 Related Works

Figure 2: Schematic diagram of the rela-
tionship between subspace decomposition
and self-attention mechanism. f(Q,K) is
the classic self-similarity equation in self-
attention mechanism.

DL-based Methods. As a simple but effective method,
the representative single-scale coupling model, namely
PNN [20], first proposes a simple and effective three-
layer CNN architecture and achieves the best results
at that time. Subsequently, other methods such as Fu-
sionNet [5], DCFNet [39], and others adopt similar
coupled input approaches and successfully design their
networks. However, these methods still have significant
room for improvement in spectral fidelity and general-
ization performance due to weak feature representation
in their network structure designs. In multi-source im-
age fusion tasks, images acquired from diverse sources
exhibit varying characteristics. Coupling two infor-
mation sources together may suffer from inadequate
feature extraction. Then, spatial and spectral branches
methods [6, 18, 25] based on deep learning can differ-
entiate and hierarchically learn information from PAN
images and LrMSI. These methods can better exploit
the potential advantages of multi-scale information.

Diffusion-based Model. DDPM, as a generative model, has been widely applied in various domains
such as text-to-image generation [26], image editing [16] and image classification [43]. In recent
years, DDPM has shown its prominence in image processing tasks [9, 28, 44]. Among them, Song
et al. [28] propose denoising diffusion implicit models (DDIM), where they design a non-Markov
chain sampling process, accelerating the sampling of diffusion models. Then, through some simple
modifications, IDDPM [23] achieves competitive log-likelihoods while preserving the high sample
quality of DDPM. Currently, DDPM is attracting attention in the field of pansharpening [21, 4]. These
DDPM-based methods treat PAN and LrMSI as model fusion conditions, unlike other pansharpening
methods where they serve as fusion targets.

LoRA: Low-rank Adaptation of Large Language Models. For the fine-tuning of parameters in
large pre-trained models, Hu et al. [14] introduce the LoRA to freeze the pre-trained model weights
and inject trainable low-rank decomposition matrices into each layer of the Transformer architecture.
This significantly reduces the number of trainable parameters for downstream tasks. For H = W0X,
the modified forward pass of the LoRA follows the formula:

H = W0X+∆WX = W0X+BAX, (1)

where W0 ∈ Rd×k is a pre-trained weight matrix, X ∈ Rk×n, B ∈ Rd×r, A ∈ Rr×k, and the rank
r ≪ min(d, k). Actually, W0 +∆W = W0 +BA represents a low-rank decomposition.
Motivation. PAN images and LrMSI are obtained from different sensors and contain distinct feature
information. PAN images exhibit richer spatial details, while LrMSI possesses more abundant spectral
information. However, existing DDPM-based methods have not yet designed models specifically for
the discriminative features required in the pansharpening task. As a result, these methods suffer from
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Figure 3: Overall framework of the proposed SSDiff. ϵt =
√
1− ᾱtϵ is a Gaussian noise, where t is

the time step. Fspa is the output of the spatial branch, and Fspe is the output of the spectral branch.
The process of APFM follows Theorem 1.

issues such as insufficient feature learning and generalization capabilities, though they may employ
low-rank adaptation (LoRA) to improve the performance of DDPM for the pansharpening task.

To alleviate these problems, we propose SSDiff, which transforms the problem of solving HrMSI into
a fusion problem of spatial and spectral components. Significantly, we give an illustration of linear
algebra to remove the gap between subspace decomposition and the self-attention mechanism. The
SSDiff utilizes vector projection to discriminatively capture global spatial information and spectral
features in spatial and spectral branches. By introducing subspace decomposition, we can further
illustrate and generalize the vector projection to the matrix form. Based on this, we propose an
APFM that naturally decouples spatial and spectral information and fuses the captured features.
Unlike the LoRA method, the APFM can establish low-rank representations for the spatial-spectral
branches more accurately, as shown in Fig. 1. Furthermore, the spectral branch contains abundant
low-frequency information. When low- and high-frequency information from the spatial branch is
injected into the spectral branch, it may result in an overemphasis on low-frequency information,
impacting the denoising performance of the model. Based on this, we propose FMIM to modulate
the frequency information between different branches. The overall model is trained by L-BAF to
uncover spatial and spectral information not discovered in each branch.

3 Methodology

3.1 SSDiff Architecture

Inspired by the LoRA approach, we view the pansharpening task as the fusion of spatial and spectral
components, where the spatial and spectral elements can be considered as a matrix decomposition of a
multi-spectral image. Based on these characteristics, our SSDiff employs a model comprising a spatial
branch and a spectral branch, as shown in Fig. 3. Both the spatial branch and the spectral branch
comprise two encoder layers and two decoder layers. Down-sampling occurs between the encoder
layers to decrease the spatial resolution while increasing the number of channels. Up-sampling
operation between the two layers of the decoder increases the spatial resolution while decreasing the
number of channels, and a down-sampling convolution layer connects the encoder and the decoder.
The spatial branch employs ResNet [11] blocks to convert spatial images into features. These spatial
features are transmitted to corresponding layers in the spectral branch via a frequency modulation
inter-branch module. Additionally, fusing incoming spatial features and spectral information via an
alternating projection fusion module.

Eventually, it is delivered to the next stage via an MLP. In this work, we convert the objective from ϵ
to x0, so the loss function Lsimple [4] takes the following form:

Lsimple = E [∥x0 − xθ(xt, c, t)∥1] , (2)
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where xθ denotes the prediction of the model and c is the conditions for injecting the model. Inspired
by FusionNet [5], our SSDiff changes the forward and backward denoising objects during the training
process from HrMSI to the difference between HrMSI and up-sampled LrMSI. The detailed training
process of SSDiff can be found in Appendix. D.

3.2 Alternating Projection Fusion

This section starts with vector projection in linear algebra (See Lemma 1) and subspace decomposition
(See Definition 1) to illustrate vector projection as a specific subspace decomposition. Then, the self-
attention mechanism [30] is generalized into the proposed alternating projection fusion framework,
i.e., APFM. In what follows, we rewrite vector projection as follows.

Lemma 1 ([29]). Assuming that the existing two arbitrary vectors a ∈ domU ∈ Rn and b ∈
domG ∈ Rn, then Pb = λa = p, we have the following formula:

p =
aaT

aTa
b. (3)

where P is projection matrix, λ is the scaling factor, and p is the vector in the same domain as a.

Proof. For any two vectors a and b, there exists a vector e = p− b such that e is orthogonal to a.
We have the following equation:

aTe = aT (p− b) = aT (λa− b) = 0, (4)

thus, we have

λ =
aTb

aTa
. (5)

Taking Eq. (5) into Pb = λa = p, we have the conclusion:

p = Pb = aλ =
aaT

aTa
b. (6)

Definition 1 ([7]). Assume that D ∈ RS×L is the subspace and C ∈ RL×HW is the corresponding
coefficients. We have:

Z = DC. (7)

Based on subspace decomposition, we can take spatial and spectral components to accomplish the
pansharpening of remote sensing images. According to Lemma 1, we can further determine a specific
subspace decomposition in Definition 1. The subspace represents the projection relationship between
vectors a and b. Interestingly, we find that we can generalize Eq. (3) and Eq. (7) to the matrix form
of the self-attention mechanism, as shown in Fig. 2. In other words, the self-attention mechanism is
represented as the vector projection of Eq. (3), which is the low-rank subspace decomposition.

Remark 1. Back to the pansharpening applications, the input PAN and LrMSI are mapped to a
high-dimensional feature space. The features often exhibit significant correlations between frequency
bands, while spectral vectors typically reside in a low-dimension subspace. These features can be
represented as Eq. (7). In this way, the characteristics in the image domain can be transformed into
the subspace.

Based on the above analysis, we can build an alternating projection framework, which is summarized
in the following theorem.

Theorem 1. Assuming that Fspa ∈ RH×W×S and Fspe ∈ RH×W×S from the spatial and spectral
branches, they can be alternatively projected as follows:

Tspa = Softmax
(
TaT

T
b√

S′

)
TT

c , Tspe = Softmax

 TcT
T
d√

(S′)3

HW

TT
a , (8)
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Figure 4: The denoising process. The top row consists of a series of iteratively generated images
from the gradual denoising process. The subsequent two rows represent the associated low-frequency
and high-frequency spatial domain information obtained through inverse Fourier transform from the
denoised image in the first row of each corresponding step.

where Tspa ∈ RHW×S′
and Tspe ∈ RS′×HW denote the features of spatial domain and spectral

domain separately. Ta ∈ RHW×S′
and Tb ∈ RHW×S′

are features in the spatial domain generated
by Fspa, where S′ is the channel of self-attention. Tc ∈ RS′×HW and Td ∈ RS′×HW are features

in the spectral domain generated by Fspe.
√
S′ and

√
(S′)3

HW are constants related to the matrix size.
Softmax(·) stands for the Softmax function.

Proof. According to Lemma 1, we can generalize the self-attention mechanism [30], where Q and K
are the features from domU, and V is the feature from domG, respectively. Thus, we have:

Softmax(
QKT

√
dk

)⇒ aaT

aTa
, V⇒ b, (9)

where "⇒" suggests that the left and right parts of the equation are similar in form, and the left side
is a special case of the right side. Through this equation, we can partially explain the principle of
cross-attention using the vector projection theorem. Then we transform the projection relationship
between the spatial domain (domU) and spectral domain (domG), where Ta,Tb ∈ domU and
Tc,Td ∈ domG. d is a self-attention constant. As a result, the alternating projection is complete
from the spatial/spectral domain to the spectral/spatial domain, i.e., Eq. (8).

In addition, we need to get fused outputs from Tspa and Tspe. Without loss of generality, we have

Tfus = Tspa ⊙Tspe, (10)

where ⊙ defines element-wise multiplication. Element-wise multiplication is used to fuse spatial and
spectral information to obtain Tfus ∈ RHW×S′

.

Comparing Eq. (3) with Eq. (8), this subspace is built by vector projection and naturally decouples
spatial and spectral information into the self-attention mechanism. This inspires us to apply a
fine-tuning method similar to LoRA methods (See details in Sect. 3.4).

3.3 Frequency Modulation Inter-branch Module

Through the APFM, we build an effective fusion module from the characteristics of images. Interest-
ingly, there are some differences between the spatial and spectral components. The spectral branch
contains abundant low-frequency information. When low- and high-frequency information from the
spatial branch is injected into the spectral branch, it may result in an overemphasis on low-frequency
information, impacting the denoising performance of the model. We found that modulating the
frequency distribution contributes to SSDiff obtaining better fusion results.

As shown in Fig. 4, the low-frequency components undergo a gradual modulation characterized by a
slow and subtle rate of change in the denoising process. In contrast, the modulation process of the
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Figure 5: Visual comparisons on a reduced-resolution WorldView-3 and GaoFen-2 case. The first
two rows are the results of WV3, and the last two rows are the results of GF2. The first and third
rows are the predicted HrMSI for each method, and the second and fourth rows are the error maps of
the predicted HRMS versus ground truth (GT) for each one.

high-frequency components exhibits distinct dynamic variation. Considering the above phenomenon,
we design a frequency modulation inter-branch module. Specifically, we utilize a Fourier filter to
extract the high-frequency information of the feature map xspa obtained from the spatial branch,
following:

F ′(xspa) = FFT(xspa)⊙ α, (11)

x′
spa = IFFT(F ′(xspa)), (12)

where FFT and IFFT are Fourier transform and inverse Fourier transform. ⊙ denotes element-wise
multiplication, and α is a Fourier mask [27]. Furthermore, we find in experiments that directly
injecting high-frequency information into spectral branches will cause the frequency information
imbalance. To solve this problem, half of the channels of feature xspec of the spectral branch are
multiplied by a constant. For the three different channel numbers in the model, ranging from low to
high, we set this constant to 1.2, 1.4, and 1.6, respectively.

3.4 LoRA-like Branch-wise Alternative Fine-tuning

During the model training process, it is crucial to carefully maintain a balance between model
underfitting and overfitting. Our SSDiff can hierarchically and discriminatively extract more features.
However, achieving a simultaneous balance condition for both spatial and spectral branches during
unified training is undoubtedly challenging. Therefore, this paper approaches the LoRA-like alternate
fine-tuning of each branch as a feasible solution. As shown in Fig. 1, LoRA methods fine-tune the
output of the model by updating the parameters on the fully connected layer weights. Compared
with LoRA, the proposed alternating projection method is also a low-rank matrix decomposition. In
Fig. 1 (b), the difference is that we can have the backpropagation process and control the gradient of
the projection process to achieve alternate fine-tuning in the proposed APFM. In practice, taking the
fine-tuning of Eq. (8) (Tspa) as an example to update the spectral branch, we can detach the gradient
propagation at Tspa, preventing parameter updates in the spatial branch. In this case, gradients only
propagate through the path shown in Eq. (8) (Tspe), which means only the parameters of the spectral
branch are updated. Similarly, when fine-tuning the spatial branch, detaching the gradient propagation
from the computation graph at Tspe can prevent parameter updates in the spectral branch. A more
intuitive fine-tuning process is provided in the supplementary material.
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Table 1: Result on the WV3 (the first thirteen rows) and GF2 (the last thirteen rows) reduced-
resolution and full-resolution datasets. The best results are highlighted in bold and the second best
results are underlined.

Method Reduced resolution Full resolution
SAM(± std) ERGAS(± std) Q2n(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

BDSD-PC [31] 5.4675±1.7185 4.6549±1.4667 0.8117±0.1063 0.9049±0.0419 0.0625±0.0235 0.0730±0.0356 0.8698±0.0531
MTF-GLP-FS [33] 5.3233±1.6548 4.6452±1.4441 0.8177±0.1014 0.8984±0.0466 0.0206±0.0082 0.0630±0.0284 0.9180±0.0346
BT-H [1] 4.8985±1.3028 4.5150±1.3315 0.8182±0.1019 0.9240±0.0243 0.0574±0.0232 0.0810±0.0374 0.8670±0.0540
PNN [20] 3.6798±0.7625 2.6819±0.6475 0.8929±0.0923 0.9761±0.0075 0.0213±0.0080 0.0428±0.0147 0.9369±0.0212
DiCNN [12] 3.5929±0.7623 2.6733±0.6627 0.9004±0.0871 0.9763±0.0072 0.0362±0.0111 0.0462±0.0175 0.9195±0.0258
MSDCNN [36] 3.7773±0.8032 2.7608±0.6884 0.8900±0.0900 0.9741±0.0076 0.0230±0.0091 0.0467±0.0199 0.9316±0.0271
FusionNet [5] 3.3252±0.6978 2.4666±0.6446 0.9044±0.0904 0.9807±0.0069 0.0239±0.0090 0.0364±0.0137 0.9406±0.0197
CTINN [48] 3.2523±0.6436 2.3936±0.5194 0.9056±0.0840 0.9826±0.0046 0.0550±0.0288 0.0679±0.0312 0.8815±0.0488
LAGConv [15] 3.1042±0.5585 2.2999±0.6128 0.9098±0.0907 0.9838±0.0068 0.0368±0.0148 0.0418±0.0152 0.9230±0.0247
MMNet [49] 3.0844±0.6398 2.3428±0.6260 0.9155±0.0855 0.9829±0.0056 0.0540±0.0232 0.0336±0.0115 0.9143±0.0281
DCFNet [39] 3.0264±0.7397 2.1588±0.4563 0.9051±0.0881 0.9861±0.0038 0.0781±0.0812 0.0508±0.0342 0.8771±0.1005
PanDiff [21] 3.2968±0.6010 2.4667±0.5837 0.8980±0.0880 0.9800±0.0063 0.0273±0.0123 0.0542±0.0264 0.9203±0.0360
SSDiff (ours) 2.8429±0.5284 2.1059±0.4560 0.9156±0.0841 0.9867±0.0038 0.0132±0.0049 0.0307±0.0029 0.9565±0.0057

BDSD-PC [31] 1.7110±0.3210 1.7025±0.4056 0.9932±0.0308 0.9448±0.0166 0.0759±0.0301 0.1548±0.0280 0.7812±0.0409
MTF-GLP-FS [33] 1.6757±0.3457 1.6023±0.3545 0.8914±0.0256 0.9390±0.0197 0.0336±0.0129 0.1404±0.0277 0.8309±0.0334
BT-H [1] 1.6810±0.3168 1.5524±0.3642 0.9089±0.0292 0.9508±0.0150 0.0602±0.0252 0.1313±0.0193 0.8165±0.0305
PNN [20] 1.0477±0.2264 1.0572±0.2355 0.9604±0.0100 0.9772±0.0054 0.0367±0.0291 0.0943±0.0224 0.8726±0.0373
DiCNN [12] 1.0525±0.2310 1.0812±0.2510 0.9594±0.0101 0.9771±0.0058 0.0413±0.0128 0.0992±0.0131 0.8636±0.0165
MSDCNN [36] 1.0472±0.2210 1.0413±0.2309 0.9612±0.0108 0.9782±0.0050 0.0269±0.0131 0.0730±0.0093 0.9020±0.0128
FusionNet [5] 0.9735±0.2117 0.9878±0.2222 0.9641±0.0093 0.9806±0.0049 0.0400±0.0126 0.1013±0.0134 0.8628±0.0184
CTINN [48] 0.8251±0.1386 0.6995±0.1068 0.9772±0.0117 0.9803±0.0015 0.0586±0.0260 0.1096±0.0149 0.8381±0.0237
LAGConv [15] 0.7859±0.1478 0.6869±0.1125 0.9804±0.0085 0.9906±0.0019 0.0324±0.0130 0.0792±0.0136 0.8910±0.0204
MMNet [49] 0.9929±0.1411 0.8117±0.1185 0.9690±0.0204 0.9859±0.0024 0.0428±0.0300 0.1033±0.0129 0.8583±0.0269
DCFNet [39] 0.8896±0.1577 0.8061±0.1369 0.9727±0.0100 0.9853±0.0024 0.0234±0.0116 0.0659±0.0096 0.9122±0.0119
PanDiff [21] 0.8881±0.1197 0.7461±0.1032 0.9792±0.0097 0.9887±0.0020 0.0265±0.0195 0.0729±0.0103 0.9025±0.0209
SSDiff (ours) 0.6694±0.1244 0.6038±0.1080 0.9836±0.0074 0.9915±0.0017 0.0164±0.0093 0.0267±0.0071 0.9573±0.0100

Ideal value 0 0 1 1 0 0 1

4 Experiments

4.1 Experimental Results

Results on WorldView-3. On the WorldView-3 dataset, we evaluate the performance of SSDiff using
20 test images. The results for both reduced-resolution and full-resolution are presented in Table 1.
The running time of a single picture during the sampling process is 7.417 seconds under 10 timesteps.
We compared our method with three traditional methods and some SOTA DL-based methods. To
illustrate the performance of each method more clearly, we presented the fusion result images and
error maps of some of these methods in Fig. 5, and zoomed in on a specific location. On average, our
method achieves SOTA performance on the reduced dataset, with our SSDiff reaching 2.84 (SAM)
and 2.10 (ERGAS) metrics, outperforming all DL-based methods. The error map indicates that the
images sampled by SSDiff are closer to the ground truth (GT). SSDiff achieves SOTA performance
in obtaining full-resolution images on the WV3 dataset. The HQNR score close to 1 indicates better
fusion quality of the full-resolution images. The obtained results demonstrate that our SSDiff can
fuse HrMSI, reducing spatial and spectral distortions, thereby proving its excellent generalization
ability at full resolution.
Results on GaoFen-2. On the GaoFen-2 reduced dataset, we tested our SSDiff on 20 test images, as
shown in Table 1. Our SSDiff achieves SOTA performance. From the error maps in Fig. 5, we can
observe that there are still significant differences between traditional fusion methods and DL-based
fusion methods. These experiments demonstrate that, compared to other DL-based methods used
for comparison in the experiments, the proposed SSDiff exhibits superior spatial performance and
effectively preserves spectral information.

4.2 Ablation Study
Effectiveness of Decoupling Branches. To investigate the effectiveness of the spatial and spectral
branch design, we perform ablation experiments by training the diffusion model under the following
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conditions: V1) Coupling inputs, and training only with the spatial branch. V2) Coupling inputs
and training only with the spectral branch. V3) Spatial and spectral branch structure and decoupling
inputs, only the outputs of the two branches are concatenated without any inter-branch information
interaction. V4) Spatial and spectral branch structure and decoupling inputs, replace each APFM
with an additional operation, i.e., the way of LoRA. V5) Spatial and spectral branch structure and
decoupling inputs, replace each APFM with a multiplication operation. V6) Our method. The results
on the WV3 reduced dataset are reported in Table 2. Training solely with a single branch significantly
reduces the quality of the HrMSI. It can be seen that SSDiff is more suitable for pansharpening tasks
than the LoRA way, multiplication, and concatenating way.

Table 2: Ablation study on 20 reduced-resolution samples from WV3 dataset without fine-tuning.

Method SAM(± std) ERGAS(± std) Q2n(± std) SCC(± std) Params

V1 3.3612±0.6497 2.5633±0.6249 0.8960±0.1031 0.9816±0.0070 1100K
V2 3.0598±0.5560 2.2638±0.5663 0.9097±0.0947 0.9847±0.0062 654K
V3 3.4040±0.6088 2.5564±0.6737 0.9023±0.0954 0.9796±0.0078 1420K
V4 3.3245±0.5342 2.4371±0.5841 0.9089±0.0878 0.9830±0.0069 1420K
V5 3.1958±0.5727 2.3962±0.5688 0.9035±0.0962 0.9834±0.0067 1420K
V6 2.8646±0.5241 2.1217±0.4671 0.9125±0.0874 0.9863±0.0040 1420K

Frequency Modulation Inter-branch Module. To validate the effectiveness of the FMIM, we
remove FMIM from our model and train the diffusion model to converge the WV3 dataset. The
results are shown in Table 3. Without using FMIM, the model’s performance on the SAM/ERGAS/Q8
indicators decreased by approximately 3.1%/2.8%/1%, respectively. This demonstrates that utilizing
FMIM for frequency transfer can effectively improve model performance.

Table 3: Ablation study on 20 reduced-resolution samples from WV3 dataset without fine-tuning.

FMIM SAM(± std) ERGAS(± std) Q2n(± std) SCC(± std)

2.9798±0.6060 2.1978±0.5399 0.9153±0.0868 0.9855±0.0053
2.8646±0.5241 2.1217±0.4671 0.9125±0.0874 0.9863±0.0040

4.3 Discussion

Generalization. To test the generalization ability of DL-based methods, we evaluated models trained
on the WV3 dataset using 20 reduced resolutions from the WorldView-2 dataset. The quantitative
evaluation results, as reported in Table 4, demonstrate that the SSDiff method achieves the best
results across all four evaluation metrics. This indicates that our approach possesses a powerful
generalization ability.

Table 4: Generalization of DL-based methods on WV2 dataset.

Method SAM(± std) ERGAS(± std) Q2n(± std) SCC(± std)

PNN 7.1158±1.6812 5.6152±0.9431 0.7619±0.0928 0.8782±0.0175
DiCNN 6.9216±0.7898 6.2507±0.5745 0.7205±0.0746 0.8552±0.0289
MSDCNN 6.0064±0.6377 4.7438±0.4939 0.8241±0.0799 0.8972±0.0109
FusionNet 6.4257±0.8602 5.1363±0.5151 0.7961±0.0737 0.8746±0.0134
CTINN 6.4103±0.5953 4.6435±0.3792 0.8172±0.0873 0.9147±0.0102
LAGConv 6.9545±0.4739 5.3262±0.3185 0.8054±0.0837 0.9125±0.0101
MMNet 6.6109±0.3209 5.2213±0.2133 0.8143±0.0790 0.9136±0.0201
DCFNet 5.6194±0.6039 4.4887±0.3764 0.8292±0.0815 0.9154±0.0083
SSDiff (ours) 5.0647±0.5634 3.9885±0.4297 0.8577±0.0782 0.9335±0.0055

Training SSDiff. To address the issue of insufficient local parameter training in the dual branches
model, we design the L-BAF method to fine-tune the model. Taking the experiments on the reduced
WV3 dataset, we first train the model without fine-tuning until convergence and perform branch-wise
fine-tuning, which includes: 1) Full parameter fine-tuning without L-BAF. 2) Only fine-tuning the
spatial branch parameters with the spectral branch parameters fixed. 3) Only fine-tuning the spectral
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branch parameters with the spatial parameters fixed. 4) Alternating fine-tuning spectral branch and
spatial branch. The quantitative results are shown in Table 5, and all three branch-wise fine-tuning
methods lead to improved testing performance. The results of full fine-tuning show a decrease in some
metrics, indicating that the method suffers from overfitting. The alternating fine-tuning approach
showed the most significant performance improvement. This demonstrates the effectiveness of the
L-BAF.

Table 5: Fine-tune SSDiff. S and F denote fine-tuning of spatial and spectral branches, respectively.

S F SAM(± std) ERGAS(± std) Q2n(± std) SCC(± std)

- - 2.8646±0.5241 2.1217±0.4671 0.9125±0.0874 0.9863±0.0040
2.8681±0.5837 2.1302±0.5235 0.9206±0.0850 0.9868±0.0048
2.8545±0.5244 2.1138±0.4658 0.9143±0.0857 0.9864±0.0040
2.8460±0.5232 2.1132±0.4671 0.9152±0.0849 0.9864±0.0041
2.8429±0.5284 2.1059±0.4560 0.9156±0.0841 0.9867±0.0038

5 Conclusion

In this paper, we propose a spatial-spectral integrated diffusion model for remote sensing pansharp-
ening, named SSDiff. We design a spatial-spectral integrated model architecture, which utilizes
spatial and spectral branches to learn spatial details and spectral features separately. By introducing
vector projection, the spatial and spectral components in the subspace decomposition are further
specified in the proposed APFM. Then, the self-attention mechanism is naturally generalized to the
APFM. Furthermore, we propose an FMIM to modulate the frequency distribution between branches.
Finally, the two branches of SSDiff can capture discriminating features. It is interesting that, when
utilizing the proposed L-BAF method in the APFM, the two branches can be updated alternately,
and then SSDiff produces more satisfactory results. We compare our SSDiff with several SOTA
pansharpening methods on the WorldView-3, QuickBird, GaoFen-2, and WorldView-2 datasets. The
results demonstrate the superiority of SSDiff both visually and quantitatively.
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A Appendix / supplemental material

In the supplementary material, we first introduce the background knowledge, i.e., denoising diffusion
probabilistic models, and then illustrate the process of model training and LoRA-like branch-wise
alternative fine-tuning, the limitations, and the broader impact of our method. After that, we provide
more details for experiments on the pansharpening task, i.e., Implementation Details, Datasets,
Benchmarks, and Quality Metrics. Finally, we display more qualitative evaluation results on the
QuickBird and GaoFen-2 datasets.

B Background

B.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models [13] are latent variable models, generating realistic target
images progressively from a normal distribution by iterative denoising. The diffusion model contains
two steps: forward and reverse processes.

The forward process aims to make the prior data distribution x0 noisy by a T step Markov chain
that gradually transforms it into an approximate standard normal distribution xT ∼ N (0, Id) and d
denotes the dimension. One forward step is defined as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (13)

where N (·) is a Gaussian distribution with the mean of
√
1− βtxt−1 and variance of βtI, βt is a

pre-defined variance schedule in time step t ∈ [0, T ]. Through the reparameterization trick, we can
derive xt directly from x0, The following equation gives this derivation:

q(xt|x0) =
√
ᾱtx0 +

√
1− ᾱtϵ, (14)

where ϵ ∼ N (0, I) and αt = 1− βt, ᾱt =
∏t

i=0 αi.

The reverse process aims to learn to remove the degradation brought from the forward process and
sample the x0 from xt. To accomplish this objective, we need to learn the distribution of pθ(xt−1|xt)
using a neural network and perform iterative sampling as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (15)

where µθ and Σθ are the mean and variance of pθ(xt−1|xt), respectively, and θ is the parameters of
model.

According to Eq. (15), the mean and variance can be computed, following:

µθ =
1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)), (16)

Σθ(xt, t) =
1− ᾱt−1

1− ᾱt
βt. (17)

For sampling from a standard Gaussian noise xT to get xT−1, after performing T -step iterations of
sampling as described above, we get the output x0 from xT .

C LoRA-like Branch-wise Alternative Fine-tuning

In Section 3.4 of the main text. The L-BAF method alternately fine-tunes the spatial and spectral
branches based on the proposed APFM. As shown in Fig. 6. When we fine-tune the spectral branch,
we freeze the Ta and Tb parameters in the spatial branch and the Ta parameter in the spectral branch.
Block gradient propagation to prevent parameter updates for the entire spatial branch. Similarly,
when fine-tuning the spatial branch, we freeze the Tc and Td parameters in the spectral branch, as
well as the Tc parameter in the spatial branch. Block gradient propagation to prevent parameter
updates for entire spectral branches.
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Figure 6: The sketch of the proposed LoRA-like branch-wise alternative fine-tuning process.

Algorithm 1: Training stage of the proposed method.
Data: GT image x0, diffusion model xθ with its parameters θ, spectral and spatial branch

parameter θspe, θspa, respectively, condition cond, timestep t, and denoised objective x̂0.
Result: Optimized diffusion model x∗

θ .
1 cond← PAN,LrMSI,xt;
2 while until convergence do
3 t← Uniform(0, T ); ϵ ∼ N (0, I);
4 xt ←

√
ᾱt(x0 − LrMSI) +

√
1− ᾱtϵ; x̂0 ← xθ(xt, cond) + LrMSI;

5 if iteration > 150k then
6 fine-tune θspe or θspa; // L-BAF
7 end
8 θ ← ∇θLsimple(x̂0,x0).
9 end

D Model Training

The detailed training process of SSDiff can be found in Algorithm 1.

E Limitation

First, we evaluate the effectiveness of the proposed SSDiff over the pansharpening task and we
will extend our method to other multispectral fusion tasks, such as multispectral and hyperspectral
image fusion. Second, the proposed FMIM can adjust the frequency information between the two
branches, but it also introduces additional hyperparameters, increasing the difficulty of fine-tuning
during training. In terms of cost, the average inference time for a single image is 7.416 seconds under
10 timesteps. The time cost for our approach is higher than other DL-based models, primarily due to
the limitation imposed by the large number of sampling steps required in the diffusion model.

F Broader Impact

Pansharpening, as a fundamental preprocessing method which is a key pre-processing technology
overcoming the constraints of hardware before using high-resolution multispectral images, has been
widely utilized in various applications, including change detection, environmental monitoring, and
segmentation. At the same time, pansharpening, being a low-level task, the distortions that occur

15



SSDiffGT PanDiff DCFNet MMNet LAGConv CTINN

FusionNet MSDCNN DiCNNPNN BT-H MTF-GLP-FS BDSD-PC

2.
5

2.
0

0.
5

1.
0

1.
5

0.
0

Figure 7: Visual comparisons on a reduced-resolution QuickBird case. The first and third rows are the
predicted HrMSI for each method, and the second and fourth rows are the error maps of the predicted
HRMS versus ground truth (GT) for each one.

Table 6: Quantitative results on the QuickBird reduced-resolution and full-resolution datasets. Some
conventional methods (the first three rows) and DL-based methods are compared. The best results are
highlighted in bold and the second best results are underlined.

Method Reduced resolution Full resolution
SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) Dλ(± std) Ds(± std) HQNR(± std)

BDSD-PC [31] 8.2620±2.0497 7.5420±0.8138 0.8323±0.1013 0.9030±0.0181 0.1975±0.0334 0.1636±0.0483 0.6722±0.0577
MTF-GLP-FS [33] 8.1131±1.9553 7.5102±0.7926 0.8296±0.0905 0.8998±0.0196 0.0489±0.0149 0.1383±0.0238 0.8199±0.0340
BT-H [1] 7.1943±1.5523 7.4008±0.8378 0.8326±0.0880 0.9156±0.0152 0.2300±0.0718 0.1648±0.0167 0.6434±0.0645

PNN [20] 5.2054±0.9625 4.4722±0.3734 0.9180±0.0938 0.9711±0.0123 0.0569±0.0112 0.0624±0.0239 0.8844±0.0304
DiCNN [12] 5.3795±1.0266 5.1354±0.4876 0.9042±0.0942 0.9621±0.0133 0.0920±0.0143 0.1067±0.0210 0.8114±0.0310
MSDCNN [36] 5.1471±0.9342 4.3828±0.3400 0.9188±0.0966 0.9689±0.0121 0.0602±0.0150 0.0667±0.0289 0.8774±0.0388
FusionNet [5] 4.9226±0.9077 4.1594±0.3212 0.9252±0.0902 0.9755±0.0104 0.0586±0.0189 0.0522±0.0088 0.8922±0.0219
CTINN [48] 4.6583±0.7755 3.6969±0.2888 0.9320±0.0072 0.9829±0.0072 0.1738±0.0332 0.0731±0.0237 0.7663±0.0432
LAGConv [15] 4.5473±0.8296 3.8259±0.4196 0.9335±0.0878 0.9807±0.0091 0.0844±0.0238 0.0676±0.0136 0.8536±0.0178
MMNet [49] 4.5568±0.7285 3.6669±0.3036 0.9337±0.0941 0.9829±0.0070 0.0890±0.0512 0.0972±0.0382 0.8225±0.0319
DCFNet [39] 4.5383±0.7397 3.8315±0.2915 0.9325±0.0903 0.9741±0.0101 0.0454±0.0147 0.1239±0.0269 0.8360±0.0158

PanDiff [21] 4.5754±0.7359 3.7422±0.3099 0.9345±0.0902 0.9818±0.0902 0.0587±0.0223 0.0642±0.0252 0.8813±0.0417
SSDiff (ours) 4.4640±0.7473 3.6320±0.2749 0.9346±0.0943 0.9829±0.0080 0.0314±0.0108 0.0360±0.0133 0.9338±0.0208
Ideal value 0 0 1 1 0 0 1

during the process of generating high-resolution multispectral images can significantly impact the
success rate of subsequent high-level tasks.

G Additional experiment

G.1 Setups

Implementation Details. Our SSDiff is implemented in PyTorch 1.7.0 and Python 3.8.5 using
AdamW optimizer with an initial learning rate of 0.001 to minimize Lsimple on a Linux operating
system with an Intel 12th Gen i7-12700K processor and two NVIDIA GeForce RTX3090 GPUs. For
the diffusion denoising model, the initial number of model channels is 32, the diffusion time step
used for training in the pansharpening is set to 1000, while the diffusion time step for sampling is set
to 10. The exponential moving average (EMA) ratio is set to 0.9999. The total training iterations for
the WV3, GF2, and QB datasets are set to 150k, 100k, and 200k iterations, respectively. During the
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Figure 8: Fused GF2 full-resolution data and their corresponding HQNR map. The high value in the
HQNR map means better full-resolution fusion performance.

model fine-tuning, the learning rate is set to 0.0001, and the total fine-tune training iterations are set
to 30k.
Datasets. To demonstrate the effectiveness of our SSDiff, we conducted experiments on widely used
pansharpening datasets. The Pancollection1 dataset for pansharpening consists of data from four
satellites: WorldView-3 (8 bands), WorldView-2 (8 bands), QuickBird (4 bands), and GaoFen-2 (4
bands).

To better evaluate performance, we simulated reduced-resolution and full-resolution datasets. For
reduced datasets, Pancollection follows Wald’s protocol [35] to obtain simulated images with ground
truth images. There are three steps involved: 1) Use a modulation transfer-based (MTF) filter to
downsample the original PAN and MS images by a factor of 4. Downsampled PAN and MS are
used as training PAN and MS images; 2) Treat the original MS image as a ground truth image, i.e.
HRMSI; 3) Upsampling the training MS image using interpolation with polynomial kernels [2] and
processing it into a LrMSI. When processing the full datasets, the original MS image is considered
MS, the upsampled MS image is considered LrMSI, and the original PAN is considered PAN.
Benchmark. To evaluate the performance of our SSDiff, we compared it with various state-of-the-art
methods of Pansharpening (on WV3, QB, and GF2 datasets). Specifically, we choose three traditional
methods: BDSD-PC [31], MTF-GLP-FS [33], BT-H [1]; as well as nine machine learning-based
methods: PNN [20], DiCNN [12], MSDCNN [36], FusionNet [5], CTINN [48], LAGConv [15],
MMNet [49], DCFNet [39], and Pandiff [21]. To ensure fairness, we train DL-based methods using
the same Nvidia GPU-3090 and PyTorch environment.
Quality Metric. For the reduced data in Pansharpening tasks, we utilize four metrics to evaluate
the results on reduced resolution datasets, including the spectral angle mapper (SAM) [46], the
erreur relative globale adimensionnelle de synthèse (ERGAS) [34], the universal image quality index
(Q2n) [10], and the spatial correlation coefficient (SCC) [47]. As for full-resolution datasets, we
apply Dλ, Ds, and hybrid quality with no reference (HQNR) indexes [3] for evaluation.

1https://liangjiandeng.github.io/PanCollection.html.
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G.2 Results on QuickBird:

We conduct experiments on the QuickBird reduced dataset and evaluate the performance of SSDiff.
Similarly, the reference and non-reference metrics were obtained from 20 randomly selected test
images from the QB dataset. The performance comparison is reported in Table 6. Our SSDiff achieves
SOTA performance. From the error maps in Fig. 7, we can observe that there are still significant
differences between traditional fusion methods and DL-based fusion methods.

G.3 Results on GaoFen-2:

On the GaoFen-2 full-resolution dataset, we tested our SSDiff on 20 test images, Fig. 8 shows
the results and HQNR maps, where an HQNR score close to 1 indicates better fusion quality of
full-resolution images. The obtained results indicate that our SSDiff has a good generalization of the
full-resolution dataset.

Table 7: Efficiency results on the WV3 reduced-resolution datasets.

Method SSDiff PanDiff DCFNet MMNet LAGConv

Runtime (s) 7.417 261.410 0.548 0.348 1.381

G.4 Efficiency analysis

The diffusion-based method generally has more running time than CNN-based methods due to the
multiple timesteps of the diffusion mechanism. The comparison of inference running time shown in
Table 7 ensures this point. However, for a fair comparison with another diffusion-based method for
pansharpening, i.e., PanDiff, our method still gets a significant advantage.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the main contributions and scope
of the paper, ensuring that the claims made are supported by the theoretical and experimental
results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in Appendix E, such as the inference
overhead of the model and the additional hyperparameters introduced.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: For Theorem 1 presented in the paper, a complete proof is given in the main
text, along with detailed explanations and illustrations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the network architecture and
experimental settings and provides links to the publicly available datasets used. The complete
code will be published on GitHub upon acceptance for further research and discussion.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets are publicly accessible, and the code will be released soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix G, we present the datasets, implementation details, and the
hyperparameters can be found in Sec. 3.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not involve error bars or experiments concerning statistical
significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments were conducted on a workstation equipped with an Intel 12th
Gen i7-12700K processor, two NVIDIA RTX 3090 GPUs, and 128GB of memory. The
detailed compute resources for the experiments can be found in the implementation details
of Appendix. G.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the ethical guidelines set forth by NeurIPS, ensuring
responsible conduct in all aspects of the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Both potential positive societal impacts and negative societal impacts of the
work can be found in the implementation details of Appendix. F.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models compared in the paper have either received author permission or
are publicly available. The datasets are public, and original papers are cited meticulously.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The models compared in the paper have either received author permission or
are publicly available. The datasets are public, and original papers are cited meticulously.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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