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Abstract

Existing deep learning techniques for image fusion either learn image mapping (LIM) directly, which renders them ineffective

at preserving details due to the equal consideration to each pixel, or learn detail mapping (LDM), which only attains a

limited level of performance because only details are used for reasoning. The recent lossless invertible network (INN) has

demonstrated its detail-preserving ability. However, the direct applicability of INN to the image fusion task is limited by

the volume-preserving constraint. Additionally, there is the lack of a consistent detail-preserving image fusion framework to

produce satisfactory outcomes. To this aim, we propose a general paradigm for image fusion based on a novel conditional INN

(named DCINN). The DCINN paradigm has three core components: a decomposing module that converts image mapping to

detail mapping; an auxiliary network (ANet) that extracts auxiliary features directly from source images; and a conditional

INN (CINN) that learns the detail mapping based on auxiliary features. The novel design benefits from the advantages of

INN, LIM, and LDM approaches while avoiding their disadvantages. Particularly, using INN to LDM can easily meet the

volume-preserving constraint while still preserving details. Moreover, since auxiliary features serve as conditional features, the

ANet allows for the use of more than just details for reasoning without compromising detail mapping. Extensive experiments

on three benchmark fusion problems, i.e., pansharpening, hyperspectral and multispectral image fusion, and infrared and

visible image fusion, demonstrate the superiority of our approach compared with recent state-of-the-art methods. The code

is available at https://github.com/wwhappylife/DCINN
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1 Introduction

Because of physical limitations of imaging devices, there is

a trade-off between captured images from different sensors.

This trade-off often occurs for details, i.e., spatial details and

spectral information trade-off for multispectral pansharpen-

ing and hyperspectral and multispectral image fusion (HMF),

and salient objects and details trade-off for infrared and visi-

ble image fusion (IVF). Thus, the purpose of image fusion is

to fuse images from different sources to obtain an image con-

taining complementary information, further achieving the

detail-preserving fusion for various tasks, such as pansharp-

ening, HMF, and IVF (considered in this work). A schematic

illustration of the different image fusion tasks is shown in

Fig. 1.

Compared with traditional image fusion methods (Zhuang

et al., 2019; Guo et al., 2020; Yang et al., 2020b, a; Xu et al.,

2014; Ma et al., 2016), in the past few years, deep learning
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Fig. 1 Schematic illustrations of several image fusion tasks using real

examples. First row, flowcharts of three typical image fusion tasks (i.e.,

pansharpening, HMF, and IVF), where LRMS refers to a low-resolution

multispectral image, PAN is a panchromatic image, LRHS indicates a

low-resolution hyperspectral image, and so forth. Second and third rows

(from left to right): results of the corresponding image fusion tasks

by state-of-the-art (SOTA) techniques, such as LRTCFPan (Wu et al.,

2023), 3DTNet (Ma et al., 2023), LRRNet (Li et al., 2023), and the

proposed DCINN. Compared with prior image fusion methods that can

only solve a specific task, the DCINN can be applied to several image

fusion tasks producing state-of-the-art outcomes

(DL)-based approaches (Guo et al., 2023; Liu et al., 2023;

Ran et al., 2023; Yan et al., 2022) have made significant

progress on various image fusion tasks becoming the main-

stream framework thanks to their powerful ability to learn a

complex mapping from a large number of paired data used

for training. These DL-based image fusion methods can be

roughly classified into two categories, i.e., learning image

mapping (LIM)-based and learning detail mapping (LDM)-

based methods.

LIM-based methods (Xu et al., 2022; Tang et al., 2022;

Zhou et al., 2023) directly learn the image mapping with

DL-based models to preserve the details as shown in Fig. 2a.

For example, the method in (Xu et al., 2022) concatenates the

source images and uses DenseNet (Huang et al., 2017) to pre-

dict the fused image. (Tang et al., 2022) adopts transformer

to separately extract features from the source images, then

fuse the features to obtain the fused outcome. LIM-based

methods directly learn the image mapping, thus getting the

advantages of being able to fully utilize the information of

source images for reasoning. Their disadvantage is that they

do not treat the image intensity discriminating the different

frequencies (including the relevant high-frequency details),

directly sending the images into the network for training, thus

getting a weak feature extraction.

In contrast, as shown in Fig. 2b, the LDM-based methods

decompose first the source images into a detail component

and a base component, then learning the detail mapping with

a residual network and obtaining the outcome by adding the

learned details component with the original base component.

For example, LPPN (Jin et al., 2022a) considers the low-

resolution multispectral (LRMS) image as base component

proposing the use of a Laplacian pyramid network to decom-

pose the high-resolution multispectral (HRMS) image into

multi-scale details to learn a multi-scale detail mapping. This

design has two benefits. First, it allows paying more attention

to details. Second, the detail mapping can be learned easier

than the image mapping, leading to acceptable results even

with a network with reduced capacity. Therefore, the LDM-

based methods have been proposed to solve different image

fusion tasks. However, their performance is still limited as

only details information is taken into account for reasoning.

Whatever (LIM)-based or (LDM)-based image fusion

methods, they mainly employ some commonly-used forward-

propagation models, such as convolutional neural networks

(CNNs) and transformers for feature representation and
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Fig. 2 A comparison of a the LIM-based framework, b the LDM-

based scheme, and c the INN paradigm. Because LIM-based methods

treat each pixel in a equal way, they are inefficient in preserving details.

While LDM-based methods just exploit details (mainly high-frequency

local structures) for reasoning. As a result, they are inefficient in

capturing low-frequency global structures. Compared with the forward-

propagation networks, the INN has a bidirectional structure having

no information loss, thus implicitly preserving information. However,

the bidirectional structure of INN requires the constraint of volume-

preserving, which is generally not met for most (multiple inputs) of

the image fusion tasks, motivating us to propose the so-called DCINN

approach

extraction, as well as fail to realize the lossless detail-

preserving, thus resulting in a poor information learning.

Recently, invertible networks (INNs), used in many image

applications, such as image resizing (Xiao et al., 2020), image

steganography (Lu et al., 2021), and image decolorization

(Zhao et al., 2021), have been proposed showing better abil-

ities than the previous commonly-used techniques thanks to

their lossless nature. Unfortunately, using INN to directly

learn the image mapping for image fusion tasks can encounter

two difficulties. The first one is that the invertible ability of

INN is originated from its bidirectional structure as shown

in Fig. 2c. Therefore, applying INN necessitates volume-

preserving, which requires that the total size of the source

images is equal to the size of the target image. This con-

straint is not met in many image fusion tasks. For example,

in the pansharpening and HMF tasks, the size of the observa-

tions is much smaller than the one of the target image. In the

IVF task, the total size of the infrared and visible images is

twice of the one of the target image. The second issue is that

to realize the invertibility, INNs require severe constraints

on network architectures or the related weights, resulting in

a weaker capacity than that of the one of commonly-used

techniques. A confirmation of this statement is given by the

worse classification performance obtained by the INN com-

pared to commonly-used methods exploiting the same level

of parameter amount and computation, see (Gomez et al.,

2017; Behrmann et al., 2019).

To address the aforementioned issues, we observed that

combining INN with LDM-based methods can solve the

volume-preserving problem of INN by transforming image

mapping into detail mapping. We will show how this design

can help in meeting the volume-preserving constraint. More-

over, because details contain less information compared with

the whole image, detail mapping is usually easier to learn,

thus alleviating the capacity problem of INNs and, in the

meantime, exploiting the preservation abilities of INNs for

details. Motivated by the advantages and disadvantages of

LIM- and LDM-based methods, we propose the use of an

auxiliary network (ANet) to extract auxiliary features directly

from the source images. The auxiliary features serve as con-

ditional features, and they are fed into the INN to aid the

details reasoning. This novel design enables the use of more

information for reasoning rather than just details, while main-

taining the learned mapping as detail mapping and preserving

INN invertibility. The overall framework is denoted as detail-

preserving conditional invertible network (DCINN).

We apply the DCINN framework to three widely known

image fusion tasks, i.e., pansharpening, HMF, and IVF. In

summary, our work has the following contributions:

" We propose a general paradigm based on the DCINN

that takes advantage of the benefits of LDM-based, LIM-

based, and INN methods while avoiding their drawbacks

to more effectively tackle image fusion tasks. To the

best of our knowledge, the proposed method is the first

paradigm for image fusion that uses a fully invertible net-

work. Further to that, this paradigm can be easily applied

to multiple image fusion tasks, such as pansharpening,

HMF, and IVF, achieving state-of-the-art results.

" We design the corresponding network modules after care-

fully analyzing the characteristics of the three image

fusion applications, with the goal of utilizing the advan-

tages of LDM-based, LIM-based, and INN methods.

Afterwards, we design an auxiliary network and a

detail/base decomposition to build a general paradigm

that can face with the three fusion tasks. With this

paradigm, the fusion procedure becomes fully invertible

and overcomes the previously mentioned issues in LDM-

and LIM-based techniques.
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" Extensive experiments demonstrate that the given DCINN

method can achieve state-of-the-art (SOTA) performance

on the three above-mentioned fusion tasks. An ablation

study verify the need of the novelties introduced in the

given paradigm.

2 RelatedWork

2.1 LDM-BasedMethods

For the pansharpening task, to retain both the spectral and

spatial information, PanNet (Yang et al., 2017) and DMDNet

(Fu et al., 2020) take the LRMS image as base component and

extract the detail component from both panchromatic (PAN)

and LRMS images using high-pass filters to learn detail map-

ping. For the HMF task, instead of using predefined filters to

extract the detail component, the work in (Xiao et al., 2022)

takes the low-resolution hyperspectral (LRHS) image as base

component and uses an encoder-decoder network structure

to obtain the detail component from the HRMS image. In the

IVF community, traditional methods such as (Ma et al., 2016;

Adu et al., 2013) customarily decompose the infrared and

visible image into base and detail components and fuse each

part separately according to some decision rules. Inspired

by these traditional works, LDM-based methods (Liu et al.,

2020a; Zhao et al., 2020) are also proposed using DL-based

models to separately fuse the base and detail components.

Nonetheless, these kinds of methods can only use details for

reasoning resulting in poor performance.

2.2 LIM-BasedMethods

The LIM-based methods mainly focus on the improvement

of network architectures, including typical attempts, such as

skip-connections (He et al., 2019; Hou et al., 2020), atten-

tion mechanisms (Hu et al., 2022b; Guan & Lam, 2021),

and transformers (Hu et al., 2022a; Tang et al., 2022).

The early LIM-based methods adopt skip connections to

train much deeper or wider networks. ResTFNet (Liu et

al., 2020b) proposed residual connections to solve the HMF

task. DenseFuse (Li & Wu, 2019) introduced dense connec-

tions to solve the IVF task. Since the neural networks are

known to extract considerable redundant features (Wang et

al., 2022), various attention mechanisms have been intro-

duced to allow networks to focus on more representative

features. HSRNet (Hu et al., 2022b) proposed spatial-spectral

attention to explore the spatial-spectral correspondence of

the images for the HMF task. While previous LIM-based

methods are mainly based on convolutional networks, which

are inefficient in modeling long-range relationships, current

LIM-based methods adopt transformers (Deng et al., 2023)

to image fusion tasks to address this issue. YDTR (Tang

et al., 2022) proposed the use of two-branch transformers

to separately extract features from the two source images.

The features are added and further fused with transform-

ers to produce the fused outcome to solve the IVF task.

More specifically, generative adversarial networks (GANs)

have also been proposed to directly learn image mapping for

obtaining better fusion products (Ma et al., 2019, 2020b, a).

However, the LIM-based methods fail to discriminatively

distinguish the base and detail components, thus making

them ineffective for preserving details.

2.3 INN

Compared with commonly-used forward propagation CNN

structures, INN has a bidirectional structure that simulta-

neously allows forward and backward propagation, which

can theoretically lead to an information lossless model. Due

to this favorable property, the INN has received increasing

attention in recent years and has been successfully applied

in various applications, such as image compression (Xu &

Zhang, 2021), image rescaling (Xiao et al., 2020), and image

denoising (Huang & Dragotti, 2022). Despite such remark-

able progress, the INN has rarely been explored for image

fusion tasks. Only a few works have been proposed applying

the INN to address the image fusion problem, i.e., Panformer

(Zhou et al., 2022) for the pansharpening task, (Cui et al.,

2022) and CDDFUse (Zhao et al., 2023) for the IVF task.

However, our method has significant differences with them.

DCINN is a general paradigm that cannot only solve camera

image fusion tasks, i.e., IVF, but can also solve remote sens-

ing image fusion problems, e.g., pansharpening and HMF.

Instead, the compared methods can only deal with one of

these image fusion problems. Moreover, DCINN is based

on the conditional INN while the compared methods are

based on the native INN, which may limit the capacity of

the INN. Compared with Panformer (Zhou et al., 2022),

Panformer utilizes first a transformer branch and a CNN

branch to extract features, then enriching these features by

a sequential of densely connected invertible modules. Since

the combined structure contains noninvertible modules, such

as CNN and transformer, the given network is not invertible,

which indicates that the benefits of INN cannot be shared

by this approach. Compared with CDDFuse (Zhao et al.,

2023), CDDFuse uses a pre-trained autoencoder to decom-

pose the source images into base and detail components, then

the INN is exploited to preserve details. Instead, our DCINN

adopts different strategies to decompose the source images

into base and detail components, then using a conditional

INN together with an auxiliary network to preserve details.

Moreover, our task-specific decomposition strategies enable

us to solve HMF and pansharpening tasks, which cannot be

solved by CDDFuse (Zhao et al., 2023). The additional aux-

iliary network of DCINN enables to use more information
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for reasoning. Compared with IVF-INN (Cui et al., 2022),

IVF-INN uses an INN to encode the source images into a

latent space and design loss functions to decompose the latent

space into the base and detail components, then these compo-

nents are fused based on some fusion rules and decoded with

the same INN to obtain the fused outcome. Instead, DCINN

uses conditional INN to learn the detail mapping rather than

to encode the source images. Moreover, the decomposition

of DCINN is performed on the source images rather than on

the latent space. Besides, the basic structures of the INN are

also different. More specifically, DCINN additionally uses

5 × 5 invertible convolutional layers (Emiel et al., 2020)

to enhance the channel interaction and gated deconvolution

feed-forward (GFDN) (Zamir et al., 2022) layers to dynam-

ically fuse information from two streams.

Overall, we think there are two inevitable challenges when

applying INN to image fusion tasks in the manner of LIM.

Without losing generality, we take a toy example to illustrate

the two challenges. Let us suppose that an INN is composed

of a sequential of invertible transformations, let x = [x1, x2]

denotes the input, where x1 and x2 are two components gen-

erated by splitting x along channel dimension. According to

the conventional INN, a simple invertible transformation can

be represented as follows:

y1 = x1 + Ç(x2), (1)

y2 = x2 + ·(y1), (2)

where y = [y1, y2] is the output of this transformation, and Ç

and · can be arbitrary neural networks. This transformation

can be easily inverted as follows:

x2 = y2 2 ·(y1), (3)

x1 = y1 2 Ç(x2), (4)

According to the toy example in Eqs. (1)–(4), the invert-

ible transformation ensures that y = [y1, y2] always keeps

all of the information of x = [x1, x2], which implies that

the transformation is theoretically lossless. Therefore, if the

INN can be directly applied to image fusion problems, the

lossless property ensures that the fused outcome by the

INN can preserve all the information of the source images,

which is also a main goal of image fusion tasks. However,

realizing the invertible transformation requires meeting the

volume preservation. Specifically, by the aforementioned toy

example,1 it indicates the following volume (or size) relation-

ships, i.e., size(x1) = size(y1), size(x2) = size(y2),
2 which

1 We just use this toy example to indicate the challenges of applying

INN to image fusion. The involved invertible transformation in our

CDINN paradigm is much more complex and powerful.

2 The notation size(x) denotes the total size (or the so-called volume)

of x.

implies that the total size of the source images must be equal

to the total size of the target image (called volume-preserving

(Dinh et al., 2015) constraint) when directly applying INN

to learn image mapping. However, considering the image

fusion tasks having two or more inputs with different sizes,

the volume-preserving is generally not valid. For instance,

taking pansharpening as example, if an LRMS image with 8

bands has a size of 100 × 100 × 8 and the PAN image has

a size of 400 × 400, the total size of the source images (i.e.,

LRMS and PAN images) is 240, 000 pixels, which is much

smaller than that of the target HRMS image (400 × 400 × 8)

with total size of 1280, 000 pixels. Therefore, the volume-

preserving is not met in the application of pansharpening,

leading to the challenge of the fully invertible INN for the

fusion task. The same conclusion also exists for the HMF

and IVF tasks.

When the total size of the inputs is larger than the total size

of the outputs, to apply INN, a general technique to meet the

volume-preserving constraint in other compute vision tasks

as image compression and image denoising is to have as

output of the INN a concatenation of a target image and a

redundant image so that the total size of outputs is equal to

the total size of the inputs (Xu & Zhang, 2021; Xiao et al.,

2020). However, this strategy is not feasible for image fusion

tasks for two reasons. The first one is that although some loss

functions are proposed to enforce that the redundant image

contains no task-related information, the redundant image

might still carry useful information. For the image com-

pression and image denoising tasks, their aim is to discard

some information, i.e., noise and high-frequency informa-

tion. Therefore, adopting this strategy is reasonable. On the

contrary, image fusion tasks aim to preserve the information

of source images, especially details. Adopting this technique

to deal with image fusion problems inevitably causes loss of

details (we will verify this in Sect. 4.4). The second reason

is related to the fact that while this strategy might have the

potential to be used to image fusion tasks where the size of

the input images is bigger than the size of target images (i.e.,

VIF task), it cannot be applied to image fusion tasks where

the size of the outputs is larger than the size of the inputs

(i.e., pansharpening and HMF tasks).

Beyond the above challenge, we also notice that the trans-

formation of conventional INN requires splitting the input

into two components along the channel dimension, which

can reduce the interaction among channels. As a result, this

widely existing challenge of conventional INN can result

in a limited capacity of feature representation and extrac-

tion compared with other neural networks, such as CNN and

transformer.
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2.4 Motivation

According to the above analysis, LIM-based methods, LDM-

based methods, and INN have complementary properties

in detail preserving when solving image fusion tasks. This

observation motivated us to propose a new general detail-

preserving paradigm for image fusion tasks to enjoy the

benefits of LIM-based methods, LDM-based methods, and

INN while sidestepping their defects. To achieve this goal,

we further analyze the flowchart of LDM-based methods and

find that the learned mapping is a one-to-one mapping in

which the detail component, the base component, and the

fused image have the same size. This finding drives us to

propose applying INN in an LDM manner, which helps to

better preserve the details and avoid the small capacity prob-

lem of INN since the detail mapping is much easy to learn.

Another advantage is that it could help to meet the constraint

of volume-preserving after carefully forcing the size of the

detail component in the LDM-based framework to be equal

to the size of the residual component (verified in Sect. 3.2).

Furthermore, we also seek a way to leverage on more infor-

mation rather than just the detail component for reasoning

(i.e., the weakness of LDM-based methods).

However, utilizing more information for reasoning with-

out breaking the detail paradigm is challenging. To solve

this problem, we analyze Eqs. (1)–(4) finding that the neural

networks in the transformation are never inverted. Therefore,

we can inject additional information into the neural networks

without compromising the invertibility. Thus, we design an

auxiliary network to extract auxiliary features from both the

source images and inject them into the neural networks of

the invertible transformation (i.e., the benefits of LDM-based

methods). As a result, we can use more than just details for

reasoning.

3 ProposedMethod

We propose in this paper a uniform framework called DCINN

by introducing some special structures, such as auxiliary net-

work and image decomposition, aiming to fully inherit the

advantages of LIM-based, LDM-based, and INN approaches.

The presented DCINN can distinguish base and detail com-

ponents, and even realizing the volume-preserving property

of INN, thus finally achieving more effective outcomes in an

information-lossless manner.

3.1 Overall Flowchart

Figure 3 illustrates an overview of the given DCINN paradigm.

From the figure, it is clear that our paradigm basically con-

tains two important parts. One is the image decomposition,

which can differ varying the fusion problem, the other is the

design of the network architecture that mainly contains a so-

called auxiliary network (ANet) and a conditional invertible

neural network (CINN) network.

For the image decomposition, we separate first the source

images into a base and a detail component according to dif-

ferent fusion tasks. This step serves to achieve two goals: (a)

we can learn the detail mapping to better handle the details

by using details to predict the residual; (b) it enables meet-

ing the volume-preserving constraint so that an INN can be

applied to learn the detail mapping under certain principles.

However, learning detail mapping cannot make full use of the

information from the source images as only high-frequency

information is used for reasoning. To solve this problem, we

further design an ANet that directly extracts auxiliary fea-

tures from source images. Afterwards, the CINN takes these

auxiliary features as conditioned information and uses the

detail component to predict the residual. The reason why the

CINN takes auxiliary features as conditioned information is

to keep the invertibility of INN (see Sect. 3.2 for details).

For the network architecture, we mainly design the same

network structure, including ANet and CINN, for all the

fusion tasks, which demonstrates the robustness of the pro-

posed network (see Sect. 3.3 for details). More in detail, the

pansharpening and HMF tasks work in a supervised mode

by simulating datasets, while the IVF methods are unsuper-

vised because of the lack of labeled datasets, thus we need to

carefully develop the loss functions for the different fusion

tasks to ensure effectiveness (see Sect. 3.4 for details).

In what follows, we will present the details of the image

decomposition and the network architecture. The loss func-

tions for supervised and unsupervised learning are given in

the following sections.

3.2 Image Decomposition

The way to decompose the image plays a crucial role in our

fusion paradigm. It requires us to separate the base and detail

components from the source images in a simple and reason-

able manner, aiming to fit the given uniform paradigm. For

simplicity, we denote I1 and I2 as the two source images.3, Îf

as the fused image, If as the reference image, and Ir = If 2Ib

as the residual image. We decompose the source images into

a detail component, Id, and a base component, Ib, so that we

can use Id to predict the residual image Ir conditioned on

I1 and I2. We design the decomposition methods under the

principle of size(Ib) = size(Id) = size(If) to meet the con-

straint of volume-preserving, such that an INN is utilized to

learn the detail mapping to better preserve the details. Note

3 For the different tasks, the two source images are different. For exam-

ple, the two source images are the PAN image and LRMS image for

pansharpening. More details about the other applications can be found

from the bottom part of Fig. 3
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Fig. 3 The flowchart of our DCINN paradigm. The decomposition

module transforms the source images into base and detail components.

As a result, the volume-preserving is met, allowing us to apply INN

to image fusion tasks to better preserve details. The auxiliary network

feeds conditional information to the CINN, allowing it to use more than

just details for reasoning, while still learning detail mapping and retain-

ing invertibility. The FR in the IVF application indicates the fusion rule

in Eq. (19)

Table 1 The involved notations and the corresponding description

Notation Description

Ib Base component

Id Detail component

Ir Residual image

Îf Fused image

If Ground-truth (GT) image (reference image)

Fa Auxiliary feature

L Low-resolution multispectral image

P Panchromatic image

Y Low-resolution hyperspectral image

Z High-resolution multispectral image

X High-resolution hyperspectral image

B Blur matrix

R Spectral response matrix

Ivi Visible image

Iir Infrared image

FR Fusion rule

that more details about the used notations can be found in

Table 1.

3.2.1 Decomposition for Pansharpening

Let L * R
C×n denotes the LRMS image,4 P * R

1×N denotes

the PAN image, and H * R
C×N denotes the target HRMS

image, where C is the number of bands and N is the number of

pixels. L is upsampled to reach the same resolution as P (Xu

et al., 2014). Let L̂ * R
C×N denote the upsampled LRMS

image. The goal of the pansharpening task is to generate a

fused image that possesses both the spectral information of L̂

and the spatial information of P. From previous LDM-based

methods, e.g., (Deng et al., 2021), L̂ is considered as base

component:

Ib � L̂, (5)

where the symbol “�” means defined as. Then, the detail

component Id is extracted by subtracting Ib from the repli-

cated P:

Id � P̂ 2 Ib, (6)

4 For convenience, we unfold the two-dimensional images into one-

dimensional vectors. The same for the subsequent notations.
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where P̂ * R
C×N denotes the replicated version of P. This

work focuses on CINN that uses Id * R
C×N to predict the

residual image (Ir = H 2 Ib * R
C×N ) conditioned on the

auxiliary features (Fa = ANet(L̂, P̂)). It is clear that the size

of Id is equal to the size of If and Ir, which indicates that the

volume-preserving is satisfied.

3.2.2 Decomposition for HMF

Let X * R
C×N denote the high-resolution hyperspectral

(HRHS) image, Y * R
C×n indicates the low-resolution

hyperspectral (LRHS) image, and Z * R
c×N is the HRMS

image. The target of HMF is to increase the spatial infor-

mation of the LRHS image, Y, with the HRMS image, Z,

while preserving its spectral information. For simplicity, we

interpolate, Y, to have the same spatial resolution as Z and

denote it as the upsampled LRHS image, Ŷ * R
C×N . Since

Ŷ is spatially degenerated from X, we consider Ŷ to be the

base component:

Ib � Ŷ. (7)

After defining the base component, we should extract the

details from Z to define Id. Because hyperspectral images

have large spectral variances, the replication of Z computing

residuals by Ŷ to obtain Id can lead to inaccurate results.

Thus, we rely on the observation model to precisely extract

the detail component. The observation model of the HMF

task can be expressed as:

Y = XBS, (8)

Z = RX, (9)

where R * R
c×C is the spectral response matrix, B * R

N×N

denotes the blurry matrix, and S * R
N×n stands for the down-

sampling matrix. For the linear relationship expressed in Eq.

(9), we introduce a widely-used concept in matrix theory,

i.e., the Moore-Pseudo inverse. We denote R+ * R
C×c as

the Moore-Pseudo inverse of R5. Then, it is clear to have the

relation RR+R = R (Barata & Hussein, 2012). According

to the observation model in Eq. (9), the matrix R+Z can be

further regarded as an approximation of X. Again, it is easy

to check that R+Z theoretically preserves all the information

of Z since R+Z is an invertible transformation of Z, which

is guaranteed by the following Proposition 1.

Proposition 1 R
+

Z is an invertible transformation of Z and

thus preserves all the information of Z.

5 R+ can be easily computed by using the Matlab function “pinv(R)”.

Proof By introducing Moore-Pseudo inverse in matrix the-

ory, it is easy to have the following equation with Z = RX:

RR+Z = RR+(RX) = (RR+R)X. (10)

According to the property of the Moore-Pseudo inverse

(Barata & Hussein, 2012), we have RR+R = R, thus:

(RR+R)X = RX = Z. (11)

Using Eqs. (10)–(11), we have:

RR+Z = Z, (12)

which indicates that: (1) R+Z is an invertible transformation

of Z since it can fully recover Z after the multiplication of

R+ and R; (2) R+Z preserves all the information of Z, since

if R+Z fails to hold all the information of Z, the invertible

transformation R cannot recover R+Z to get Z. Note that the

analysis of the invertible property is a crucial point in the

design of INN from the theoretical perspective.

To derive the detail component, Id, for HMF, we have that

it is equal to the residual image, Ir, i.e.:

Id = Ir = X 2 Ib, (13)

where Ib is the upsampled LRHS image, Ŷ, that mainly con-

tains low-frequency information (discussed at the beginning

of Sect. 3.2.2), and X is the latent HRHS. However, due to the

unavailable of X, we alternatively take the invertible R+Z,

whose invertibility has been clearly illustrated, to approxi-

mately represent X. R+Z can effectively increase the spectral

dimension, in the meanwhile holding all the information of Z

according to Proposition 1. Therefore, we have the following

alternative formula to calculate the residual image Id:

Id � R+Z 2 Ib. (14)

Again, the size of Id is equal to the size of Ir, which still

meets the volume-preserving constraint. It is worth noting

that the invertibility of R+Z is very important as it ensures

that the details of Z can be preserved after decomposition,

which is also mentioned after Eq. (12).

3.2.3 Decomposition for IVF

Let Iir * R
1×N be the infrared (IR) image and let Ivi * R

1×N

stand for the visible (VI) image. In general, IVF aims to fuse

the salient objects of Iir and the background details of Ivi

to get an image with clear objects and details. Note that the

IVF task has three major differences from both HMF and

pansharpening tasks. First, the two source images Ivi and
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Fig. 4 IR and VI images and their corresponding details for the appli-

cation of IVF. a and e are the visible image and infrared image,

respectively. c and g are the detail components of the visible and infrared

images, respectively. The base component in (d) and the detail compo-

nent in (h) are obtained from Eqs. (19) and (20), respectively

Iir in the IVF both contain details, whereas the details in the

HMF and pansharpening tasks are only retained in one of two

source images. Second, Iir and Ivi have very different distri-

butions as they are from different modalities. Therefore, the

strategy of extracting details by computing the residual image

between the source images is unfeasible. Besides, the refer-

ence images are not available in the application of IVF since

we do not have reasonable ways to simulate datasets. Thus,

the training of the network is done in an unsupervised way. As

presented in Fig. 4a and e, Ivi and Iir show significantly differ-

ent appearances. Moreover, their residual images, i.e., Fig. 4b

and f, contain both base and detail components. Therefore,

following the idea of traditional methods, such as (Ma et

al., 2016; Zhou et al., 2016), we decompose first one of the

source images, such as Ivi into one base component (i.e., Eq.

15) and one detail component (i.e., Eq. 17). Similarly, we do

the same operation with the other source image, Iir, to get

another pair of base and detail components, i.e., one base

component (see Eq. 16) and one detail component (i.e., Eq.

18). To obtain the aforementioned base and detail compo-

nents, we need to apply first a low-pass (L P) filter6 to both

Iir and Ivi to produce their corresponding base components

(i.e.,Iir
b and Ivi

b ):

Iir
b = L P

(
Iir

)
, (15)

Ivi
b = L P

(
Ivi

)
. (16)

After getting the above base components, then the cor-

responding detail components (i.e., Iir
d and Ivi

d ) can be

calculated as follows:

Iir
d = Iir 2 Iir

b , (17)

6 In the experiments, the low-pass filter is a zero-mean Gaussian filter

with size of 11 × 11 and standard deviation equal to 1.

Ivi
d = Ivi 2 Ivi

b . (18)

By checking Fig. 4c and g, it is clear that Iir
d and Ivi

d contain

complementary information, which can be utilized for the

final data fusion step. Based on the aforementioned base and

detail components by Eqs. (15)–(18), we can simply define

the base component, Ib (see Fig. 4d), as a fusion product of

two base components using a fusion rule:

Ib � FR
(

Iir
b + Ivi

b

)
, (19)

where FR indicates the fusion rule, which could be a weighted

average, a max operation, or any other fusion algorithm such

as IFCNN (Zhang et al., 2020). It is worth noting that there

exist various fusion methods to obtain base components, and

these methods are compatible with our method. After defin-

ing the base component, Ib, we also use a similar strategy as

in Eq. (19) to averagely generate the detail component, Id (see

Fig. 4h) with the consideration of preserving the information

of both Iir
d and Ivi

d :

Id �

(
Iir

d + Ivi
d

)
/2. (20)

In summary, we obtained the base component, Ib, and the

detail component, Id, for the three fusion tasks, i.e., pan-

sharpening, HMF, and IVF. The obtained components can

be included into our general framework for the final fusion

step. For simplicity, we list these components for each task

at the bottom of Fig. 3.

3.3 Network Architecture

In this section, we will introduce the network architecture

involved in the proposed approach, including some innova-

tive network designs that can effectively embed the base and

detail components decomposed in the previous section within

a unified methodology framework, as well as enabling infor-

mation lossless by ensuring the volume-preserving of INN.

The overall network architecture is presented in Fig. 3.

Having a look at Fig. 3, it is clear that our paradigm mainly

involves a CINN and an ANet that aims to learn an invertible

detail mapping with sufficient information of source images

to better preserve details. Specifically, the ANet takes in input

two source images to generate the auxiliary features Fa, then

the CINN considers Fa and Id to predict Ir. Note that directly

concatenating Fa and Id and sending them to CINN leads to

the volume-preserving constraint that cannot be valid, thus

the learned mapping is not invertible. Instead, the CINN gets

Fa as conditional information and uses Id to predict Ir, which

can meet the volume-preserving constraint. In what follows,

we will introduce in detail the structures of the CINN and

ANet. We will also point out how to build the CINN such
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Fig. 5 The structure of the proposed CINN. CINN predicts the residual

image using the detail component based on the auxiliary features. The

red arrows represent the flow of the details, whereas the black arrows

represent the flow of Fa . It is made up of invertible blocks (Inv Blocks)

for feature extraction and the Haar transform (Harr Down and Harr Up)

for feature resizing. The general structure of CINN is shown at the top.

Bottom left: the structure of an invertible block, where Ç(·), s(·), and

·(·) are neural network transformations (see Eqs. (23)-(25)). Bottom

right: detailed structures of Ç(·), Ã(·), and ·(·)

that it can use Fa as conditional information to favor the

reasoning while holding the volume-preserving constraint.

3.3.1 The Structure of the Proposed CINN

For the tasks of pansharpening and HMF, Fig. 5 shows the

structure of the proposed CINN. Our CINN mainly consists

of two invertible blocks that work at the original scale and

four invertible blocks that work at a lower (with a factor

of 2) scale. This two-scale design enables the better extrac-

tion of multi-scale features while maintaining a good balance

of computation and parameter efficiency. Specifically, we

employ the classical Haar transform (Ardizzone et al., 2019)

to downsample and upsample features, since the Haar trans-

form is simple and invertible, only causing limited distortion.

For the IVF task, since both the source images Iir * R
1×N

and Ivi * R
1×N have only one channel, Id * R

1×N and

Ib * R
1×N obtained by our decomposition module also have

only one channel. As shown in the lower part of Fig. 5, the

invertible block needs to split the input features or images

along the channel to achieve invertibility, but both Id and Ib

are single channels and cannot be split. Therefore, it is not

feasible to directly use the same CINN as for pansharpening

and HMF. For this reason, before sending Id into the CINN,

we use first the Harr transform to downsample Id by a factor

of 2 to increase the number of channels.7 The downsampled

Id has a size of 4× N/4. Then, CINN uses the downsampled

Id and Fa to generate a low-resolution Îr, which also has a

size of 4 × N/4. Finally, we use another Harr transform to

upsample the low-resolution Îr by a factor of 2 to reach the

original resolution.

As in Fig. 5, several invertible blocks of our CINN have

fed by the detail features, Id, obtained by the decomposition

in Sect. 3.2, and the auxiliary features, Fa, generated by the

ANet (see Sect. 3.3.2). In the invertible blocks, the detail

features are normalized first by ActNorm (Kingma & Dhari-

wal, 2018) for a more stable convergence, subsequently, the

normalized features are processed by an invertible convolu-

tion with size of 5 × 5 (Emiel et al., 2020). Compared with

an invertible convolution with size of 1 × 1 in the previous

INN, the invertible convolution with size of 5 × 5 not only

enhances the channel interaction,8 but also improves spatial

interaction. The invertible convolution with size of 5×5 can

be built using the following matrix exponential with the man-

7 The Harr transform is an invertible transform that satisfies the volume-

preserving constraint by increasing the number of channels when

downsampling the image.

8 We mentioned that INN has a small capacity due to feature splitting.

Thus, enhancing the channel interaction is very important for INN to

increase the capacity.
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ner of Taylor expansion (please, refer to (Emiel et al., 2020)

for more details):

exp(M) = I +
M

1!
+

M2

2!
+ · · · =

>∑

i=0

Mi

i !
, (21)

where M is the square weight matrix of a plain 5 × 5 convo-

lution and I is the identity matrix. Accordingly, the inverse

transformation is easy to compute as follows:

exp(M)21 = exp(2M). (22)

Moreover, the detail features are split into two parts,

equally along channels. Subsequently, the split detail fea-

tures together with the auxiliary features are then processed

by a specially designed layer with the following affine cou-

pling transformation:

y1 = x1 + Ç(x2, Fa), (23)

y2 = x2 � es + ·(y1, Fa), (24)

where � represents the element-wise multiplication, x1, x2

are the split features, y1, y2 are the corresponding outputs

of the transformation, Ç and · are two learnable neural net-

works, e is the natural constant, and s is a learnable scaling

factor (Xiao et al., 2020) with the same size of x2, which can

be computed as follows:

s = 2Ã(Ã(y1, Fa)) 2 1, (25)

where Ã denotes the sigmoid function, and Ã is another learn-

able neural network. From the bottom-right part of Fig. 5, we

can find the details of the involved three neural networks,

i.e., Ç, Ã, and ·, which have the same structure. Specifically,

these neural networks all have six convolution layers and a

GFDN layer whose details can be referred to (Zamir et al.,

2022). Besides, the gating mechanism of GFDN can dynam-

ically fuse the features of the detail component (i.e., Id) and

the output of the ANet (i.e., Fa).

More in detail, the inverse of the above affine coupling

layer (i.e., Eq. 23) is given by:

x2 = (y2 2 ·(y1, Fa)) � e2s, (26)

x1 = y1 2 Ç(x2, Fa). (27)

As we can see from the above equations, Fa is viewed as

conditional information because it is used in both forward

and inverse computing. Compared to invertible blocks used

in other tasks (Xiao et al., 2020; Huang & Dragotti, 2022;

Xu & Zhang, 2021), the proposed invertible block has three

differences: (a) our invertible block introduces conditional

information to assist reasoning while maintaining invertibil-

ity, thereby achieving better performance; (b) we additionally

introduce the GFDN (Zamir et al., 2022) to fuse the detail

features and auxiliary features; (c) we apply an invertible con-

volution with a size of 5×5 (Emiel et al., 2020) to enhance the

spatial and channel interaction rather than using the invertible

convolution with a size of 1 × 1.

3.3.2 The Design of the Proposed ANet

As mentioned before, the purpose of the auxiliary network

(ANet) is to assist the CINN by utilizing all the information

(not just details) from the source images. The top-left part of

Fig. 3 shows the structure of the ANet, which mainly contains

a convolution layer and two residual blocks. Note that the

ANet and the CINN will be trained together for better learn-

ing. In Fig. 6, we show the learned features with and without

the auxiliary network. As we have seen, since the CINN could

effectively learn the detail mapping, the extracted features

are mainly with high-frequency local structures, while the

features learned by the ANet are with more low-frequency

global structures. Further, we compared the features shown

in the first and second rows of Fig. 6, respectively, it is easy

to know that the features in the first row have sharper edges,

richer textures, and less activation on the smooth area. By this

Fig. 6 Visual comparisons of the extracted features of the first invertible

block of our DCINN trained on the CAVE dataset without (third column)

and with (fourth column) the auxiliary network. The first column is the

HRMS image (top) and the corresponding Id (bottom). The second

column shows the auxiliary features Fa of the ANet
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phenomenon (also verified in the ablation study and Fig. 15

in the experiment section), we may conclude that the ANet

could extract global structures to guide the learning of local

structures.

3.4 Loss Function

Since DCINN relies upon a bidirectional computation, the

loss function used for all the involved image fusion prob-

lems consists of two items: a forward loss function that

enforces the learned residual image, Îr, to be consistent with

the ground-truth (GT) residual image, Ir, and a backward loss

function that enforces the reconstructed detail component to

be consistent with the extracted detail component. Note that

the proposed backward loss can favor DCINN in exploring

unseen datasets (see Sects. 4.1.4 and 4.2.4). The forward loss

function is:

Lf = �
(̂
Ir, Ir

)
, (28)

where Îr is the learned residual image, Ir is the known ref-

erence residual image, and � is a function that measures the

consistency between Îr and Ir. Besides, the backward loss

function is:

Lb = �(̂Id, Id), (29)

where Îd is the reconstructed detail component by the inverse

computing of CINN, i.e., Îd = CINN21(̂Ir|Fa)
9. The overall

loss function is as follows:

L = Lf + »Lb, (30)

combining the forward and backward losses through a posi-

tive balance parameter ».

This work mainly involves three image fusion tasks,

including two supervised applications (pansharpening and

HMF) and one unsupervised application (IVF).10 Thus, we

have to design different Lf and Lb for the two types of tasks.

For the supervised task, we only utilize the conventional

�1 norm for both Lf and Lb as it has been proved to have the

capacity of detail-preserving.

For the unsupervised task, i.e., IVF, we empirically find

that the backward loss function has no performance benefits.

Therefore, we set » to 0. For the forward loss function, we

refer to (Tang et al., 2022) using the structural similarity index

measure (SSIM) (Wang et al., 2003) loss and the gradient-

based loss as forward loss function. The SSIM (Wang et al.,

9 The symbol “|” indicates that CINN takes Fa as conditional features.

10 The reason why using different learning ways is given in Sect. 3.1

Even though there are different learning ways, the incorporation into a

uniform framework is not affected.

2003) loss function is given as follows:

Ls =

(
1 2 SSIM

(
Îf , Iir

))
+ ³1

(
1 2 SSIM

(
Îf , Ivi

))
,

(31)

where Îf is the fused image and ³1 is a positive parameter.

Moreover, the gradient loss function is given as follows:

Lg = ³2‖SF
(̂
If

)
2 SF

(
Ivi

)
‖2 + ³3‖SF

(̂
If

)
2 SF

(
Iir

)
‖2,

(32)

where ³2, ³3 are two positive parameters, ‖ · ‖2 stands for

the �2 norm, and SF(·) indicates the spatial frequency (SF)

operation (Eskicioglu & Fisher, 1995), which mainly reflects

texture details of the image, and is calculated as:

SF = 1 2
√

Hor2 + Ver2, (33)

where “Hor” and “Ver” denote the horizontal and vertical

gradients, respectively. The overall forward loss function for

the IVF task is as follows:

L
I V F
f = Ls + Lg. (34)

4 Experiments

This section is devoted to some experiments on three repre-

sentative fusion tasks, i.e., pansharpening, HMF, and IVF11

to validate the effectiveness of the given DCINN method

comparing with some recent SOTA approaches. We will

exhibit first the experiment settings (including datasets,

metrics, and compared methods) for each task, then quan-

titatively and qualitatively comparing the given method with

other competitive approaches on several examples. More-

over, we assess the effectiveness of our method with an

ablation study, as well as including a discussion about the

hyperparameter », which is a key parameter for our approach.

Note that our model is coded with Pytorch 1.12.1 and

trained on an NVIDIA GeForce RTX 3090 GPU. Besides,

we use the Adam optimizer (Kingma & Ba, 2014) for opti-

mization with the default setting. Moreover, the batch size

for the training is 32 for all the tasks.

11 IVF is considered a typical multi-model image fusion task addressed

in an unsupervised way.
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4.1 Pansharpening Experiments

4.1.1 Experimental Setup

Regarding the datasets, we used two benchmark remote

sensing datasets acquired by WorldView-2 (WV2) and

WorldView-3 (WV3)12 to conduct our experiments. Note

that since the GT images in pansharpening are not avail-

able, Wald’s protocol (Wald et al., 1997) is used to generate

the training and testing datasets at reduced resolution. The

simulation process of the training and testing data is reported

in (Deng et al., 2021). It mainly consists of three steps: (1)

we downsample the original PAN and the original MS image

by a scaling factor of 4 using modulation transfer function

(MTF)-based filters, then we view the downsampled PAN

image as the PAN image for training and the downsampled

MS image as the LRMS image for training; (2) the origi-

nal MS image is considered as the GT (or labeled) image

for training; (3) we upsample the LRMS image by using a

polynomial kernel with 23 coefficients (Aiazzi et al., 2002)

to obtain the upsampled version of the MS image.

Regarding the parameter setting, the spatial sizes of the

simulated LRMS and PAN images (or patches) for training

are 16 × 16 pixels and 64 × 64 pixels, respectively. We sim-

ulated 11,322 image pairs and then splitting them into 8806

samples for training and 2516 samples for validation. The

training and validation dataset can be found in (Deng et al.,

2022). The hyperparameter » of the loss function is set to 1.

Besides, our model is trained with 350 epochs, and the initial

learning rate is 1023 with decays at the 50-th, 100-th, 250-th,

and 300-th epoch by a factor of 2.

The quality metrics used to assess the performance at

reduced-resolution are three widely-used ones: Q8 (Garzelli

& Nencini, 2009), relative dimensionless global error syn-

thesis (ERGAS) (Wald, 2002), and spectral angle mapper

(SAM) (Yuhas et al., 1992). Q8 is an overall quality index

measuring both radiometric and spectral distortions, SAM

mainly measures the spectral distortion between the esti-

mated image and the GT, and ERGAS reflects a radiometric

distortion. For examples at full-resolution (i.e., using data

without any simulation step), the quality with no reference

(QNR) index (Alparone et al., 2008) is used consisting of a

spectral, D», and a spatial, DS , distortions (Alparone et al.,

2008). The ideal values are 1 for QNR and Q8, and 0 for

ERGAS, SAM, D», and DS .

For benchmarking approaches, recent SOTA traditional

and DL-based methods are chosen to evaluate the per-

formance. Specifically, traditional methods include both

representative component substitution methods (GS (Craig &

Bernard, 2000), PRACS (Choi et al., 2010), BDSD (Andrea

et al., 2007)) and classical MRA methods (as SFIM (Liu,

12 http://www.digitalglobe.com/samples?search=Imagery.

2002) and GLP-Reg (Vivone et al., 2018)). We also com-

pare our DCINN with an optimization-based method, i.e.,

LRTCFPan (Wu et al., 2023). Additionally, DL-based meth-

ods include recent representative approaches as PanNet

(Yang et al., 2017), DMDNet (Fu et al., 2020), FusionNet

(Deng et al., 2021), GPPNN (Xu et al., 2021), TDNet (Zhang

et al., 2022), LACNet (Jin et al., 2022b), and PanFormer

(Zhou et al., 2022). The selected DL-based methods are cho-

sen because they reported the SOTA performance with code

available. For completeness, we also compare our method

with two classical DL-based methods, i.e., PNN (Giuseppe

et al., 2016) and DiCNN (He et al., 2019). Note that all

the compared DL-based methods are retrained with default

parameters on the same training dataset for a fair comparison.

4.1.2 Quantitative Results

We generated 78 samples for the reduced-resolution assess-

ment and 200 samples for the full-resolution assessment.

For both the datasets, the PAN size is 256 × 256. The

results for both the assessment (at reduced and full res-

olution) are reported in Table 2. As we can see, our

DCINN achieves the best performance considering both the

reduced-resolution and full-resolution assessments. Specifi-

cally, DCINN obtains the first place considering all the three

metrics on the reduced-resolution experiments. The DL-

based methods generally perform better than the traditional

methods. Besides, the DL-based methods achieve similar

performance at full-resolution except for TDNet (Zhang et

al., 2022). While our DCINN performs much better than

the other DL-based methods at full-resolution thanks to the

invertibility that can better preserve the spatial and spectral

information. Besides, we also reported the parameter amount

of DL methods in the last column of Table 2. As we can see,

the parameter amount of DCINN is similar to GPPNN (Xu

et al., 2021) and TDNet (Zhang et al., 2022), but larger than

the other DL-based methods. Overall, the parameter amount

of most of the selected DL-based methods is comparable.

4.1.3 Visual Results

The visual comparison results on reduced-resolution exam-

ples are shown in Figs. 7 and 8. From the error maps, it is

clear that the proposed DCINN achieves minimal reconstruc-

tion loss. Moreover, we also report the visual results for the

full-resolution dataset in Fig. 9. From the close-ups (green

rectangles), all the compared DL-based methods (except for

DMDNet) get striped distortion, indicating that the spatial

fidelity of these methods is not good. Compared with the

other approaches, our method gets the best visual perfor-

mance, i.e., better color (spectral) preservation and clearer

textures.
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Table 2 Average quantitative outcomes for all the compared approaches on 78 reduced-resolution examples and 200 full-resolution examples from

the WV3 dataset

Method Reduced-Resolution Full-Resolution #Param. (M)

SAM³ ERGAS³ Q8± QNR± D»³ Ds³

GS (Craig & Bernard, 2000) 5.526±2.598 6.223±2.692 0.675±0.223 0.902±0.045 0.017±0.019 0.082±0.032 \

SFIM (Liu, 2002) 4.934±2.283 6.053±3.540 0.712±0.229 0.934±0.038 0.021±0.021 0.045±0.021 \

BDSD (Andrea et al., 2007) 5.375±2.491 5.586±2.448 0.718±0.241 0.930±0.027 0.019±0.009 0.050±0.021 \

PRACS (Choi et al., 2010) 5.133±2.470 5.791±2.537 0.698±0.231 0.914±0.044 0.017±0.016 0.069±0.032 \

GLP-Reg (Vivone et al., 2018) 4.896±2.405 5.193±2.298 0.734±0.236 0.919±0.049 0.021±0.023 0.054±0.031 \

PNN (Giuseppe et al., 2016) 3.521±1.252 3.066±1.222 0.803±0.259 0.959±0.026 0.016±0.014 0.025±0.013 0.31M

DiCNN1 (He et al., 2019) 3.411±1.283 2.998±1.062 0.810±0.254 0.946±0.032 0.016±0.016 0.038±0.020 0.18M

PanNet (Yang et al., 2017) 3.231±1.210 2.899±1.052 0.811±0.254 0.958±0.019 0.022±0.010 0.020±0.011 0.25M

DMDNet (Fu et al., 2020) 3.070±1.117 2.716±0.984 0.815±0.254 0.955±0.021 0.014±0.012 0.030±0.012 0.32M

FusionNet (Deng et al., 2021) 3.053±1.104 2.750±0.973 0.818±0.250 0.956±0.027 0.017±0.015 0.020±0.016 0.23M

GPPNN (Xu et al., 2021) 3.059±1.039 2.755±0.975 0.811±0.261 0.951±0.024 0.016±0.015 0.032±0.012 0.238M

TDNet (Zhang et al., 2022) 3.351±1.071 2.919±1.069 0.803±0.287 0.925±0.041 0.031±0.025 0.045±0.020 0.55M

LACNet (Jin et al., 2022b) 3.132±1.171 2.853±1.163 0.811±0.260 0.938±0.030 0.023±0.019 0.039±0.015 0.054M

PanFormer (Zhou et al., 2022) 3.155±1.045 4.650±4.451 0.813±0.258 0.953±0.027 0.016±0.014 0.030±0.015 0.279M

LRTCFPan (Wu et al., 2023) 4.443±1.996 4.815±2.182 0.754±2.182 0.944±0.039 0.020±0.017 0.036±0.025 \

DCINN 2.829±1.025 2.447±0.862 0.821±0.257 0.965±0.016 0.012±0.008 0.023±0.009 0.501M

The best and second results are in bold and bolditalic, respectively

Fig. 7 Visual comparisons of all the compared approaches on the reduced-resolution WV3 dataset

Fig. 8 The corresponding absolute error maps (AEMs) on the reduced-resolution WV3 dataset. For simplicity, only band 5 is shown
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Fig. 9 Visual comparisons of all the compared approaches on the full-resolution WV3 dataset

Table 3 Average quantitative outcomes of all the compared approaches

on 20 samples from WV2 dataset

Method SAM³ ERGAS³ Q8±

GS (Craig & Bernard, 2000) 6.6657 5.2616 0.7734

SFIM (Liu, 2002) 6.1848 4.7331 0.8103

BDSD (Andrea et al., 2007) 9.5727 6.4377 0.7522

PRACS (Choi et al., 2010) 6.3483 5.3019 0.7668

GLP-Reg (Vivone et al., 2018) 6.2257 4.4341 0.8278

PNN (Giuseppe et al., 2016) 7.0493 5.0363 0.8179

DiCNN1 (He et al., 2019) 6.1902 5.2940 0.7889

PanNet (Yang et al., 2017) 5.3886 4.2670 0.8398

DMDNet (Fu et al., 2020) 5.2642 4.1260 0.8493

FusionNet (Deng et al., 2021) 6.1348 5.0248 0.7922

GPPNN (Xu et al., 2021) 6.8776 4.8423 0.8246

TDNet (Zhang et al., 2022) 9.2302 6.0426 0.8082

LACNet (Jin et al., 2022b) 7.0453 5.0363 0.8179

PanFormer (Zhou et al., 2022) 5.4974 4.5421 0.8304

LRTCFPan (Wu et al., 2023) 5.6297 4.1095 0.8502

DCINN 5.4583 3.9936 0.8639

The best and second results are in bold and bolditalic, respectively

4.1.4 Network Generalization

To evaluate the generalization ability, the DL-based mod-

els trained on the WV3 dataset are further tested on the

WV2 dataset, whose results are shown in Table 3. For a fair

comparison, we directly adopt the WV2 dataset from the

PanCollection (Deng et al., 2022), which includes 20 chal-

lenging samples and is available.13 Among the compared

methods, the LDM-based techniques, i.e., PanNet (Yang et

al., 2017), DMDNet (Fu et al., 2020), and FusionNet (Deng

et al., 2021), demonstrate a better generalization ability than

other methods. The good generalization ability of LDM-

based methods comes from the fact that the complexity of the

13 https://github.com/liangjiandeng/PanCollection.

learned mapping (only for image details) is smaller than that

of LIM-based methods, which cannot lead to an important

overfitting. From the table, our DCINN achieves compara-

ble performance with the DMDNet, which showed SOTA

network generalization ability in the related literature.

4.2 HMF Experiments

4.2.1 Experimental Setup

This section mainly performs HMF experiments on CAVE
14 and Harvard (Chakrabarti & Zickler, 2011) datasets. The

CAVE dataset contains 32 HS images with 31 spectral bands,

and each band has a spatial size of 512 × 512. In the exper-

iment, we select 21 HS images for training and the rest 11

HS images are used for testing. Besides, the Harvard dataset

contains 77 HS images with 31 spectral bands, and each band

has a spatial size of 1392 × 1040. For this dataset, we ran-

domly select 10 HS images for testing and the rest 67 HS

images are used for training. Since both the datasets do not

contain LRHS and HRMS images, the original HS images

are taken as reference images (i.e., HRHS images) and LRHS

and HRMS images are generated through simulation. Before

the simulation phase, the original HS images are normalized

to [0, 1] by dividing them by 216 2 1 because we work with

16-bits data.

For data simulation, we use first the spectral response

matrix of the Nikon D70015 camera to generate HRMS

images. Following previous methods as (Dian et al., 2018),

the original spectral response matrix is normalized such that

each column sums to one. The LRHS images are generated

by blurring the reference image by a zero-mean 8 × 8 Gaus-

sian blur kernel with variance equal to 1, and, afterwards,

downsampling with the “nearest” interpolation.

14 https://www1.cs.columbia.edu/CAVE/databases/multispectral/.

15 https://maxmax.com/nikon_d700_study.
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For the parameter setting, the spatial sizes of the simulated

LRHS and HRMS image patches for training are 10 × 10

pixels and 40×40 pixels for a scaling factor of 4, and 10×10

pixels and 80×80 pixels for a scaling factor of 8. The model

is trained for 350 epochs on both CAVE and Harvard datasets.

The initial learning rate is 10−3 and is decayed in the 50-th,

100-th, 250-th, and 300-th epoch by a factor of 2.

For quality metrics, we considered three widely-used

ones, i.e., peak signal-to-noise ratio (PSNR), ERGAS (Wald,

2002), and SAM (Yuhas et al., 1992). We also evaluate the

parameter amount for each compared DL-based method. The

ideal value for the PSNR index is +∞.

Regarding the compared approaches, some recent SOTA

traditional and DL-based methods are chosen. The tradi-

tional methods include Fuse (Qi et al., 2015), CNMF (Naoto

et al., 2012), Lanaras (Lanaras et al., 2015), and HySure

(Miguel et al., 2015). Instead, the considered DL-based meth-

ods are ResTFNet (Liu et al., 2020b), SSRNet (Zhang et al.,

2021), HSRNet (Hu et al., 2022b), DBIN (Wang et al., 2019),

Mog-DCN (Dong et al., 2021), DHIF (Huang et al., 2022),

Fusformer (Hu et al., 2022a), and 3DTNet (Ma et al., 2023).

We retrain all the compared DL-based methods on the same

training dataset with their default setting for fair comparison.

4.2.2 Quantitative Results

We report first the experimental results for the scaling factor

of 8 on the CAVE dataset. As we can see from Table 4, the per-

formance of our DCINN are better than the other methods

considering all the quality metrics. Specifically, compared

with 3DTNet (Ma et al., 2023), the PSNR improvement is

about 0.83 dB. Since DL-based methods perform much bet-

ter than traditional methods, we only show the results of

DL-based methods in the following experiments on the HMF

task. The quantitative experimental results for a scaling factor

of ×4 on Harvard and CAVE are reported in Table 5. Again,

Table 4 Average metrics for all

the compared approaches on 11

samples of the CAVE dataset for

a scaling factor of 8

Method PSNR↑ SAM↓ ERGAS↓

Fuse (Qi et al., 2015) 36.92±4.468 8.77±4.83 2.64±1.783

CNMF (Naoto et al., 2012) 36.54±5.56 7.19±3.23 3.33±3.674

Lanaras (Lanaras et al., 2015) 36.93±4.197 6.85±2.646 2.56±1.645

HySure (Miguel et al., 2015) 36.86±4.668 11.66±5.593 2.83±2.299

ResTFNet (Liu et al., 2020b) 43.74±5.349 3.53±0.925 2.75±2.521

SSRNet (Zhang et al., 2021) 46.21±4.194 3.13±0.9704 2.08±1.454

HSRnet (Hu et al., 2022b) 46.68±4.476 2.91±0.856 1.85±1.267

Fusformer (Hu et al., 2022a) 47.95±7.794 2.74±1.295 1.42±2.619

DBIN (Wang et al., 2019) 48.96±4.742 2.53±0.726 0.78±0.658

Mog-DCN (Dong et al., 2021) 49.17±5.000 2.49±0.734 0.75±0.637

DHIF (Huang et al., 2022) 48.46±4.893 2.50±0.787 0.84±0.672

3DTNet (Ma et al., 2023) 49.22±4.770 2.39±.683 0.73±0.652

DCINN 50.05±5.324 2.28±0.711 0.71±0.680

The best and second results are in bold and bolditalic, respectively

Table 5 Average metrics for all the DL-based approaches on 11 samples of the CAVE dataset and 10 samples of the Harvard dataset for a scaling

factor of ×4

Method CAVE Harvard #Param. (M)

PSNR↑ SAM↓ ERGAS↓ PSNR↑ SAM↓ ERGAS↓

ResTFNet (Liu et al., 2020b) 45.58±5.465 2.82±0.700 2.36±2.587 45.93±4.352 2.61±0.693 2.56±1.319 2.387M

SSRNet (Zhang et al., 2021) 48.62±3.918 2.54±0.837 1.63±1.206 47.95±3.368 2.31±0.604 2.30±1.417 0.027M

HSRnet (Hu et al., 2022b) 50.38±3.380 2.23±0.658 1.20±0.750 48.29±3.030 2.26±0.557 1.87±0.809 0.587M

Fusformer (Hu et al., 2022a) 49.98±8.097 2.20±0.851 1.25±2.603 47.87±5.125 2.84±2.069 2.04±0.988 0.504M

DBIN (Wang et al., 2019) 50.83±4.293 2.21±0.627 1.24±1.059 47.88±3.869 2.31±0.460 1.95±0.813 0.469M

Mog-DCN (Dong et al., 2021) 51.63±4.097 2.026±0.615 1.11±0.820 47.89±4.097 2.11±0.523 1.89±0.823 7.071M

DHIF (Huang et al., 2022) 51.07±4.165 2.01±0.630 1.22±0.967 47.68±3.849 2.32±0.528 1.95±0.915 22.609M

3DTNet (Ma et al., 2023) 51.38±4.179 2.16±0.695 1.14±0.996 47.78±4.423 2.04±0.509 1.98±0.858 3.46M

DCINN 52.21±4.246 1.928±0.614 1.043±0.843 49.35±3.276 2.04±0.518 1.74±0.815 4.32M

The best and second results are in bold and bolditalic, respectively
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Fig. 10 Visual comparisons of all the compared approaches on the CAVE dataset. The false color images are generated by taking the 30th, 15th,

and 2nd bands of the fused outcomes as red (R), green (G), and blue (B) channels, respectively

DCINN consistently outperforms the other methods. More

specifically, the PSNR gains on CAVE and Harvard data are

0.585 dB and 1.06 dB, respectively. Moreover, the parame-

ter amount of DCINN is less than Mog-DCN (Dong et al.,

2021) and much less than DHIF (Huang et al., 2022) (see the

last column of Table 5), which verifies that DCINN is not

only effective but also efficient. These experiments demon-

state that DCINN can better preserve the spectral and spatial

information than the compared methods. It is worth noting

that the Harvard dataset is considered to be much harder than

CAVE dataset due to the heavy noise on the LRHS images.

The performance gain on the Harvard dataset clearly verifies

that DCINN is also robust to the noise.

4.2.3 Visual Results

The visual experimental results with the scaling factor of 8 are

shown in Fig. 10. As can be seen from the rectangular box, our

method yields the most accurate color, related to the ground-

truth image. Since it is hard to distinguish the differences in

image visual quality among the DL-based methods, we also

showed the corresponding absolute error maps (AEMs) in

Fig. 11. According to the error maps, our method obtains the

smallest reconstruction error.

4.2.4 Network Generalization

To evaluate the generalization ability, the DL-based models

trained on the Harvard dataset with a scaling factor of ×4

are further tested on the CAVE dataset with the same scaling

factor, whose results are shown in Table 6. From the table, our

DCINN obtains the second-best performance on PSNR and

ERGAS metrics while HSRNet (Hu et al., 2022b) achieves

the best performance.

Fig. 11 The corresponding absolute error maps using the reference (GT) image on the CAVE dataset. For clarity, the image intensity of the original

error maps are magnified by a factor of 5
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Table 6 Average quantitative outcomes of all the compared approaches

trained on the Harvard dataset and tested on 11 samples of the CAVE

dataset

Method PSNR↑ SAM↓ ERGAS↓

ResTFNet (Liu et al., 2020b) 25.14 21.78 20.67

SSRNet (Zhang et al., 2021) 36.88 21.98 9.88

HSRNet (Hu et al., 2022b) 42.85 5.33 2.56

FusFormer (Hu et al., 2022a) 35.44 6.11 6.75

DBIN (Wang et al., 2019) 35.55 24.49 32.88

Mog-DCN (Dong et al., 2021) 33.47 10.83 8.80

DHIF (Huang et al., 2022) 25.28 24.09 22.83

3DTNet (Ma et al., 2023) 24.18 10.37 20.65

DCINN 36.75 8.06 5.25

The best and second results are in bold and bolditalic, respectively

4.3 IVF Experiments

4.3.1 Experimental Setup

Regarding the IVF experiments, we used two benchmark

datasets, i.e., RoadScene (RS) (Xu et al., 2020) and TNO

(Alexander, 2017). The RS dataset is used for both training

and testing, and the TNO dataset is only used for testing.

Specifically, the RS dataset contains 221 pairs of aligned

infrared and RGB-visible images. We choose 201 samples

for training and 20 samples for testing. Besides, we selected

8 samples of TNO for testing. Following previous methods

such as in (Tang et al., 2022), the visible images are converted

first into the YCbCr color space and only the Y (luminance)

channel is used for fusion.

About the parameter setting, we random crop image

patches with spatial size of 128 × 128 for training. Because

the visible (VI) images have more details than the infrared

(IR) images on the TNO dataset while in the RS dataset we

have the opposite behavior, we train two models for each

dataset. The hyperparameters of the loss functions are set as

β1 = 0.05, β2 = 6 × 10−3, and β3 = 2.5 × 10−3 for the

RS dataset and β1 = 1, β2 = 1 × 10−3, and β3 = 0 for the

TNO dataset, respectively. We use the mean rule and the max

rule for the fusion of base components in the case of the RS

and TNO datasets, respectively. Our model is trained with 20

epochs with a learning rate of 5 × 10−5.

Regarding the quality metrics, we selected four commonly-

used indexes, i.e., entropy (EN) (Wesley et al., 2008), mutual

information (MI) (Qu et al., 2002), standard deviation (SD)

(Rao, 1997), and the multi-scale structural similarity index

(MS-SSIM) (Wang et al., 2003). The ideal values are +∞ for

EN, MI, and SD, and 1 for MS-SSIM. Both EN (Wesley et al.,

2008) and SD (Rao, 1997) are no-reference metrics. Specif-

ically, EN measures the amount of information in the fused

image, while SD reflects the distribution and contrast of an

image. In addition, MS-SSIM (Wang et al., 2003) and MI (Qu

et al., 2002) are used as semi-reference metrics16 calculated

by comparing the fused outcome with the source images. MS-

SSIM (Wang et al., 2003) calculates the structural similarity

between the fused image and the source images, while MI

(Qu et al., 2002) computes the mutual information between

the fused image and the source images.

Finally, about the compared approaches, nine traditional

and DL-based methods reporting SOTA performance are

selected for evaluation. Traditional methods include NSCT

(Adu et al., 2013) and GTF (Ma et al., 2016). Moreover,

some representative DL-based methods as LRRNet (Li et

al., 2023), SwinFusion (Ma et al., 2022), YDTR (Tang et

al., 2022), RFN-Nest (Li et al., 2021), DenseFuse (Li & Wu,

2019), IFCNN (Zhang et al., 2020), and U2Fusion (Xu et al.,

2022) are considered.

4.3.2 Visual Results

The qualitative results on the RS dataset are shown in Fig. 12.

From the rectangular boxes in Fig. 12, GTF (Ma et al., 2016),

RFN-Nest (Li et al., 2021), and SwinFusion (Ma et al., 2022)

show outcomes with blurring effects (see the red rectangular

box), the fused outcomes of DenseFuse (Li & Wu, 2019) and

U2Fusion (Xu et al., 2022) cannot retain background details

(see the blue rectangular boxes), YDTR (Tang et al., 2022)

generates artifacts (see the blue rectangular box). LRRNet

(Li et al., 2023) generates blur salient targets (see the green

rectangular box). Instead, DCINN not only preserves both

details from VI images and salient targets from IR images,

but also produces less distortion. The visual results on the

TNO dataset are also depicted in Fig. 13. From Fig. 13, we

can draw a similar conclusion as for the RS dataset. DCINN

generally yields very competitive visual quality.

4.3.3 Quantitative Results

The quantitative results are reported in Table 7. For the RS

dataset, DCINN obtains the best performance considering all

the metrics. GTF (Ma et al., 2016) performs very competi-

tively on EN (Wesley et al., 2008), MI (Qu et al., 2002), and

SD (Rao, 1997), however, it achieves the worst MS-SSIM

(Wang et al., 2003). For the TNO dataset, DCINN ranks sec-

ond for the MS-SSIM (Wang et al., 2003) and SD (Rao,

1997) metrics. Although YDTR (Tang et al., 2022) obtains

satisfactory quantitative results, its fused outcomes contain

significant artifacts (see Sect. 4.3.2). The promising quanti-

tative results verify that DCINN can better persevere details.

Besides, the parameter amount of DCINN is smaller than

U2Fusion (Xu et al., 2022) but larger than the other DL-

16 Both MS-SSIM and MI can be used as reference metrics, but for the

IVF task, the references are not available.
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Fig. 12 Visual comparisons of all the compared approaches on the RoadScene dataset

Fig. 13 Visual comparisons of all the compared approaches on the TNO dataset

Table 7 Average metrics of all the compared DL-based approaches on 20 samples of the RoadScene dataset and 8 samples of the TNO dataset,

respectively

Method RoadScene TNO #Param. (M)

EN↑ MI↑ SD↑ MS-SSIM↑ EN↑ MI↑ SD↑ MS-SSIM↑

NSCT (Adu et al., 2013) 6.8707 13.7414 54.4155 0.8424 6.2322 12.4644 45.7987 0.8856 \

GTF (Ma et al., 2016) 7.2658 14.5316 74.6608 0.7009 6.3643 12.7287 52.8844 0.8264 \

IFCNN (Zhang et al., 2020) 7.0541 14.1082 62.3081 0.8418 6.5908 13.1816 63.3083 0.9171 0.083M

RFN-Nest (Li et al., 2021) 7.1470 14.2939 67.5769 0.7859 6.6243 13.2486 60.2526 0.6037 30.096M

DenseFuse (Li & Wu, 2019) 6.8248 13.6496 53.2366 0.8289 6.1828 12.3656 44.4600 0.8777 0.890M

U2Fusion (Xu et al., 2022) 6.8554 13.7107 54.2737 0.8349 6.2173 12.4347 45.5796 0.8264 2.636M

YDTR (Tang et al., 2022) 7.2438 14.4877 70.9238 0.8149 6.7668 13.5335 67.2590 0.8407 0.871M

SwinFusion (Ma et al., 2022) 7.1779 14.3559 69.4970 0.8490 6.5979 13.1958 72.6153 0.9061 0.973M

LRRNet (Li et al., 2023) 7.2684 14.5369 60.9503 0.7803 6.6269 13.2539 51.4271 0.7263 0.049M

DCINN 7.3011 14.6021 75.9048 0.8653 6.6371 13.2743 67.9157 0.8896 2.521M

The proposed DCINN uses the mean rule and max rule for the fusion of base components on the RS and TNO datasets, respectively. The best and

second results are in bold and bolditalic, respectively

based methods. The parameter amount of DCINN could be

potentially reduced by using fewer Inv Blocks.

4.4 Ablation Study and Discussion

This section is devoted to a series of ablation studies to ver-

ify the effectiveness of each contribution of the proposed

DCINN method. Moreover, we will discuss the influence of

a key hyperparameter in our given method. Besides, we will

study the effects of the fusion rules on the performances for

the IVF task.

4.4.1 Effect of the ANet

Unlike previous LDM-based methods that only use details

for inference, we design an auxiliary network to make full
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Table 8 Ablation experiments on the three image fusion tasks

Pansharpening (WV3 ×4) HMF (CAVE ×8) IVF (RS)

SAM↓ ERGAS↓ Q8↑ PSNR↑ SAM↓ ERGAS↓ EN↑ MI↑ SD↑ MS-SSIM↑

W/O ANet 2.8861±1.042 2.536±0.906 0.82±0.255 49.56±5.603 2.39±0.751 0.77±0.846 6.9430 13.8861 56.4254 0.8591

W/O Detail 2.897±1.040 2.534±0.928 0.822±0.254 48.68±4.959 2.67±0.792 0.82±0.705 7.2896 14.5793 75.3216 0.8457

W/O CINN 2.9829±1.040 2.740±1.166 0.819±0.256 48.52±5.193 2.65±0.815 0.82±0.781 6.9173 13.8346 56.0078 0.8747

DCINN 2.829±1.025 2.447±0.862 0.821±0.257 50.05±5.324 2.28±0.711 0.71±0.680 7.3011 14.6021 75.9048 0.8653

The best and second results are in bold and bolditalic, respectively

Fig. 14 a The original structure of Fusformer; b Our version of Fus-

former

use of the information of the source images to help the infer-

ence. To assess its validity, we remove the ANet and report

the experimental results, which are marked as “W/O ANet".

Table 8 shows that its performance is obviously worse than

the one of the proposed DCINN considering all the metrics

on the three image fusion tasks. As shown by the first row

of Fig. 15, without the ANet, the fused image shows a clear

spatial distortion. This result indicates that using only details

for reasoning is not enough and the ANet proposed in our

method can help to exploit more information for reasoning,

thus getting better performance.

4.4.2 Effect of CINN

To verify the effectiveness of our CINN, we conducted an

experiment where we replaced the CINN with ResNet (He

et al., 2016) to learn detail mapping. Meanwhile, we also

eliminate the auxiliary network. For a fair comparison, we

set the parameters of ResNet (He et al., 2016) to be roughly

the same as our CINN. This model is marked with “W/O

Fig. 15 Comparison of the fused images under the different settings

CINN”. Table 8 reports the experimental results showing that

replacing CINN with ResNet (He et al., 2016) leads to a huge

performance drop. As shown by the third row of Fig. 15, the

fused image shows a large reconstruction error on the edges,

which points out that CINN can help to preserve details with

its lossless ability.

4.4.3 Effect of LDM

Unlike most of the previously developed methods, we pro-

pose to learn the detail mapping rather than LIM. To validate

its effectiveness, we delete the ANet applying INN with

LIM. As mentioned before, the INN requires the volume-

preserving, however, this requirement cannot be satisfied for
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Table 9 Average metrics for the

Fusformer (Hu et al., 2022a) on

11 samples of the CAVE dataset

for a scaling factor of ×4

Method PSNR↑ SAM↓ ERGAS↓

Fusformer 49.98±8.097 2.20±0.851 1.25±2.603

Fusformer+Detail 50.70±3.643 2.22±0.666 1.20±0.775

DCINN 52.21±4.246 1.928±0.614 1.04±0.843

The best and second results are in bold and bolditalic, respectively

the involved image fusion tasks. To solve this problem, we

propose two strategies for two different cases.

Case1 : For the IVF task, where the total size of the source

images is bigger than the fused image, we adopt the

strategy that has been widely used for the image

denoising (Huang & Dragotti, 2022), the image

rescaling (Xiao et al., 2020), and the image com-

pression (Xu & Zhang, 2021). Specifically, the INN

generates a fused image and a redundant variable

that is assumed to follow a Gaussian distribution.

The redundant variable serves to get the total size of

outputs equal to the total size of inputs. We enforce

the redundant variable following a Gaussian distri-

bution to make sure that it contains no information

related to the source images.

Case2 : For the pansharpening and HMF tasks, where the

size of the source images is much smaller than the

target image, there is no work to take a cue. In this

paper, we propose to resize and replicate the source

images to make their total sizes the same as the size

of the target image.

This variant model is marked as “W/O Detail”. According to

Table 8 and Fig. 15, this variant achieves much worse perfor-

mance than DCINN in both the cases. For the first case, as

shown by the second row of the first column in Fig. 15, the

fused outcome losses important visible details, which is due

to the fact that the redundant variable still carries important

information. For the second case, the degenerated perfor-

mance is due to the low capacity of INN, which is not enough

to model the complex image mapping.

4.4.4 Effect of the Decomposition Module for HMF Task

Based on the observation model of the HMF task, we pro-

posed a new method to transform the image mapping into a

detail mapping as shown in Eqs. (7) and (14). Our method can

use any DL-based architecture to learn the detail mapping. To

study its novelty, we apply it to Fusformer (Hu et al., 2022a),

which is a recent LIM-based method (see the flowchart in

Fig. 14a). More specifically, we inserted Fusformer into our

detail framework as shown in Fig. 14b, and Table 9 reports the

Fig. 16 The effect of λ on the full-resolution (using the QNR metric),

the reduced-resolution (using the ERGAS metric), and the generaliza-

tion performance (using the ERGAS metric) for the pansharpening task

exploiting the WV3 dataset

quantitative results.17 As we can see, simply using Fusformer

to learn the proposed detail mapping achieves a PSNR gain of

about 0.7dB. In addition, the standard deviation is decreased,

which shows that learning the proposed detail mapping helps

achieving more robust performance.

4.4.5 Discussion on the Hyperparameter �

Recalling the loss function in Sect. 3.4, apart from the for-

ward loss function to train DCINN on the pansharpening

task, we also incorporate a backward loss function that

enforces the reconstructed detail component to be consis-

tent with the original detail component. The weight of the

forward and backward losses are balanced by λ. To dis-

cuss the effectiveness of the key weighting parameter λ,

we conducted several experiments at reduced-resolution and

full-resolution, as well as showing the generalization perfor-

mance, see Fig. 16. For simplicity, we only show the ERGAS

at reduced-resolution and the QNR at full-resolution. λ has

little influence at reduced-resolution and full-resolution but,

instead, it has a great influence for the generalization ability.

When λ = 0, DCINN achieves the worst performance, which

implies that the backward loss improves the generalization

performance, while DCINN achieves the best performance

when λ = 1.

17 DCINN can be just seen as an upper bound.
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Table 10 Ablation experiments

for the effects of fusion rules of

the proposed DCINN on the

TNO dataset

Base Rule Detail Rule EN↑ MI↑ SD↑ MS-SSIM↑

Mean Mean 6.3465 12.6930 51.9685 0.9004

Mean Max 6.3507 12.7014 52.0458 0.8991

Max Mean 6.6371 13.2743 67.9157 0.8896

Max Max 6.5333 13.0666 63.1392 0.9023

IFCNN Mean 6.6028 13.2056 67.1648 0.9109

IFCNN Max 6.5859 13.1718 67.0246 0.9042

The best and second results are in bold and bolditalic, respectively

Fig. 17 Visual comparisons of our DCINN using several fusion rules on the TNO dataset, where the caption “DCINN (Mean+Max)” denotes the

DCINN with mean rule for the base fusion and max rule for detail fusion, respectively

Table 11 Average metrics of all

the compared approaches on 20

samples of the Harvard medical

image dataset for the task of

MRI-CT image fusion

Method EN↑ MI↑ SD↑ MS-SSIM↑

U2Fusion (Xu et al., 2022) 4.4808 8.9616 58.4926 0.8625

IFCNN (Zhang et al., 2020) 4.4958 8.9916 78.5851 0.9410

SwinFusion (Ma et al., 2022) 4.0171 8.0342 89.7986 0.9352

DCINN (Max+Mean) 4.3135 8.6270 89.6357 0.9431

DCINN (IFCNN+Mean) 4.5304 9.0608 82.7192 0.9435

The best and second results are in bold and bolditalic, respectively

4.4.6 Effect of the Fusion Rules for IVF Task

For the IVF problem, the final detail component and the

base component are obtained by fusing the detail compo-

nents and base components of the source images exploiting

some fusion rules. To study the effects of the fusion rules, we

conducted experiments on the TNO dataset. Table 10 reports

the quantitative results. As we can see, using the max rule for

base fusion significantly improves the performance. More-

over, using the SOTA fusion model, i.e., IFCNN (Zhang et

al., 2020)18 to fuse the base components also improves the

18 The reasons we chose IFCNN rather than U2Fusion or YDTR are

that IFCNN yields better visual quality than U2Fusion and YDTR tends

to generate artifacts.

performance. While using the mean rule or the max rule for

the detail fusion has minimal effects on the performance. We

also show the related results in Fig. 17. We can note that the

fused products using the max rule or IFCNN (Zhang et al.,

2020) for base fusion generate more details.

4.5 Extension: Medical Image Fusion Experiments

In this section, we extend DCINN to a typical image fusion

task (MIF), namely an MRI-CT image fusion task. We collect

360 pairs of MRI and CT images from the Harvard medical

image dataset,19 in which 340 pairs are used for training and

19 http://www.med.harvard.edu/AANLIB/home.htm.
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Fig. 18 Visual comparisons on the Harvard medical image dataset

20 pairs are used for testing. For a fair comparison, we employ

the same loss function as SwinFusion (Ma et al., 2022) to

train our DCINN, and the hyperparameters involved in the

loss function are also set to SwinFusion (Ma et al., 2022). We

compare the proposed DCINN with SwinFusion (Ma et al.,

2022), U2Fusion (Xu et al., 2022), and IFCNN (Zhang et al.,

2020) for this medical image fusion application. Moreover,

we also report the experimental results of DCINN with differ-

ent base fusion rules.20 DCINN with the different fusion rules

20 We simply adopt the mean rule as detail fusion rule.

are named “DCINN (base fusion rule + detail fusion rule)”,

i.e., “DCINN (Max+Mean)” denotes the DCINN with the

max rule as base fusion rule and mean rule as detail fusion

rule in Table 11 and Fig. 18. According to Table 11, the pro-

posed DCINN that uses IFCNN (Zhang et al., 2020) as base

fusion rule outperforms all the competitors on all the met-

rics. Besides, the proposed DCINN that uses the max fusion

rule performs very well against the three compared methods,

i.e., IFCNN (Zhang et al., 2020), U2Fusion (Xu et al., 2022),

and SwinFusion (Ma et al., 2022), and slightly worse than

our DCINN using IFCNN as base fusion rule. In addition,

according to Fig. 18, both the versions of our DCINN achieve

promising visual results, especially for the proposed DCINN

with IFCNN (Zhang et al., 2020) as fusion rule.

5 Conclusion

In this paper, we observed that LIM-based approaches, LDM-

based methods, and INN have complementary advantages

and disadvantages when dealing with image fusion chal-

lenges. Based on our findings, we proposed the DCINN

paradigm to capitalize on their advantages while avoiding

their disadvantages. The given DCINN has three core com-

ponents: a decomposition module that transforms the source

images into detail and base components that allow learning

detail mapping; an ANet that extracts abundant auxiliary fea-

tures directly from the source images; and a CINN module

that is conditioned on the auxiliary features to learn the detail

mapping. For the pansharpening, HMF, and IVF tasks, we

compared the proposed DCINN and some SOTA approaches.

Extensive experiments showed that the DCINN method

achieves superior quantitative performance and visual qual-

ity. Moreover, during cross-dataset evaluation, the proposed

DCINN exhibited very competitive generalization perfor-

mance on the pansharpening task. In addition, we conducted

thorough ablation studies to validate the effectiveness of our

novel design. The experimental analysis demonstrated that:

(a) using the ANet to extract auxiliary features helps CINN

to better learn the detail mapping providing global features;

(b) compared to widely-used DL architectures, the CINN can

better preserve image details; and (c) using the INN to learn

image mapping can result in degraded performance due to

the INN low capacity. Furthermore, our DCINN is capable of

solving multi-focus image fusion and multi-exposure image

fusion challenges, which will represent our future research

topics exploiting the proposed paradigm.
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