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A B S T R A C T

Existing image fusion methods primarily focus on solving single-task fusion problems, overlooking the potential
information complementarity among multiple fusion tasks. Additionally, there has been no prior research in
the field of image fusion that explores the mixed training of labeled and unlabeled data for different fusion
tasks. To address these gaps, this paper introduces a novel multi-task semi-supervised learning approach to
construct a general image fusion framework. This framework not only facilitates collaborative training for
multiple fusion tasks, thereby achieving effective information complementarity among datasets from different
fusion tasks, but also promotes the (unsupervised) learning of unlabeled data via the (supervised) learning
of labeled data. Regarding the specific network module, we propose a so-called pseudo-siamese Laplacian
pyramid transformer (PSLPT), which can effectively distinguish information at different frequencies in source
images and discriminatively fuse features from distinct frequencies. More specifically, we take datasets of
four typical image fusion tasks into the same PSLPT for weight updates, yielding the final general fusion
model. Extensive experiments demonstrate that the obtained general fusion model exhibits promising outcomes
for all four image fusion tasks, both visually and quantitatively. Moreover, comprehensive ablation and
discussion experiments corroborate the effectiveness of the proposed method. The code is available at https:
//github.com/wwhappylife/A-general-image-fusion-framework-using-multi-task-semi-supervised-learning.

1. Introduction

Image fusion has extensive applications in various fields such as
medicine, remote sensing [5–8], and industry [9]. Due to the limita-
tions of optical imaging devices, a single source of sensor can only
capture a portion of the scene information. For example, the images ob-
tained from infrared imaging devices only contain saliency information
in the infrared spectrum and lack the detailed information captured in
the visible light spectrum. The objective of image fusion is to generate
a synthesized image by integrating complementary information from
multiple source images. Typical image fusion tasks include multi-focus
image fusion (MFF), multi-exposure image fusion (MEF), infrared and
visible light image fusion (IVF), multi-modal medical image fusion
(MMF), remote sensing image pansharpening [10,11], and hyperspec-
tral image fusion [12–14]. However, designing a general image fusion
framework that incorporates both pansharpening and hyperspectral
image fusion is challenging due to the large number of spectral bands
in hyperspectral and multispectral images. In this work, we primarily
focus on MFF, MEF, IVF, and MMF. Fig. 1 illustrates different image
fusion tasks in a schematic diagram format.
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Traditional image fusion methods rely on fixed image transforma-
tions, image decomposition techniques, and handcrafted fusion rules
that lack representation ability. For example, the Laplacian pyramid
approach decomposes the source image into components of different
frequencies through multi-scale decomposition and performs fusion on
these components individually. Due to its powerful representation capa-
bilities, deep learning (DL) -based image fusion methods have become
mainstream. Although deep learning-based image fusion methods have
achieved good results, they still face two issues.

On one hand, many existing methods primarily focus on learning
individual image tasks and overlook the potential complementary in-
formation among different image tasks. For example, an important
goal of many image fusion tasks, such as IVF and MMF, is to preserve
detailed information from the source images. However, data associated
with the IVF and MMF tasks often lack sufficient detailed information.
Consequently, models trained solely on IVF or MMF task-related data
may lack the ability to preserve detailed information effectively. On
the contrary, natural images in the MEF and MFF tasks contain rich
detailed information. Leveraging such data, we can help the model to
improve its ability to preserve detailed information. More specifically,
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Fig. 1. Schematic illustration of various image fusion tasks, i.e., MFF, MEF, IVF, and MMF. First row, source images. Second row, results of corresponding image fusion tasks
obtained by state-of-the-art (SOTA) single-task training-based image fusion methods, i.e., zero-shot multi-focus image fusion (ZMFF) [1], intrinsic image decomposition (IID) [2],
correlation-driven dual-branch image fusion (CDDFuse) [3], general semantic-guided network (GeSeNet) [4], and the proposed multi-task semi-supervised learning method.

most image fusion methods rely on unsupervised learning, which poses
challenges due to the lack of labeled data. These methods often rely
on complex loss functions and model-tuning techniques to compensate
for the absence of labels. We believe that supervised training can
compensate for the limitations of unsupervised training. One piece of
evidence supporting this is the fact that the image fusion framework
based on convolutional neural network (IFCNN) [15], which is solely
trained on data related to the MFF task, can generalize to multiple
image fusion tasks.

Beyond the above-mentioned methods, many current approaches
employ manually designed simple fusion rules, e.g., the direct-average
and choose-max rules, to fuse the features of source images, without
distinguishing between the multi-frequency information present in the
source images. However, in image fusion tasks, an important objective
is to preserve the high-frequency details of the source images, e.g., the
visible details for the IVF tasks, and the foreground and background
details for the MFF task. Therefore, some image fusion methods attempt
to decompose the source image into high-frequency and low-frequency
components to better preserve high-frequency information. For exam-
ple, the work in [16] employs mean filtering to decompose the source
image into high-frequency and low-frequency components, which are
then fused separately. On the other hand, the work in [17] uses an
autoencoder to learn a well-designed loss function for decomposing
the source image into high-frequency and low-frequency features. The
former relies on manually designed filters, which lack flexibility, while
the latter is overly complex and unable to capture multiple frequency
features. Additionally, many image fusion methods utilize simple fusion
rules, and different methods employ different fusion rules. For example,
IFCNN [15] uses the choose-max rule, the work in [16] employs the
direct-average rule, and the work in [18] exploits the ā1 norm as
a fusion rule. Instead of relying on a single fusion rule, it may be
beneficial to explore more advanced fusion strategies that can adapt to
the specific characteristics of the images and the fusion task at hand.
This flexibility can help improve the overall performance and quality
of the image fusion results.

Inspired by the traditional Laplacian pyramid, we propose the
PSLPT to incorporate different fusion rules for fusing the multi-freque-
ncy features of source images. Contrary to previous Laplacian pyramid
networks that directly send all the source images into a single network
to extract features with convolutional layers, PSLPT decomposes a pair
of source images into features at multiple frequencies using Transform-
ers. The benefit is that it allows for a more flexible fusion of local and
global features at different frequencies from the source images. More in
detail, PSLPT consists of two encoders, fusion modules, and a decoder.
Each encoder and decoder form a Laplacian pyramid network, which
automatically decomposes the source images into features at different
frequencies by learning to reconstruct the source images. The fusion
modules then adaptively fuse features at different frequencies from the

source images. The fused features are subsequently passed through the
decoder to generate the fusion result. This approach enables dynamic
fusion of multi-frequency features with different learned fusion rules.

To extract complementary information from multiple image fusion
tasks and leverage supervised learning to enhance unsupervised learn-
ing, we propose a multi-task semi-supervised training framework that
includes two training stages. In the first stage, we pre-train the model
using labeled data from the MFF and MEF tasks. Since these labeled
data are natural images with rich details, the model can better preserve
the details of the source images during this stage. Considering the
significant exposure differences in the source images of the MEF task, it
becomes challenging for the model to fit such data. On the other hand,
the images related to the MFF task are all normally exposed. Therefore,
multi-task learning can facilitate learning in the MEF task.

Although the model trained in the first stage performs well on the
MFF and MEF tasks, it does not generalize well to the IVF task. This is
because the IVF task requires the model to generate fused images with
an intensity that closely matches the intensity of the source images.
However, this goal conflicts with the objective of the MEF, which aims
to fuse overexposed and underexposed images into normally exposed
images, meaning that the MEF requires the fused image to have a
different intensity compared to the source images. To address this issue,
in the second training stage, we fix the parameters of the encoder and
decoder and save the parameters of the fusion modules of the PSLPT
trained in the first stage for handling the MEF and MFF tasks. We
only train another set of fusion modules separately to handle the IVF
task and the MMF task. Since we only train new fusion modules, a
minimal number of iterations is sufficient for the model to fit the data in
the IVF task. Therefore, we perform semi-supervised fine-tuning using
unlabeled data from the IVF and MMF tasks, as well as the labeled
data from the first stage. More specifically, we incorporate unlabeled
data from both IVF and MMF tasks for unsupervised training, aiming to
enhance the model’s generalization ability for both the IVF and MMF
tasks. At the same time, we still leverage the multi-task supervised
training from the first stage to enhance unsupervised learning.

We train a single PSLPT model with two sets of fusion modules using
the proposed multi-task semi-supervised training framework on nine
datasets related to four image fusion tasks. Afterward, we directly test
this single PSLPT model on these four image fusion tasks. Extensive
experiments demonstrate that our PSLPT has achieved highly competi-
tive performance. The results of the ablation experiments lead to the
conclusions that (i) multi-task semi-supervised learning can improve
the generalization ability across various image fusion tasks, (ii) the
fused images generated using our proposed learned fusion rules exhibit
more details, higher contrast, and lower noise in terms of visual quality
compared to the images generated using simple fusion rules, validating
the effectiveness of the learned fusion rule.

In summary, the contribution of our work is three-fold:
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Fig. 2. A comparison of (a) the single-task learning-based methods and (b) our multi-task semi-supervised learning-based learning framework. Compared to methods based on
single-task learning, our approach can extract complementary information from multi-task data and effectively utilize labeled data to guide the learning of unlabeled data.

Fig. 3. Comparison of different feature fusion methods. Compared to direct fusion methods and methods that separately fuse base components and detail components, the proposed
frequency-adaptive fusion method utilizes a transformer-based Laplacian pyramid to decompose the source image into different frequency bands. Subsequently, a transformer-based
fusion rule generator is employed to generate fusion rules, which are then used to fuse the features of different frequency bands separately. This approach enables a more refined
fusion.

• To address the general image fusion problem, we propose a new
paradigm for general image fusion from both network architec-
ture design and model training perspectives. Experimental results
on four image fusion tasks show that the proposed method can
achieve very competitive performance. The ablation experiments
verify the novelty of the proposed method.
• In terms of model training, we propose a multi-task semi-superv
ised training framework to extract complementary information
from multiple image fusion tasks and leverage supervised learning
to enhance unsupervised learning, thereby improving the model’s
generalization ability.
• In terms of network architecture design, we propose the so-called
PSLPT, which decomposes the source images into features at
multiple frequencies and employs learned fusion rules to fuse
them separately. This enables us to obtain more accurate fusion
results.

The paper is organized as follows. Section 2 discusses related works
to provide context for this study; Section 3 presents a detailed expla-
nation of the proposed method; Section 4 showcases the effectiveness
of the proposed method through a series of extensive experiments.
Finally, Section 5 concludes the paper, summarizing the findings and
contributions.

2. Related work

2.1. Laplacian pyramid for image fusion

The Laplacian pyramid is an image pyramid structure used to
decompose an image into different frequency bands. It consists of a
Gaussian pyramid and a difference pyramid, which are created through

successive downsampling and upsampling operations. The traditional
Laplacian pyramid uses hand-designed filters and downsampling to
decompose images into components of different frequencies. It has been
widely applied in many image fusion tasks, such as remote sensing
image fusion [19–21], MFF [22,23], MMIF [24,25], IVF [26], and
MEF [27,28]. Inspired by these traditional methods, some Laplacian
pyramid networks [29–33] for image fusion have been proposed. For
example, the work in [30] decomposes first the source image using
the traditional Laplacian pyramid obtaining the multi-frequency com-
ponents of the source image, and then uses a neural network to fuse
them, finally getting the fused image through inverse transformation.
Instead, the work in [31] exploits a learnable network to replace the
hand-designed filters in the traditional Laplacian pyramid and builds
an end-to-end Laplacian pyramid network.

Our method is also inspired by the traditional Laplacian pyramid,
but it differs from the existing Laplacian pyramid networks for two
points: (i) Unlike previous methods that solely rely on a single Lapla-
cian network for image fusion, our PSLPT consists of two encoders
and a shared decoder. This unique architecture enables PSLPT to not
only learn image fusion but also learn to reconstruct the source images.
This dual encoding scheme ensures that the network can capture and
represent the diverse frequency characteristics present in the source
images. (ii) We use Transformer to extract features, while these meth-
ods use convolutional networks to extract features. We believe that
Transformer is better at extracting global features and is more suitable
for image fusion tasks. Before our method, PPT [34] also employed
a pyramid transformer structure. However, there are two main dif-
ferences between our work and the one in [34]. First, our PSLPT is
based on the Laplacian pyramid structure. It is used to decompose the
source images into features of different frequencies. On the other hand,
PPT [34] does not rely on the Laplacian pyramid structure. Instead, it
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adopts a multi-scale structure to aggregate multi-scale features from
the source images. Second, PPT [34] adopts a patch-based transformer
approach. Specifically, the source image is first divided into different
image patches, which are then processed by the transformer to extract
features. Finally, these feature patches are used to generate the output
image. In other words, this type of transformer can only handle image
patches rather than the entire image. On the other hand, our PSLPT
directly processes the source image as a whole without the need for
partitioning it into image patches.

2.2. Learned fusion rules

Currently, most image fusion methods employ simple fusion rules,
and only a very few works have explored the use of learned fusion rules.
For example, the fusion rules in the work of [35] are divided into spatial
attention-based fusion rules and channel attention-based fusion rules,
with only the channel attention-based fusion rule being learnable. In
contrast to [35], we learn the fusion rules based on spatial attention.
Although the work in [36] learns the fusion rules based on spatial
attention, their fusion rule is applied to the image domain, whereas
our learned fusion rules are used for feature fusion. Additionally, we
employ transformers to learn fusion rules (see Fig. 3), while the work
in [35] and the work in [36] both use CNNs to learn fusion rules.

Compared to these two methods, we believe that our method has the
following three advantages: First, employing the module for learning
fusion rules based on spatial attention allows our method to effec-
tively capture and combine relevant spatial information from different
source images. Second, fusing in the feature space maximizes the
utilization of deep learning’s representation power, and this approach
is also adopted by most deep learning-based image fusion methods.
Moreover, by utilizing transformers to learn fusion rules, we leverage
their strengths in capturing long-range dependencies and modeling
complex relationships. This allows us to capture more comprehensive
and context-aware fusion patterns, potentially leading to better fusion
performance compared to methods that rely on CNNs.

2.3. Image fusion methods based on single-task training

Most image fusion methods are based on single-task training, which
means that such methods can either only solve a single image fusion
task (see Fig. 2(a)) or require the training of separate models with
the same network architecture but different parameters for each image
fusion task. These kinds of methods can generally be categorized into
three types. The first type [37–40], directly learns the mapping for
image fusion. These methods focus on constructing networks with
strong representation capabilities and designing more effective loss
functions. Due to the powerful modeling capabilities of transformers in
capturing global features, there have been several image fusion studies
based on them. The second type [3,41–44] first learns to reconstruct the
source images and then learns the mapping for image fusion, enabling
a better understanding of the information from different modalities
in the source images. For example, the work in [41] utilizes a low-
rank representation model to decompose a pair of source images into
corresponding dictionaries and low-rank coefficients. The dictionaries
and coefficients are fused separately to generate the fused image.
The third type of method employs generative adversarial networks
(GANs) to learn the mapping of the distribution for image fusion. These
methods aim to improve the perceptual quality of the fused images.
Representative methods in this category include [45–47], and [48].

In general, single-task training-based methods can only exploit data
information that is relevant to the specific task at hand and cannot
leverage cross-task data information.

2.4. Image fusion methods based on multi-task training

At present, there are indeed very few image fusion methods based
on multi-task or semi-supervised learning. To our knowledge, the uni-
fied unsupervised image fusion network (U2Fusion) [49] is the only
image fusion method based on multi-task learning. U2Fusion [49]
employs a continual learning approach to utilize unlabeled data from
multiple image fusion tasks to train a unified fusion model. However,
U2Fusion [49] does not make use of valuable labeled data.

Compared to U2Fusion [49], our method has several advantages.
First, we employ a multi-task semi-supervised training approach, which
allows us to effectively utilize valuable labeled data to train the model.
Second, unlike U2Fusion [49], which trains a single model for all tasks
and may not generalize well to multiple image fusion tasks, we train
universal encoders and decoders for all image fusion tasks. Addition-
ally, we use two sets of fusion modules to handle MFF, MEF and IVF,
MMF tasks separately. This flexible design balances both efficiency and
enhances the model’s generalization capability.

2.5. Motivation

In this work, our objective is to train a single model to handle
multiple image fusion tasks. Existing image fusion methods primarily
focus on single-task training using unsupervised learning, overlooking
the potential complementary information among multiple image fusion
tasks. Furthermore, they neglect the fact that the datasets related
to image fusion tasks contain both labeled and unlabeled data. To
address these issues, we propose a multi-task semi-supervised learning
framework, see Fig. 2(b). In our framework, we extract complementary
information from different datasets associated with image fusion tasks
by simultaneously learning multiple image fusion tasks. We lever-
age semi-supervised learning to enhance the unsupervised learning of
unlabeled data by utilizing the supervision provided by labeled data.

Additionally, most existing image fusion networks indiscriminately
fuse different frequency features from source images using a simple
fusion rule, see e.g., Fig. 3. To overcome this limitation, we introduce
PSLPT to decompose source images into features at different frequen-
cies. We then exploit the learned fusion rules to achieve a more precise
and flexible fusion of features at different frequencies.

3. Proposed method

This section introduces the pseudo-siamese Laplacian pyramid trans-
former (PSLPT), which decomposes the source image into multi-frequ-
ency features at multiple levels and employs learned fusion rules
to fuse these features to get a fused outcome, see Section 3.1. To
extract complementary information from different image fusion tasks
and leverage the learning from labeled data to assist the learning
from unlabeled data, we propose a multi-task semi-supervised training
framework for better addressing the general image fusion problem, see
Section 3.2.

3.1. PSLPT

To apply different fusion rules to the components of varying fre-
quencies in the source images, inspired by the Laplacian pyramid, we
propose the PSLPT as shown in Fig. 4.
Overall pipeline. Given a pair of source images, I1 and I2, PSLPT first
extracts multi-frequency features from the source images using a pair
of independent encoders. Then, the extracted features can be further
fused or directly fed into the encoder to generate the fused outcome or
reconstruct the source images. To obtain multi-scale features, inspired
by the decomposition of the Laplacian pyramid, the encoder repeat-
edly extracts features from the source image and downsamples them,
resulting in different levels or frequency bands of features. Conversely,
the decoder extracts features from the encoder’s features layer by layer
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Fig. 4. The overall structure of the proposed pseudo-siamese Laplacian pyramid transformer (PSLPT). It is composed of two encoders that decompose the source images (i.e., I1
and I2) into the low-frequency features (F

l
1
and F l

2
) and the high-frequency components (F ℎ1

1
, F ℎ2

1
, F ℎ3

1
and F ℎ1

2
, F ℎ2

2
, F ℎ3

2
). A shared decoder is responsible for image reconstruction

and image fusion. (a) The flowchart of the reconstruction of the source images; (b) the flowchart of the generation of the fusion product; (c) the detailed structures of the encoders
and the decoder; (d) the detailed structure of the frequency-adaptive fusion (FAF) modules.

and upsamples them to reconstruct the image. A pair of encoder and
decoder forms the structure of the Laplacian pyramid, and a trans-
former is used to extract features at each level. Therefore, we refer to
this structure as the Pseudo Siamese Laplacian Pyramid Transformer
(PSLPT). In the following section, we demonstrate the detailed skim
of the reconstruction of source images and the generation of the fused
outcome.

3.1.1. Multi-frequency decomposition by learning image reconstruction
The diagram for reconstructing the source image in PSLPT is shown

in Fig. 4(c). Note that since the reconstruction process for both the
source images is identical, we only show the reconstruction process for
one of the source images. The encoders first extract shallow-level fea-
tures from one source image, I1, using a single-layer convolution. Then,
the encoders gradually extract deep-level features with the hybrid mod-
ule of Swin Transformer and CNN (Swin-CNN) from the shallow-level
features and downsample the deep-level features, resulting in multi-
scale features. We utilize max pooling to perform downsampling. The
features at the lowest scale, i.e., F l

1
, are considered the low-frequency

features of the source image. Subsequently, the low-scale features are
upsampled by a factor of 2, and their residuals are computed with
the same-scale features to generate high-frequency features, i.e., F ℎ1

1
,

F ℎ2
1
, and F ℎ3

1
. Besides, we exploit bilinear interpolation to perform

upsampling. The decoder utilizes the multi-frequency features gener-
ated by the encoder to reconstruct the source images. The decoder
and encoder exhibit completely symmetric structures. By optimizing a

reconstruction loss function, the encoder is compelled to extract the
desired multi-frequency features.

For the Swin-CNN modules, to simultaneously capture local and
global features, we employ a hybrid structure combining CNN and
transformers. The specific structure is illustrated in Fig. 4(d). It includes
a Swin-Transformer (SwinT) [50] module and two convolutional layers
to extract global and local features, respectively. Both the convolutional
layers and the SwinT have 48 feature maps. The convolutional layers
have a kernel size of 3 × 3. The depth of the SwinT module is 2, the
window size referring to the window attention is 2, and the number
of heads for the multi-head attention is 6. For more details about the
SwinT module, please refer to [50]. Additionally, since transformers
can be challenging to converge during training, we incorporate a
shortcut to accelerate convergence.

3.1.2. Image fusion by frequency-adaptive fusion (FAF)
Previous image fusion methods usually use fixed or predefined sim-

ple fusion rules, e.g., the direct-average and choose-max rules, which
are not flexible enough. Instead, we propose the frequency adaptive
fusion (FAF) modules to learn the fusion rules. Given the extracted
multi-frequency features from two source images, i.e., F ℎ1

1
, F ℎ2

1
, F ℎ3

1

and F ℎ1
2
, F ℎ2

2
, F ℎ3

2
, the FAF modules aim to generate the fused features

that can be used by the decoder to obtain the target fused outcome.
Taking the fusion of the highest frequency features as an example (see
Fig. 4(d)), as the fusion pays more attention to the complementary
information of the source images rather than the common features,
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Fig. 5. Comparison of the visual quality of the fused images generated using the
direct-average, the choose-max, and the proposed FAF rules.

Fig. 6. Visualizing the multiple frequency features learned by the PSLPT and their
corresponding fusion rules. The first row displays the source images and the fused
result. From the second row to the fifth row, the first two columns show the features
at different frequencies decomposed by the PSLPT, while the third column depicts the
fusion rules.

the residuals from the two source image features are first calculated.
Then the residual is sent to the Swin-CNN module for the extraction
of semantic features. After that, a single layer of convolution is used
to map the multi-channel semantic features into 2-channel features.
Finally, the SoftMax operation is applied to normalize the features,
resulting in two masks, i.e., Mℎ1

1
and Mℎ2

1
. These masks are then

element-wise multiplied by the features of the source images to obtain
the fused features F ℎ1. Thus, we have:

F ℎ1 = Mℎ1
1

⊙ F ℎ1
1

+Mℎ1
2

⊙ F ℎ1
2

, (1)

where ⊙ denotes the Hadamard product.

We present the fused images generated using the direct-average
rule, the choose-max rule, and our FAF modules in Fig. 5. From the
figure, it can be observed that the images generated using the direct-
average rule fail to effectively recover the details in the dark areas,
while the fused images generated using the choose-max rule exhibit no-
ticeable distortions at the boundary between the sky and the buildings.
In contrast, the images generated using the FAF modules demonstrate
the highest quality. Furthermore, taking the IVF task as an example,
we visualize the features at different frequencies learned by the PSLPT
and their corresponding learned fusion rules in Fig. 6. From the figure,
it can be seen that the low-frequency features decomposed by the
PSLPT successfully extract salient objects from the infrared image (IR)
and capture detailed structures from the visible image (VI). The high-
frequency features decomposed by the PSLPT also effectively extract
detailed information from the source images.

3.2. Multi-task semi-supervised learning framework

Our goal is to train a single PSLPT model using data from multiple
image fusion tasks. By leveraging complementary information from
these tasks, we aim to better address the image fusion problem. How-
ever, data from different image fusion tasks may consist of labeled or
unlabeled data. More specifically, for multi-modal image fusion tasks,
such as MMF and IVF, obtaining labeled data is challenging, while
for tasks like MEF and MFF, labeled data can be obtained through
reasonable simulation. To address these issues, we propose a multi-task
semi-supervised learning framework.

Let Is1
1
, Is1

2
, and Is1 denote the source images and the corresponding

label refers to the MFF task, Is2
1
, Is2

2
, and Is2 indicate the source

images and the corresponding label refers to the MEF task, Iu
1
and

Iu
2
denote the unlabeled source images referring to the IVF task and

MMF task.1 The flowchart of the framework is shown in Fig. 7. In
the proposed framework, we extract complementary information from
data related to different image fusion tasks through multi-task learning
and we also employ semi-supervised learning to guide the learning of
unlabeled data through labeled data. The proposed framework includes
two training stages. In the first stage, we perform multi-task supervised
pre-training using labeled data from MFF and MEF, which enhances
the model’s ability to extract complementary features from MFF and
MEF tasks. Moreover, the availability of labeled data facilitates better
convergence during this stage. In the second stage, we conduct semi-
supervised fine-tuning using both labeled and unlabeled data. The
unsupervised training improves the model’s generalization ability in
tasks like IVF, where labeled data may be scarce. Simultaneously,
supervised training ensures that the model retains its capability to
preserve detailed information, which helps the learning using unlabeled
data.

1 Since data related to the IVF and MMF tasks do not have labels, we merge
the datasets from both the tasks into a single dataset and use a unified notation
to represent these data.
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Fig. 7. The flowchart of the proposed two-stage multi-task semi-supervised learning
framework. In the first stage of training, we employ multi-task supervised training to
enable the model to learn to preserve rich detailed information from the source images.
At this stage, we utilize labeled data from both the MFF and MEF tasks for training,
and all parameters of PSLPT are updated. In the second stage of training, we utilize
semi-supervised training to fine-tune the trained model in the first stage. At this stage,
we not only utilize labeled data from MFF and MEF for supervised training but also
leverage data from IVF and MMF for unsupervised training. More specifically, we fix
the parameters of the encoders (E�) and decoder (D�) of the PSLPT and save the
parameters of the FAF modules (F'1 ) of the proposed PSLPT to deal with the MFF
and MEF tasks. Afterward, we update the parameters of the fusion modules to obtain
another set of FAF modules (F'2 ) to address the IVF and MMF tasks. This two-stage
training strategy ensures that the model can generalize to the unlabeled data while
still being able to preserve details.

Fig. 8. Visual comparisons of images for the MEF (first row) and MFF (second row)
tasks.

3.2.1. Stage 1: Multi-task supervised training
For supervised training, we found that the images referring to the

MEF task (see Fig. 8) suffer from poor image quality due to overexpo-
sure and underexposure, making it difficult for the model to converge
during training. On the other hand, the images in the MFF task (see
Fig. 8) are normally exposed and have more details. Therefore, training

simultaneously on both the MFF and MEF tasks can help the model to
converge better for the MEF task.

Specifically, we sample data separately from the MFF and MEF
datasets and perform forward propagation for each task independently.
This allows us to leverage the higher-quality images from the MFF task
to facilitate the model’s convergence during training. Therefore, in the
supervised training stage, the overall loss function is a weighted sum
of the loss functions for the two tasks:

ús1 = úMFF + �úMEF, (2)

where úMFF and úMEF are the loss functions for the MFF task and MEF
tasks, respectively, and � is a weight parameter that is employed to
adjust the importance of the two tasks. Specifically, the loss function
for the MFF and MEF tasks consists of an image fusion loss and an
image reconstruction loss function. We adopt the structural similarity
index measure (SSIM) [51] based loss function as the image fusion loss
function and the ā1 norm as the reconstruction loss function. Therefore,
the loss function for the MFF task can be summarized as:

úMFF = 1 − đđćċ(Is1, Îs1) + �1(‖Î
s1
1

− Is1
1
‖1 + ‖Îs1

2
− Is1

2
‖1), (3)

where Îs1 is the fused image, Îs1
1
and Îs1

2
are the reconstructed source

images, �1 is a trade-off parameter, đđćċ(ç) is the SSIM function, and
‖ ç ‖1 is the ā1 norm. The loss function for the MEF task is as follows:

úMEF = 1 − đđćċ(Is2, Îs2) + �1(‖Î
s2
1

− Is2
1
‖1 + ‖Îs2

2
− Is2

2
‖1). (4)

3.2.2. Stage 2: Semi-supervised fine-tuning
After the first stage of training, the model can effectively deal with

the MFF and MEF tasks but may struggle to handle the IVF and MMF
tasks. The reason is that the goal of the MEF task is to fuse over-
exposed and under-exposed images into a properly exposed image,
while the IVF and MMF tasks require to the fused result to retain the
intensity of the source images. The objectives of these two types of
tasks conflict with each other. Direct fine-tuning of the model using
datasets referring to the IVF and MMF tasks can improve performance
for the IVF and MMF tasks but may degrade the performance of the MEF
task. Since the objectives of these two types of tasks conflict with each
other, we propose using two sets of FAF modules to handle different
types of image fusion tasks. Specifically, in the second stage, we fix
the parameters of the encoders and decoder of the PSLPT, and we
save the FAF modules trained in the first stage to handle the MEF
and MFF tasks. Additionally, we train an extra set of FAF modules
specifically for the IVF and MMF tasks. In this stage, to enhance the
model’s ability to preserve the intensity of the source images, we use
unsupervised training to fit the IVF and MMF data. However, relying
solely on unlabeled data from the IVF and MMF tasks for unsupervised
training is not sufficient. This is because the related images in these
two types of tasks lack rich detail information, which makes models
trained only on this data unable to effectively preserve the fine details
of the source images. To address this issue, we incorporate supervised
learning from the first stage. We use weight coefficients to balance the
weights of multiple tasks during this training phase.

The total loss function for training on stage 2 is a weighted sum of
one supervised loss function and one unsupervised loss function:

ús2 = úsuper + �úunsuper, (5)

where úsuper is the supervised loss function, úunsuper is the unsupervised
loss function, and � is a trade-off positive parameter. We directly
adopt the loss function used in the first stage as the loss function for
supervised training. The loss function of unsupervised learning also
includes an image fusion loss function and an image reconstruction loss
function. Thus, we have:

úunsuper = úfuse + �1úrecon, (6)

where úrecon stands for the image reconstruction loss, úfuse denotes
the (unsupervised) image fusion loss, which is the loss function in
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Table 1
The configuration of the involved training datasets.

Dataset Labeled Unlabeled

RealMFF MFI-WHU SICE RS TNO CT-MRI PET-MRI SPECT-MRI

Num 94 96 201 190 30 184 269 337

Table 2
Average metrics of all the compared DL-based approaches on 23 samples of the Lytro dataset. The results of the multi-task
training-based methods are in orange color. The best, second, and third results are in red, blue, and bold, respectively.

EN² MI² MS-SSIM² ĊÿĀĄ ´ čÿĀĄ ² FMI² čāĀ ² NMI² #Param. (M)

SESF [52]NCA-2019 7.4983 14.9967 0.9876 0.0040 0.3724 0.8945 0.8001 1.1468 ∖

IFCNN [15]IF-2019 7.4779 14.9558 0.9903 0.0128 0.3541 0.8875 0.6845 0.8849 0.083M
CNNFuse [53]IF-2017 7.4956 14.9912 0.9887 0.0001 0.3717 0.8951 0.8015 1.1364 0.2M
ZMFF [1]IF-2023 7.4927 14.9854 0.9853 0.0296 0.3508 0.8847 0.7403 0.8520 4.67M
SwinFusion [39]JAS-2022 7.4749 14.9499 0.9879 0.0027 0.3608 0.8871 0.6672 0.8482 0.973M
U2Fusion [49]TPAMI-2020 7.2835 14.5670 0.9765 0.0306 0.3449 0.8784 0.6364 0.7838 2.636M
Ours (only stage 1) 7.4933 14.9866 0.9917 0.0058 0.3709 0.8935 0.7442 0.9736 1.803M
Ours (2 stages) 7.4926 14.9851 0.9908 0.0027 0.3738 0.8938 0.7435 0.9765 1.803M

Fig. 9. Visual comparisons of all the compared approaches on the Lytro dataset. For convenience, we only show the results of the model trained in the first stage.

SwinFusion [39], and �1 is a weight coefficient. This loss function
mainly consists of three components: intensity loss function, texture
loss function, and structural loss function (for more details, please refer
to [39]):

úfuse = úint(I
u
1
, Iu

2
, Îu) + �2útext(I

u
1
, Iu

2
, Îu)+

�3ússim(I
u
1
, Iu

2
, Îu),

(7)

where Iu
1
and Iu

2
are the unlabeled source images, Îu denotes the cor-

responding fused outcome, and �2 is a weight coefficient. úint denotes
the intensity loss, which can be calculated as:

úint(I
u
1
, Iu

2
, Îu) = ‖Îu − ċÿĖ(Iu

1
, Iu

2
)‖1, (8)

where ċÿĖ(ç) refers to the element-wise maximum operator. Instead,
útext represents the texture loss in the gradient domain, which can be
calculated as:

útext(I
u
1
, Iu

2
, Îu) = ‖|∇Îu| − ċÿĖ(|∇Iu

1
|, |∇Iu

2
|)‖1, (9)

where | ç | is the absolute value function and ∇ indicates the gradient
operator. ússim is the structural loss function which can be calculated
as in Eq. (3). Meanwhile, we also minimize the ā1 norm reconstruction
losses so that the model can decompose the unlabeled source images
into multi-frequency features (see Section 3.1):

úrecon = ‖Iu
1
− Îu

1
‖1 + ‖Iu

2
− Îu

2
‖1, (10)

where Îu
1
and Îu

2
are the reconstructed unlabeled source images.

4. Experiments

In this section, we first present the implementation details for
experiments, then conduct the experiments for the MFF, MEF, IVF, and

MMF tasks to verify the superiority of our method, both visually and
quantitatively. Moreover, we show extensive discussions and ablation
studies to corroborate the effectiveness of the proposed approach.

4.1. Implementation details

In terms of the training dataset, we chose nine datasets corre-
sponding to four common image fusion tasks for training, as shown
in Table 1. More specifically, the RealMFF [54] and MFI-WHU [55]
datasets refer to the MFF task, and the SICE [56] dataset refers to
the MEF task, which are used for supervised training. On the other
hand, the RoadScene (RS) [57] and TNO [58] datasets refer to the
IVF task, and the CT-MRI, PET-MRI, and SPECT-MRI images from the
Harvard medical dataset2 refer to the MMF task, which are used for
unsupervised training. The MFI-WHU [55] dataset has 190 simulated
samples; we randomly chose 96 samples for training. Besides, the
RealMFF [54] has 710 real samples. Since the simulated samples from
the MFI-WHU [55] dataset deliver very different distributions for the
real samples from the RealMFF [54] dataset, we randomly selected
94 samples from the RealMFF [54] data for training. As a result,
the sample sizes for the WHU-MFI [55] and RealMFF [54] datasets
are comparable, which ensures that the model trained using these
samples does not excessively overfit to a given dataset. Moreover, the
SICE [56] dataset contains 229 samples; we removed 7 samples and
randomly selected 195 samples for training. Since these samples cover
images with multiple exposure ranges, we only select one image from
each category (underexposed and overexposed) for training or testing.

2 https://www.med.harvard.edu/AANLIB/home.htm

https://www.med.harvard.edu/AANLIB/home.htm
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Fig. 10. Visual comparisons of all the compared approaches on the SICE dataset.

Specifically, for underexposed images, we choose the third image as the

source image, and for overexposed images, we select the last image as

the source image. In addition, the RS [57] dataset includes 221 samples.

We randomly chose 201 samples for training. Due to the presence of

both grayscale and RGB images in these datasets, for ease of training,

we convert the RGB images into the YCbCr color space and only utilize

the Y component for training.

The hyperparameters in the loss functions are set to � = 0.1,

�1 = 0.5, � = 0.1, �1 = 1.25, �2 = 1, and �3 = 0.5, respectively.

We chose Adam [59] as the optimizer. Due to the high resolution of

the original images, during training, we randomly crop small image

patches from the original images. The sizes of the image patches used

for supervised training and unsupervised training are set to 128 × 128

and 64 × 64, respectively. As mentioned earlier, our model adopts a

two-stage training approach. In the first training stage, the model is

trained for a total of 320 epochs with an initial learning rate of 1×10−4.

The learning rate is halved at the 200th epoch. In the second training

stage, the model is trained for a total of 20 epochs with an initial

learning rate of 3 × 10−5. Specifically, the training time for the first

stage is approximately 5 h, while the training time for the second stage

is approximately 30 min. We adopt ā1 norm-based gradient clipping

to accelerate the convergence, with the hyperparameter being set to

0.0001.

Regarding the hardware and software platform, we use an RTX

4070ti with 12 GB of memory for training, and the code is written in

Pytorch 1.13.

4.2. MFF experiments

For the MFF experiments, the Lytro [60] dataset is used. The

original Lytro [60] dataset has 38 image pairs. We remove the image

pairs with low visual quality and use the left 23 image pairs for

testing. We compare our methods with single-task training-based image

fusion methods, which include IFCNN [15], CNNFuse3 [53], SESF4

[52], ZMFF [1], and SwinFusion [39], and a multi-task training-based

image fusion method, i.e., U2Fusion [49]. We select 8 popular metrics

for evaluation, including EN [61], MI [62], MS-SSIM [51], Nabf , Qabf ,

FMI [63], Qcb [64], and NMI [65].

3 https://github.com/xingchenzhang/MFIF
4 https://github.com/Keep-Passion/SESF-Fuse

4.2.1. Quantitative results
Table 2 reports the quantitative comparison of experimental results.

For the Lytro [60] dataset, our methods outperform U2Fusion [49] con-
sidering most metrics. Moreover, our method obtains the best Qabf [66]
and MS-SSIM [51]. Despite SESF [52] and CNNFuse [53] achieving
very competitive performance, they rely on complex pre-process or
post-process. Among the end-to-end methods, our method achieves the
best performance. In general, the difference in metrics among various
methods on the Lytro [60] dataset is very small. Furthermore, the
fine-tuned model performs comparably to the original model. As for
the parameter count, our model has a larger number of parameters
compared to most competitors. However, in the future, we plan to
develop models with smaller parameter counts.

4.2.2. Visual results
Fig. 9 shows the fused images on the Lytro [60] dataset. From

the rectangles in the images, it can be observed that, apart from
CNNFuse [53], SwinFusion [39], and our method, the fused images
generated by the other compared methods exhibit noticeable blur-
ring and distortion along the far-focus and near-focus boundaries.
In comparison to our method, the fused images generated by CNN-
Fuse [53] have fewer foreground details, while those produced by
SwinFusion [39] suffer from overexposure in the foreground, resulting
in a lack of fine details.

4.3. MEF experiments

We utilize the SICE [56] dataset for the MEF experiments. Because
of the high resolution of the original images, we resized them to
512 × 512 before conducting the testing. This resizing helps in manag-
ing computational resources and ensuring consistency during the test-
ing process. We compare our methods with single-task training-based
methods, which include IFCNN [15], BHFMEF5 [67], DPEMEF6 [68],
IID7 [2], TransMEF8 [69], SwinFusion [39], and a multi-task training-
based method, i.e., U2Fusion [49]. Since the labels are available, we
chose PSNR, MS-SSIM [51], and MEF-SSIM [70] as quality metrics.

The quantitative experimental results are presented in Table 3. It
can be observed that our method (only stage 1) significantly outper-
forms the comparison methods in all three evaluation metrics. Further-
more, it can be seen that the performance of our model with 2 training

5 https://github.com/ZhiyingDu/BHFMEF
6 https://github.com/dongdong4fei/DPE-MEF
7 https://github.com/HaoZhang1018/IID-MEF
8 https://github.com/miccaiif/TransMEF

https://github.com/xingchenzhang/MFIF
https://github.com/Keep-Passion/SESF-Fuse
https://github.com/ZhiyingDu/BHFMEF
https://github.com/dongdong4fei/DPE-MEF
https://github.com/HaoZhang1018/IID-MEF
https://github.com/miccaiif/TransMEF
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Fig. 11. Visual comparisons of all the compared approaches on the RS dataset.

Table 3
Average metrics of all compared DL-based approaches on 27 samples
of the SICE [56] dataset. The results of the multi-task training-based
methods are in orange color. The best, second, and third results are in
red, blue, and bold, respectively.

Method PSNR² MS-SSIM² MEF-SSIM² Param. (M)

IFCNN [15] 16.5957 0.8310 0.7112 0.083M
DPEMEF [68] 19.1137 0.8178 0.7008 13.603M
BHFMEF [67] 19.9319 0.8154 0.7022 0.03M
IID [2] 19.6203 0.8149 0.6966 0.36M
Transmef [69] 18.9058 0.8127 0.6584 19.052
SwinFusion [39] 19.5695 0.8393 0.7218 0.973M
U2Fusion [49] 17.2494 0.8267 0.6996 2.636M
Ours (only stage 1) 22.7647 0.8495 0.7375 1.803M
Ours (2 stages) 19.7843 0.8223 0.7104 1.803M

stages is worse than our model trained with only stage 1 in the MEF
task, which validates the contrasting objectives of the MEF and IVF
tasks.

In Fig. 10, we show the fused images generated by different meth-
ods. Since our method only utilizes the Y component in the YCbCr color
space for training and employs a simple weighted-average rule to fuse
the Cr and Cb components, there is a possibility of color distortion.
To alleviate this issue, we adopt the strategy mentioned in [67] to
post-process the fused images, enhancing their color. From Fig. 10,
it can be observed that the generated images by our method (only
stage 1) are closest to the ground truth in terms of brightness and
color. However, our model exhibits noticeable overexposure in the
fused images generated after the two-stage training. This is because
the second training stage forces the model to preserve the intensity of
the source images, resulting in overexposure in certain regions of the
generated images.

4.4. IVF experiments

We use the RS [57] and TNO [58] datasets for the IVF exper-
iments. We compare our method with a traditional method, some
single-task training-based methods, and a multi-task training-based
image fusion method. The traditional method is NSCT9 [71]. The
single-task training-based image fusion methods are IFCNN10 [15],
RecoNet11 [72], YDTR12 [37], LRRNet13 [41], SwinFusion14 [39], and
CDDFuse15 [3]. The multi-task training-based image fusion method is
U2Fusion16 [49].

9 https://github.com/xingchenzhang/MFIF
10 https://github.com/uzeful/IFCNN
11 https://github.com/dlut-dimt/ReCoNet
12 https://github.com/tthinking/YDTR
13 https://github.com/hli1221/imagefusion-LRRNet
14 https://github.com/Linfeng-Tang/SwinFusion
15 https://github.com/Zhaozixiang1228/MMIF-CDDFuse
16 https://github.com/hanna-xu/U2Fusion

4.4.1. Quantitative results
The results on the RS dataset are reported in Table 4. Due to the

adoption of a two-stage training approach, we present the experimental
results of both stages. From the table, our method demonstrates highly
competitive performance. Specifically, our method outperforms the
U2Fusion [49] method for most of metrics, including MS-SSIM [51],
FMI [63], Qcb [64], and NMI [65]. When compared to state-of-the-
art (SOTA) methods like YDTR [37] and CDDFuse [3], each method
has its strengths and weaknesses. Additionally, experimental results
indicate that fine-tuning significantly enhances the performance of our
model. Regarding the TNO dataset, the experimental results are shown
in Table 5. Our method demonstrates good performance in metrics such
as MS-SSIM [51], FMI [63], Qcb [64], and NMI [65]. Furthermore,
fine-tuning continues to improve the performance of our model. These
findings highlight the competitive performance of our method on both
the RS and TNO datasets.

4.4.2. Visual results
The visual comparison is shown in Figs. 11 and 12. As can be seen

from the green rectangle boxes in Fig. 12, U2Fusion [49], RecoNet [72],
and LRRNet [41] lose the details in the IR image. The fused image gen-
erated by YDTR [37] exhibits noticeable grid-like structural distortion.
From the red rectangle in the image, it can be seen that RecoNet [72],
SwinFusion [39], and CDDFuse [3] lose background details in the IR
image. From the blue rectangle, it can be observed that our method
well preserves the details in the VI image (see Table 7).

From the blue rectangle in Fig. 11, it can be observed that the
fused image generated by CDDFuse [3] exhibits noticeable black dot-
like distortions. From the red rectangle, it can be seen that the images
generated by ReCoNet [72] and LRRNet [41] lose textual details in
the VI image, while the textual structures in the images generated by
U2Fusion [49], YDTR [37], and LRRNet [41] are not clear enough.
From the green rectangle, it can be observed that the images generated
by ReCoNet [72], YDTR [37], SwinFusion [39], and LRRNet [41] fail
to preserve the structural information of salient objects in the IR image.
The fused images generated by our method are highly competitive in
terms of visual quality. In conclusion, experimental results demonstrate
that the images generated by our model contain rich details. This
indicates that training the model using labeled natural images from
MFF and MEF can enhance the model’s ability to preserve fine details
in other image fusion tasks.

4.5. MMF experiments

In this section, we report the experimental results of the multi-
model image fusion tasks. We selected two typical and widely studied
MMF tasks, i.e., the MRI-PET image fusion task and the MRI-CT image
fusion task. The images used for testing are from the Harvard Medical
image dataset. Specifically, we randomly chose 30 pairs of images
for the MRI-PET image fusion task and 20 pairs of images for the

https://github.com/xingchenzhang/MFIF
https://github.com/uzeful/IFCNN
https://github.com/dlut-dimt/ReCoNet
https://github.com/tthinking/YDTR
https://github.com/hli1221/imagefusion-LRRNet
https://github.com/Linfeng-Tang/SwinFusion
https://github.com/Zhaozixiang1228/MMIF-CDDFuse
https://github.com/hanna-xu/U2Fusion


Information Fusion 108 (2024) 102414

11

W. Wang et al.

Fig. 12. Visual comparisons of all the compared approaches on the TNO dataset.

Fig. 13. Visual comparisons on the Harvard medical image dataset for the MRI-CT medical image fusion task.

Table 4
Average metrics of all the approaches on 20 samples of the RS dataset. The results of the multi-task training-based methods are
in orange color. The best, second, and third results are in red, blue, and bold, respectively.

EN² MI² MS-SSIM² ĊÿĀĄ ´ čÿĀĄ ² FMI² čāĀ ² NMI² #Param. (M)

NSCT [71]Infr.-2013 7.2273 14.4546 0.8839 0.0025 0.1526 0.8601 0.4847 0.4121 ∖

IFCNN [15]IF-2019 7.3933 14.7867 0.9154 0.0231 0.1572 0.8637 0.4873 0.4311 0.083M
ReCoNet [72]ECCV-2022 7.3858 14.7716 0.8642 0.0103 0.1879 0.8557 0.5326 0.4405 0.007M
YDTR [37]TMM-2022 7.7558 15.5116 0.9392 0.0254 0.1365 0.8533 0.5370 0.4078 0.2M
LRRNet [41]TPAMI-2023 7.2669 14.5338 0.7791 0.0277 0.1186 0.8227 0.4885 0.3592 0.049M
SwinFusion [39]JAS-2022 7.2072 14.4144 0.8469 0.0161 0.2107 0.8577 0.5189 0.4708 0.973M
CDDFuse [3]CVPR-2023 7.6017 15.2033 0.8977 0.0533 0.1752 0.8527 0.4970 0.4176 1.188M
U2Fusion [49]TPAMI-2020 7.2037 14.4074 0.8768 0.0003 0.1697 0.8608 0.5588 0.4283 2.636M
Ours (only stage 1) 7.4858 14.9717 0.9355 0.0044 0.1297 0.8779 0.5786 0.4926 1.533M
Ours (2 stages) 7.5670 15.1339 0.9474 0.0064 0.1415 0.8844 0.5997 0.4844 1.533M

MRI-CT image fusion task. We compare our methods with the single-
task training-based methods, which include IFCNN [15], MATR17 [38],
GeSeNet18 [4], SwinFusion [39] and CDDFuse [3], and a multi-task
training-based method, i.e., U2Fusion [49].

4.5.1. Quantitative results
The experimental results for MRI-CT image fusion are reported in

Table 6 and Table 7, where our method outperforms U2Fusion [49] for
most of the metrics. Compared to the remaining methods, our approach

17 https://github.com/tthinking/MATR
18 https://github.com/lok-18/GeSeNet

demonstrates competitive performance in metrics as EN [61], MI [62],
MS-SSIM [51], Nabf , Qabf , and FMI [63]. Meanwhile, our method
achieves similar performance in the MRI-PET image fusion task. Fur-
thermore, the model trained using a single-stage training approach
achieves a similar performance to the model trained using both stages
simultaneously. Regarding the parameter count of the models, except
for MATR [38] and IFCNN [15], most models have a similar order of
magnitude in terms of parameter count.

4.5.2. Visual results
Fig. 13 demonstrates the fused products for the MRI-CT image

fusion task. From these images, it can be observed that except for
MATR [38], the compared methods successfully preserve the structural

https://github.com/tthinking/MATR
https://github.com/lok-18/GeSeNet
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Table 5
Average metrics of all compared DL-based approaches on 26 samples of the TNO dataset. The results of the multi-task training-based
methods are in orange color. The best, second, and third results are in red, blue, and bold, respectively.

EN² MI² MS-SSIM² ĊÿĀĄ ´ čÿĀĄ ² FMI² čāĀ ² NMI² #Param. (M)

NSCT [71]Infr.-2013 6.2825 12.5650 0.8863 0.0011 0.2497 0.8971 0.4548 0.2860 ∖

IFCNN [15]IF-2019 6.6554 13.3107 0.9132 0.0290 0.2811 0.8961 0.4727 0.3632 0.083M
ReCoNet [72]ECCV-2022 6.8035 13.6070 0.8953 0.0185 0.2600 0.8920 0.4743 0.3433 0.007M
YDTR [37]TMM-2022 6.7246 13.4493 0.9153 0.0273 0.2236 0.8803 0.4764 0.2685 0.2M
LRRNet [41]TPAMI-2023 6.7207 13.4414 0.7716 0.0672 0.1215 0.8712 0.4071 0.2678 0.049M
SwinFusion [39]JAS-2022 6.7819 13.5639 0.8999 0.0271 0.3385 0.9007 0.4773 0.4607 0.973M
CDDFuse [3]CVPR-2023 6.7819 14.0701 0.9069 0.0677 0.3009 0.8983 0.4875 0.4255 1.188M
U2Fusion [49]TPAMI-2020 6.2690 12.5380 0.8875 0.0000 0.2218 0.8952 0.4925 0.2925 2.636M
Ours (only stage 1) 6.4214 12.8429 0.8800 0.0037 0.3560 0.9020 0.4955 0.3401 1.533M
Ours (2 stages) 6.6389 13.2778 0.9111 0.0043 0.3413 0.9131 0.4928 0.3209 1.803M

Fig. 14. Visual comparisons on the Harvard medical image dataset for the MRI-PET medical image fusion task.

information of the CT image in the fused images. However, none of
them effectively extracts spatial structural information from the MRI
image. In contrast, our method outperforms the competing methods
regarding visual quality. Fig. 14 depicts the fused products for the
MRI-PET image fusion task. From the enlarged green rectangle, it can
be observed that the fused images generated by U2Fusion [49] fail to
effectively preserve the details in the MRI image. From the enlarged red
rectangle, it can be seen that the colors of the fused images generated
by our method are closest to the colors of the PET image. This indicates
that our method can better preserve the details from both source
images.

4.6. Ablation experiments

4.6.1. Effects of multi-task semi-supervised learning
We proposed a multi-task semi-supervised framework to explore

complementary information among different image fusion tasks and
promote the learning of unlabeled data through supervised learning
using labeled data. Our training framework consists of two stages:
the first stage involves the pre-training of the model using multi-task
supervised learning, and the second stage fine-tunes the fusion modules
using multi-task semi-supervised learning. To validate the effectiveness
of our proposed training framework, we conducted a series of ablation
experiments
Effects of the Multi-task Supervised Learning In the first stage of our
training framework, we simultaneously employed supervised learning
to train the model on both the MFF and MEF tasks. From Table 8,
the performance of the model trained using multi-task learning on
a single image task is comparable to that of a model trained solely

using single-task training. From Fig. 15, it can be observed that the
fusion images generated by the model trained solely on the MFF task
exhibit noticeable distortions. Similarly, the fusion images generated
by the model trained solely on the MEF task lack significant details. On
the other hand, the model trained using multi-task learning generates
images with rich details and effectively restores details in underexposed
and overexposed images. The experimental results demonstrate that
the model trained using multi-task learning can indeed extract comple-
mentary information from different tasks without necessarily sacrificing
performance on individual tasks.
Effects of the two-stage training From Table 9, it can be observed that
without the stage 1 training, the model achieves good performance on
the IVF task but experiences a significant decline in performance on
the MEF task. Moreover, the semi-supervised fine-tuning in the second
stage noticeably improves the performance of the model on the IVF
task. From Fig. 16, it can be seen that without the stage 1 training,
the model achieves good metrics, but the fusion images generated
in the MEF task are noticeably overexposed, while the fusion images
generated in the IVF task lose details. On the other hand, the semi-
supervised fine-tuning in the second stage improves the accuracy of the
intensity in the generated images.
Effects of the supervised training in stage 2 In the second stage
of training, in addition to unsupervised training, we also propose to
simultaneously perform the same supervised training as in the first
stage. This allows us to leverage supervised training to facilitate the
extraction of richer, more detailed information in unsupervised learn-
ing. From Table 9, it can be observed that the absence of supervised
training does not lead to a decrease in the metrics. However, from
Fig. 16, it can be seen that the fusion images generated by the model
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Table 6
Average metrics of all the compared approaches on 20 samples of the Harvard medical image dataset for the task of MRI-CT image
fusion. The results of the multi-task training-based methods are in orange color. The best, second-best, and third results are in red,
blue, and bold, respectively.

Method EN² MI² MS-SSIM² ĊÿĀĄ ´ čÿĀĄ ² FMI² čāĀ ² NMI² #Param. (M)

IFCNNIF-2019 [15] 4.4958 8.9916 0.9410 0.0156 0.3051 0.8848 0.3419 0.7540 0.083M
MATR [38]TIP-2022 4.5836 9.1673 0.6031 0.0032 0.0925 0.8475 0.2749 0.7116 0.013M
GeSeNet [4]TNNLS-2023 4.7744 9.5488 0.9207 0.0178 0.3345 0.8871 0.3190 0.7530 0.241M
SwinFusion [39]JAS-2022 4.0171 8.0342 0.9352 0.0105 0.3388 0.8940 0.6777 0.8592 0.973M
CDDFuse [3]CVPR-2023 4.2861 8.5722 0.9275 0.0175 0.3049 0.8871 0.6825 0.8018 1.188M
U2Fusion [49]TPAMI-2020 4.4808 8.9616 0.8625 0.0000 0.1232 0.8819 0.3529 0.7389 2.636M
Ours (only stage 1) 4.8504 9.7008 0.9061 0.0022 0.3121 0.8927 0.4164 0.7005 1.803M
Ours (2 stages) 4.6340 9.2680 0.9303 0.0038 0.3258 0.8964 0.6069 0.7151 1.803M

Table 7
Average metrics of all the compared approaches on 30 samples of the Harvard medical image dataset for the task of MRI-PET
image fusion. The results of the multi-task training-based methods are in orange color. The best, second, and third results are in
red, blue, and bold, respectively.

Method EN² MI² MS-SSIM² Nabf ´ Qabf ² FMI² čāĀ ² NMI² #Param. (M)

IFCNN [15]IF-2019 5.6275 11.2550 0.9346 0.0091 0.6667 0.8414 0.4169 0.5893 0.083M
MATR [38]TIP-2022 5.6011 11.2023 0.8188 0.0009 0.7309 0.8344 0.3600 0.8272 0.013M
GeSeNet [4]TNNLS-2023 5.9935 11.9869 0.9314 0.0125 0.6752 0.8525 0.4060 0.6173 0.241M
SwinFusion [39]JAS-2022 6.0200 12.0400 0.9327 0.0113 0.7184 0.8702 0.3791 0.6879 0.973M
CDDFuse [3]CVPR-2023 5.5631 11.1261 0.9223 0.0162 0.7210 0.8641 0.6286 0.7674 1.188M
U2Fusion [49]TPAMI-2020 5.4823 10.9646 0.8293 0.0000 0.2378 0.8270 0.3959 0.6145 2.636M
Ours (only stage 1) 6.1060 12.2121 0.9151 0.0014 0.7127 0.8600 0.4956 0.5673 1.803M
Ours (2 stages) 5.7869 11.5738 0.9168 0.0016 0.7197 0.8654 0.5383 0.6487 1.803M

Table 8
Ablation experiments for the multi-task training of the first training stage on two image fusion tasks. The best results are in red.

Training method MFF (Lytro) MEF (SICE)

EN² MI² MS-SSIM² ĊÿĀĄ ´ čÿĀĄ ² FMI² čāĀ ² NMI² PSNR² MS-SSIM² MEF-SSIM²

W/O MEF-training 7.4942 14.9885 0.9916 0.0064 0.3701 0.8936 0.7412 0.9714 19.9804 0.8187 0.7135
W/O MFF-training 7.4611 14.9221 0.9563 0.0067 0.3348 0.8742 0.6007 0.6290 22.8046 0.8491 0.7368
Ours (Multi-task) 7.4944 14.9888 0.9924 0.0054 0.3698 0.8935 0.7408 0.9657 22.7647 0.8495 0.7375

Table 9
Ablation experiments on the two image fusion tasks. The best results are in red.

Training method IVF (TNO) MEF (SICE)

EN² MI² MS-SSIM² ĊÿĀĄ ´ čÿĀĄ ² FMI² čāĀ ² NMI² PSNR² MS-SSIM² MEF-SSIM²

W/O stage 1 6.8248 13.6495 0.8862 0.0209 0.3345 0.9124 0.4949 0.5331 12.9348 0.8177 0.7101
W/O stage 2 6.4214 12.8429 0.8800 0.0037 0.3560 0.9020 0.4955 0.3401 22.3067 0.8409 0.7254
W/O supervised (stage 2) 6.8040 13.6079 0.8729 0.0066 0.3952 0.9161 0.4983 0.6135 17.6702 0.8335 0.7187
W/O fixed parameters 6.8195 13.6389 0.8807 0.0055 0.3200 0.9148 0.4887 0.6379 ∖ ∖ ∖

Full 6.6389 13.2778 0.9111 0.0043 0.3413 0.9131 0.4928 0.3209 22.7647 0.8495 0.7375

without supervised training noticeably lack structural information. This
indicates that supervised learning indeed helps the model extract richer
information in the unsupervised task.
Effects of fixing parameters In the second stage of training, we pro-
pose to fix the parameters of the encoders and decoder, and only update
the parameters of the FAF modules. This allows the complementary
information extracted in the first training stage to be shared by the
model in the second training stage. From Table 9, without fixing the pa-
rameters, the model still achieves competitive performance. However,
as shown by Fig. 16, the fused outcome demonstrates less details. This
indicates that fixing the parameters of the encoders and decoder helps
share task complementary information.

4.6.2. Ablation experiments on the PSLPT structure
The proposed PSLPT has the following characteristics: (i) it utilizes

two independent encoders to process the two source images separately,
which helps extract unique features from each source image; (ii) the
encoders, fusion modules, and decoders are separated, allowing PSLPT
to learn both image fusion and source image reconstruction. This aids in
the better decomposition of the source images; (iii) the PSLPT learns the
fusion rule instead of using manually designed fusion rules; (iv) PSLPT
adopts the transformer instead of CNN to extract features, enabling the

Fig. 15. Visual comparisons of single-task training and multi-task training. The first
row and the second row show the fusion product on the Lytro dataset for the MFF
task, and the fusion product on the SICE dataset for the MEF task, respectively.

learning of long-range features. To validate the effectiveness of these

designs, we conducted a series of ablation experiments on the MEF task

using the SICE [56] dataset. The results are shown in Table 10 and

Fig. 17.
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Fig. 16. Visual comparisons of different variant training strategies. The first row and the second row show the fusion product on the SICE dataset for the MEF task, and the fusion
product on the TNO dataset for the IVF task, respectively.

Fig. 17. Visual comparisons of PSLPT with various structures on the SICE dataset.

Table 10
Ablation experiments about the PSLPT structures on the SICE dataset. The best results
are in red. ‘‘W/O Recon’’ means that PSLPT does not learn to reconstruct the source
images.

Method PSNR² MS-SSIM² MEF-SSIM²

W/O Recon 15.3934 0.8166 0.7088
Direct-average 16.5957 0.8310 0.7112
Choose-max 16.2797 0.8263 0.6764
Shared encoder 21.2312 0.8402 0.7242
CNN-Based 17.2044 0.8051 0.7086
Ours (1 stage) 22.3067 0.8409 0.7254

From Table 10, it can be observed that all the variants of the PSLPT
model showed a significant decrease in performance in the MEF task.
Additionally, in Fig. 17, from the rectangular boxes in the images, it
can be observed that the variant models using choose-max or shared
encoder exhibit significant distortions in the generated fusion images.
On the other hand, the variant models using the direct-average rule
and the one that does not learn to reconstruct the source images
produce underexposed fusion images. Furthermore, due to the limited
receptive field, the CNN-based PSLPT produces fusion images with
highly inaccurate exposure. Our approach, however, generates fusion
images with the most satisfactory visual results.

5. Conclusion

In this work, we proposed the first multi-task semi-supervised learn-
ing framework for general image fusion. Our training framework can
extract complementary information from different image tasks while
leveraging the learning from labeled data to enhance the learning from
unlabeled data. Our training framework consists of two stages: the
first stage involves multi-task supervised pre-training, and the second
stage involves multi-task semi-supervised fine-tuning. In addition, we

propose the PSLPT for general image fusion, which can decompose the
source image into multi-frequency features and fuse them with learned
fusion rules. The PSLPT consists of two Laplacian pyramid networks
with the same structure. Each of them has a multi-scale encoder and a
multi-scale decoder with the parameters of the decoder being shared.
The entire PSLPT uses the Swin-Transformer module to extract features.
We conducted a series of experiments and the results corroborated the
effectiveness of our method. In four mainstream image fusion tasks, we
compare our method with the current SOTA image fusion methods. The
experimental results show that our method is very competitive in both
quantitative metrics and visual performance.
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