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Abstract—Remote sensing image fusion aims to generate a
high-resolution multi/hyper-spectral image by combining a high-
resolution image with limited spectral data and a low-resolution
image rich in spectral information. Current deep learning (DL)
methods typically employ convolutional neural networks (CNNs)
or Transformers for feature extraction and information inte-
gration. While CNNs are efficient, their limited receptive fields
restrict their ability to capture global context. Transformers
excel at learning global information but are computationally
expensive. Recent advancements in the state space model (SSM),
particularly Mamba, present a promising alternative by enabling
global perception with low complexity. However, the potential
of SSM for information integration remains largely unexplored.
Therefore, we propose FusionMamba, an innovative method for
efficient remote sensing image fusion. Our contributions are
twofold. First, to effectively merge spatial and spectral features,
we expand the single-input Mamba block to accommodate dual
inputs, creating the FusionMamba block, which serves as a
plug-and-play solution for information integration. Second, we
incorporate Mamba and FusionMamba blocks into an inter-
pretable network architecture tailored for remote sensing image
fusion. Our designs utilize two U-shaped network branches, each
primarily composed of four-directional Mamba blocks, to extract
spatial and spectral features separately and hierarchically. The
resulting feature maps are sufficiently merged in an auxiliary
network branch constructed with FusionMamba blocks. Fur-
thermore, we improve the representation of spectral information
through an enhanced channel attention module. Quantitative
and qualitative valuation results across six datasets demonstrate
that our method achieves state-of-the-art (SOTA) performance,
underscoring the effectiveness of FusionMamba. The code is
available at https://github.com/PSRben/FusionMamba.

Index Terms—Remote sensing image fusion, pansharpening,
hyper-spectral pansharpening, deep learning (DL), convolutional
neural networks (CNNs), Transformers, state space model (SSM).
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Fig. 1. Different combinations of feature extraction methods and information
integration approaches for remote sensing image fusion. The candidate feature
extraction methods include the convolution (Conv) layer, self-attention (SA)
module [1], and four-directional Mamba (Mamba) block [2]. For information
integration, the options comprise the concatenation (Concat) operation, cross-
attention (CA) module, and the proposed FusionMamba (FMamba) block.
For fairness, all combinations are designed with the same number of param-
eters. Quantitative evaluation results on 20 reduced-resolution samples from
the WorldView-3 (WV3) dataset [3] demonstrate the superior efficacy and
efficiency of our method. For precise values, please refer to Table VIII.

I. INTRODUCTION

Due to hardware limitations, satellite sensors often struggle
to capture high-resolution multi/hyper-spectral images. As
an alternative approach, they can simultaneously acquire a
high-resolution image with limited spectral data and a low-
resolution image with extensive spectral information. Remote
sensing image fusion aims to merge these two types of images,
generating a high-resolution result enriched with spectral char-
acteristics. This study primarily investigates two remote sens-
ing image fusion tasks: pansharpening [4] and hyper-spectral
pansharpening [5]. Pansharpening involves creating a high-
resolution multi-spectral (HRMS) image by combining a high-
resolution panchromatic (PAN) image with a low-resolution
multi-spectral (LRMS) image. Hyper-spectral pansharpening
extends this process to hyper-spectral images, producing a
high-resolution hyper-spectral (HRHS) image from a PAN
image and a low-resolution hyper-spectral (LRHS) image.

Traditional (hyper-spectral) pansharpening studies can be
broadly classified into three categories: component substitution
(CS) methods, multi-resolution analysis (MRA) approaches,
and variational optimization (VO) techniques. The CS-based
methods [6]–[8] project the LRMS/LRHS image into a trans-
formed domain, where the spatial information is treated as an
independent component. By substituting this component with
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the PAN image, a desired HRMS/HRHS result is produced.
These methods are known for their simplicity, low computa-
tional requirements, and high spatial fidelity. However, they
often lead to significant spectral distortions. The MRA-based
approaches [9], [10] utilize an MRA framework to inject
spatial details from the PAN image into the LRMS/LRHS
image, thus generating an HRMS/HRHS output. These tech-
niques are effective at preserving spectral characteristics but
may experience issues with spatial distortions. The VO-based
techniques [11]–[15] aim to uncover the intrinsic relationships
between two types of images. They typically rely on various
forms of prior information to construct optimization models
that integrate spatial and spectral data. Despite their meticulous
designs, VO-based techniques often fail to deliver satisfactory
fusion results and are hindered by slow inference speeds.

Over the past few years, deep learning (DL) has become the
leading solution for addressing image fusion problems within
the remote sensing domain. By leveraging the powerful feature
learning and non-linear fitting capabilities of neural networks,
DL-based methods have consistently yielded impressive out-
comes [16]–[34]. Analyzing these studies reveals two key
insights. First, networks with global perception abilities are
particularly effective, as they leverage holistic information
rather than solely relying on localized features. Second, since
low-level tasks necessitate processing at relatively high reso-
lutions, it is essential to keep computational complexity within
manageable limits. Most DL-based methods utilize convolu-
tional neural networks (CNNs) [35] or Transformers [1] for
feature extraction and information integration. Although CNNs
are computationally efficient, they are hindered by limited
receptive fields, restricting their ability to capture global con-
text. On the contrary, Transformers excel at extracting global
features but are burdened by quadratic complexity with respect
to the length of input tokens. Recent breakthroughs in the
state space model (SSM) [36]–[39], particularly Mamba [40],
offer a promising solution to this issue by achieving global
perception with linear complexity. The SSM has demonstrated
remarkable success across a range of computer vision tasks
[2], [41]–[44], delivering outstanding performance while re-
quiring significantly fewer computational resources compared
to Transformers. However, there has been limited exploration
into the potential of the SSM for integrating different types of
information, which is a crucial aspect of image fusion.

Given the aforementioned situation, we propose Fusion-
Mamba, a novel method for efficient remote sensing image
fusion. Our innovations focus on two aspects. First, we ex-
pand the single-input Mamba block to support dual inputs,
creating the FusionMamba block. This new module effectively
merges spatial and spectral features, demonstrating superiority
over existing fusion techniques like concatenation and cross-
attention [1], as illustrated in Fig. 1. Moreover, experimental
results presented in Table VI indicate that the FusionMamba
block can function as a plug-and-play module for information
integration. Second, based on the intrinsic properties of image
fusion, we meticulously design an interpretable network archi-
tecture that incorporates Mamba and FusionMamba blocks.
For feature extraction, we embed four-directional Mamba
blocks [2] into two U-shaped network branches: the spatial

branch and the spectral branch. The former emphasizes captur-
ing spatial details from the PAN image, while the latter focuses
on extracting spectral features from the LRMS/LRHS image.
This design allows for the separate and hierarchical learning
of spatial and spectral information. The resulting feature maps
from both branches are sufficiently merged in an auxiliary
combination branch, which is constructed using several Fu-
sionMamba blocks. To further improve the representation of
spectral information, we introduce a Mamba-driven channel
attention (MCA) module, where the traditional multi-layer
perceptron (MLP) is replaced with a bidirectional Mamba
block [41]. The contributions of this study are as follows:

1) To effectively merge spatial and spectral information, we
expand the Mamba block to accommodate dual inputs,
resulting in the innovative FusionMamba block. This
module demonstrates superior effectiveness over existing
fusion techniques, representing a significant advancement
in the application of the SSM for information integration.

2) According to the properties of image fusion, we develop
an interpretable network architecture that incorporates
Mamba and FusionMamba blocks. Our designs employ
two U-shaped network branches to extract spatial and
spectral features separately and hierarchically. The result-
ing feature maps are sufficiently merged in a combination
branch. Additionally, an enhanced channel attention mod-
ule is utilized to improve spectral representation.

3) To the best of our knowledge, this study represents the
first application of the SSM in hyper-spectral pansharp-
ening and hyper-spectral image super-resolution (HISR)
tasks. The proposed method achieves state-of-the-art
(SOTA) performance across six datasets, thereby convinc-
ingly demonstrating the superiority of FusionMamba.

The rest of this paper is structured as follows. Section II
reviews the related works and outlines our motivations. Sec-
tion III provides a detailed explanation of our method. In
Section IV, we present the experimental results for both
pansharpening and hyper-spectral pansharpening tasks, accom-
panied by comprehensive ablation studies. Finally, Sections V
and VI cover the discussion and conclusion, respectively.

II. RELATED WORKS AND MOTIVATIONS

A. DL Methods for Remote Sensing Image Fusion

In recent years, DL-based methods have dominated the
remote sensing image fusion community. These techniques
leverage the powerful feature learning and non-linear fitting
capabilities inherent in neural networks, significantly outper-
forming traditional approaches. Broadly speaking, DL-based
methods for remote sensing image fusion can be classified
into two categories: CNN-based approaches and Transformer-
based techniques. Notable examples in the first category
include PNN [16], PanNet [17], and FusionNet [23]. PNN
represents a pioneering advancement by integrating DL into
the pansharpening field. It employs three stacked convolutional
layers to achieve SOTA performance at the time of its pub-
lication. PanNet creatively uses high-pass filters to capture
edge information and incorporates residual network (ResNet)
blocks [45] to extract spatial and spectral features. FusionNet
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Fig. 2. Comparison among the convolution layer in CNNs, the self-attention
module in Transformers, and the SSM in bidirectional Mamba [41]. (a)
Suppose we have an image with a resolution of H×W . (b) The convolution
operation integrates pixels within a limited receptive field, resulting in a
computational complexity of O(HW ). (c) The self-attention mechanism uni-
formly integrates all pixels, which leads to a significantly higher computational
complexity of O(H2W 2). (d) The SSM integrates all pixels along specific
directions, with those closer to the output pixel contributing more significantly
to the final result. Additionally, its computational complexity is O(HW ).

embeds CNNs into the architecture of traditional algorithms,
yielding remarkable outcomes. However, due to the limited
receptive field size of convolutional kernels, these CNN-
based approaches often struggle to capture global information,
resulting in significant spatial distortions. Transformer-based
techniques address this problem by calculating the correlation
between any two pixels. Noteworthy works in this category
include INNformer [25] and U2Net [30]. The former pioneers
the application of Transformers for pansharpening, utilizing
modified cross-attention blocks to sufficiently merge spatial
and spectral feature maps. The latter incorporates enhanced
cross-attention modules into a U-shaped network, attaining
SOTA results in pansharpening. Despite their exceptional
performance, these techniques are burdened by a high volume
of floating-point operations (FLOPs) due to the quadratic
complexity. Some methods in the remote sensing domain, such
as STT [46] and LeMeViT [47], attempt to alleviate this com-
putational burden by discarding redundant tokens. However,
these approaches are not suitable for image fusion tasks and
still exhibit quadratic complexity. Over the past two years, the
development of DL-based methods for remote sensing image
fusion has encountered a bottleneck, with none successfully
achieving both global perception and low computational cost.

B. State Space Model

The SSM is a foundational scientific model primarily uti-
lized in control theory and econometrics. Recently, its applica-

tion has extended into the field of DL, thanks to the pioneering
research of LSSL [36] and S4 [37]. Based on a series of
mathematical derivations, LSSL approaches the SSM as a
foundational DL framework. Building on this, S4 introduces
the concept of normal plus low-rank, substantially reducing
the computational complexity during the training phase of the
SSM. Subsequent studies, such as S5 [39] and H3 [38], further
explore the potential of the SSM in DL, effectively narrowing
the performance gap between the SSM and Transformers.
This line of research has culminated in the development of
Mamba [40], which synthesizes pivotal findings from earlier
works and proposes a selection mechanism for dynamic fea-
ture extraction. Mamba not only outperforms Transformers
across various 1D tasks but also demands significantly fewer
computational resources. The success of Mamba has captivated
the computer vision community, leading to its widespread
adoption in a variety of 2D vision tasks. Since Mamba was
originally designed for 1D tasks with inherent directionality,
applying it directly to 2D vision tasks, which typically lack
such directionality, will result in incomplete global perception.
To address this limitation, Vision Mamba [41] flattens spatial
feature maps from both positive and negative directions, intro-
ducing a bidirectional Mamba approach that ensures complete
global perception. VMamba [2] further improves upon this by
proposing a four-directional Mamba technique, which enables
the discovery of more spatial connections. In the remote
sensing domain, notable contributions include RSCaMa [42],
RSMamba [43], and Pan-Mamba [44]. RSCaMam introduces
the SSM into remote sensing change captioning, achieving
commendable performance by employing Mamba for joint
spatial-temporal modeling. RSMamba proposes a shuffle flat-
tening method to explore unconventional spatial connections,
yielding SOTA results in remote sensing image classifica-
tion tasks. Additionally, Pan-Mamba represents a pioneering
effort in utilizing Mamba for pansharpening, demonstrating
impressive performance even with the original Mamba blocks.
However, the methods discussed above primarily concentrate
on the application and directionality of the SSM, leaving its
potential for information integration largely unexplored.

C. Motivations

Existing DL-based methods for remote sensing image fusion
primarily utilize CNNs or Transformers for feature extrac-
tion and information integration. While CNNs are efficient,
they often struggle to capture global information. Conversely,
Transformers exhibit outstanding global perception but come
with significant computational costs. Fortunately, recent ad-
vancements in the SSM, particularly Mamba, offer a promising
solution to this dilemma, achieving both global perception and
high efficiency. For a clearer understanding, Fig. 2 provides
a visual comparison of the convolution layer in CNNs, the
self-attention module in Transformers, and the SSM in bidi-
rectional Mamba. It is evident that the SSM integrates the
strengths of both CNNs and Transformers. Although the SSM
has demonstrated notable success in a range of computer vi-
sion tasks, its potential for information integration, an essential
aspect of image fusion, remains largely untapped. Therefore,



4

Fig. 3. The proposed network architecture. Our designs comprise two U-shaped network branches dedicated to feature extraction, a combination branch for
information integration, and an MCA module for spectral enhancement. Detailed structures of the Mamba and FusionMamba blocks are depicted in Fig. 4.

we expand the single-input Mamba block to support dual
inputs, resulting in the FusionMamba block, which effectively
merges spatial and spectral information. Next, we need to
determine an interpretable network architecture that leverages
Mamba and FusionMamba blocks for feature extraction and
information integration, respectively. Given that images from
different sources exhibit distinct characteristics, we employ
two U-shaped network branches, each primarily composed of
Mamba blocks, to separately and hierarchically learn spatial
and spectral features. Additionally, we utilize an auxiliary
network branch built with FusionMamba blocks to achieve
sufficient information integration. Moreover, to mitigate the
distortion caused by encoding spectral data into the channels
of feature maps, we develop an enhanced channel attention
module to improve the representation of spectral information.

III. METHODOLOGY

In this section, we first introduce the notations (Section
III-A) and explore the mathematical foundations of the SSM
(Section III-B). Next, we provide a detailed explanation of the
network architecture (Section III-C), followed by an in-depth
discussion of the Mamba and FusionMamba blocks (Section
III-D). Finally, we describe the loss function (Section III-E).

A. Notations
The PAN image is denoted as P ∈ RH×W , where H and

W represent its height and width. In addition, M ∈ Rh×w×S
denotes the LRMS/LRHS image, with S representing the
number of spectral bands, h = H

4 , and w = W
4 . Further-

more, the up-sampled LRMS/LRHS image, the generated
HRMS/HRHS image, and the ground-truth (GT) image are
defined as MU ∈ RH×W×S , Õ ∈ RH×W×S , and O ∈
RH×W×S , respectively. Our network takes P and M as inputs
to produce an output Õ, which is supervised by the GT image
O. The network performs feature extraction and information
integration through five cascading stages. At the i-th stage,
the spatial, spectral, and fusion feature maps are denoted as
Fa
i , Fb

i , and Fc
i , respectively. The dimensions of F

{a,b,c}
{1,5} ,

F
{a,b,c}
{2,4} , and F

{a,b,c}
3 are H ×W × C, H

2 ×
W
2 × 2C, and

H
4 ×

H
4 × 4C, where C represents the number of channels.

Additionally, N denotes the size of hidden states in the SSM.

B. Preliminaries

1) State Space Model: The SSM is a continuous system
that maps a 1D input x(t) ∈ R into an output y(t) ∈ R
via intermediate hidden states h(t) ∈ RN . This process
is frequently described using ordinary differential equations
(ODEs), as illustrated below:

h′(t) = Ah(t) + Bx(t),

y(t) = Ch(t).
(1)

Here, A ∈ RN×N denotes the state matrix governing the
system’s evolution. B ∈ RN×1 and C ∈ R1×N are projection
parameters that regulate the system updates. Eq. 1 indicates
that the SSM possesses global perception, as its current output
is influenced by all preceding inputs. When A, B, and C
are constant, this equation characterizes a linear time-invariant
(LTI) system, as exemplified in LSSL [36] and S4 [37].
Conversely, when these parameters change over time, the
equation describes a linear time-varying (LTV) system, which
is the case in Mamba [40]. LTI systems inherently lack the
ability to perceive input content, whereas input-aware LTV
systems are designed to possess this capability.

2) Discretization: When employing the SSM in the field
of DL, discretization is required. To facilitate this process,
a timescale parameter, denoted as ∆ ∈ R, is introduced
to convert the continuous parameters A and B into their
discrete counterparts, represented as A and B. Using the zero-
order hold (ZOH) method as the transformation algorithm, the
discrete parameters are calculated as follows:

A = exp(∆A),

B = (∆A)
−1

(exp(∆A)− I) ·∆B ≈∆B.
(2)

Then, the discrete form of Eq. 1 can be expressed as:

ht = Aht−1 + Bxt,

yt = Cht.
(3)

In practice, xt is a feature vector with C components, and
Eq. 3 processes each of these components independently.

3) Selective Scan: In Mamba, the variability of parameters
with the input prevents the reformulation of Eq. 3 into a
convolutional form, thereby impeding the parallelization of
the SSM. To overcome this obstacle, Mamba introduces the
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Fig. 4. The schematic diagram of the bidirectional Mamba block (first from the left), the four-directional Mamba block (second from the left), and the
proposed FusionMamba block (second from the right), along with an illustration depicting the four flattening directions (first from the right). FSSM stands
for the fusion state space model. Additionally, the specifics of the SSM and FSSM blocks are detailed in Algorithms 1 and 2, respectively.

Algorithm 1 SSM Block
Input: x : (HW,C)
Output: y : (HW,C)

1: A : (C,N)← ParameterA

/* A represents C sets of structured N ×N matrices [37] */
2: B : (HW,N)← LinearB(x)
3: C : (HW,N)← LinearC(x)
4: ∆ : (HW,C)← log(1+ exp(Linear∆(x)+Parameter∆))

/* Parameter∆ is a bias vector with a size of C */
5: A : (HW,C,N)← exp(∆⊗A)
6: B : (HW,C,N)←∆⊗B
7: y← SSM(A,B,C)(x)

/* SSM represents Eq. 3 implemented using selective scan */
8: return y

selective scan mechanism, which incorporates three hardware-
related techniques: kernel fusion, parallel scan, and recomputa-
tion. This selective scan enables Mamba to achieve impressive
speed while maintaining a relatively low memory requirement.

C. Network Architecture

To fully exploit the potential of the SSM in remote sensing
image fusion, we design an interpretable network architecture,
which consists of two U-shaped network branches (the spatial
branch and the spectral branch) for feature extraction, a combi-
nation branch for information integration, and an MCA module
for spectral enhancement, as shown in Fig. 3. Next, we will
provide a detailed explanation of these network components.

1) U-shaped Network Branches: This design facilitates the
efficient learning of spatial and spectral information in a sep-
arate and hierarchical manner. Specifically, the spatial branch
focuses on extracting spatial details from P, while the spectral
branch is dedicated to capturing spectral characteristics from
M. To acquire sufficient deep-level information without signif-
icantly increasing network parameters, we extract features at
three different scales. This means that each U-shaped network
branch comprises a total of five stages. At each stage, the
spatial or spectral feature map is initially processed by a
four-directional Mamba block. The resulting feature map then
passes through a FusionMamba block to generate a fusion

Algorithm 2 FSSM Block
Inputs: xa,xb : (HW,C)
Output: ya : (HW,C)

1: A : (C,N)← ParameterA

/* A represents C sets of structured N ×N matrices [37] */
2: B : (HW,N)← LinearB(x

b)
3: C : (HW,N)← LinearC(x

b)
4: ∆ : (HW,C)← log(1+exp(Linear∆(xb)+Parameter∆))

/* Parameter∆ is a bias vector with a size of C */
5: A : (HW,C,N)← exp(∆⊗A)
6: B : (HW,C,N)←∆⊗B
7: ya ← SSM(A,B,C)(xa)

/* SSM represents Eq. 3 implemented using selective scan */
8: return ya

output, which is subsequently added back to the original input.
Finally, a convolution layer of varying types is employed to
adjust both the spatial resolution and the number of channels.

2) Combination Branch: This design enables the compre-
hensive integration of spatial and spectral information. To
align with the U-shaped network branches, it incorporates five
FusionMamba blocks. Each block receives its corresponding
spatial and spectral feature maps as inputs, generating a fusion
output that is subsequently added back to the original inputs.
From a holistic perspective, the combination branch effectively
simulates the progressive merging of different features.

3) Mamba-driven Channel Attention: The MCA module is
designed to improve the representation of spectral information.
Based on the widely used channel attention mechanism [48],
the MCA module replaces the MLP with a bidirectional
Mamba block. Additionally, several modifications are made
to better accommodate the characteristics of the SSM in data
processing. Specifically, we first utilize global max pooling to
eliminate spatial information from MU, resulting in a 1×1×S
feature map. This map is then reshaped into a 1D sequence of
size S×1. Next, we employ a fully connected layer to increase
the channel number of this sequence to C. The augmented
1D sequence is subsequently passed through a bidirectional
Mamba block to extract spectral features. Finally, the output is
projected and reshaped back into a 1×1×S feature map, which
is multiplied with Fc

5 to complete the spectral enhancement.
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D. Mamba and FusionMamba Blocks
In this section, we detail the bidirectional Mamba block,

the four-directional Mamba block, and the proposed Fusion-
Mamba block, all of which are depicted in Fig. 4. Additionally,
we compare the FLOPs required by different DL models.

1) Bidirectional Mamba Block: For an input 1D sequence
xin ∈ RS×C , we first normalize it using layer normalization.
Next, it is processed by two parallel fully connected layers,
producing two distinct sequences, denoted as x ∈ RS×C and
z ∈ RS×C . This procedure can be expressed as follows:

x, z = Linearx(Norm(xin)),Linearz(Norm(xin)). (4)

Here, Norm denotes layer normalization, while Linearx
and Linearz represent two separate fully connected layers.
After that, we flip x vertically, generating x̂ of size S × C.
Subsequently, x and x̂ are processed separately through two
SSM blocks for feature extraction, resulting in two output
sequences, denoted as y and ŷ. This process is expressed as:

x̂ = VFlip(x),

y, ŷ = SSM1(x),SSM2(x̂).
(5)

Here, VFlip refers to the operation of flipping a matrix
vertically. SSM1 and SSM2 represent two separate SSM
blocks, which are thoroughly detailed in Algorithm 1. Next,
we vertically flip ŷ and add it to y, producing a new sequence
denoted as y ∈ RS×C . After gating by z, this sequence
undergoes a fully connected layer and is added to xin, resulting
in the final output represented as xout ∈ RS×C :

y = y + VFlip(ŷ),

xout = Linearo(y · SiLU(z)) + xin.
(6)

Here, Linearo denotes the fully connected layer, and SiLU
stands for the “SiLU” activation function.

2) Four-directional Mamba Block: Given an input feature
map Fin ∈ RH×W×C , we normalize it using layer normaliza-
tion and process it via two parallel 1 × 1 convolution layers,
yielding two distinct feature maps, denoted as X ∈ RH×W×C
and Z ∈ RH×W×C . This process can be expressed as follows:

X,Z = Convx(Norm(Fin)),Convz(Norm(Fin)). (7)

Here, Convx and Convz represents two separate convolution
layers. Following this, X is flattened in four directions, pro-
ducing x1, x2, x3, and x4, each with dimension of HW × C.
These sequences are then separately processed by SSM blocks,
resulting in four outputs denoted as y1, y2, y3, and y4:{

xi = Flatteni(X),

yi = SSMi(xi).
i = 1, 2, 3, 4. (8)

Here, Flatteni represents the flattening operation along the
i-th direction. Subsequently, we unflatten the outputs of SSM
blocks and combine them to obtain a new feature map, denoted
as Y ∈ RH×W×C . After gating by Z, this feature map
undergoes a 1 × 1 convolution layer and is added to Fin,
yielding the final output represented as Fout ∈ RH×W×C :

Y =

4∑
i=1

Unflatteni(yi),

Fout = Convo(Y · SiLU(Z)) + Fin.

(9)

Out of bound!

Fig. 5. Comparison of FLOPs among the convolution layer, bidirectional (BD)
Mamba block, four-directional (FD) Mamba block, FusionMamba block, and
self/cross-attention module at various spatial resolutions. For optimal visual
effects, we configure D, C, and N to be 0.5M, 256, and 64, respectively.

Here, Unflatteni denotes the operation of unflattening along
the i-th direction and Convo represents the convolution layer.

3) FusionMamba Block: The original SSM can only handle
a single input. To effectively integrate different types of infor-
mation, we expand it to accommodate dual inputs, resulting
in the fusion state space model (FSSM), as detailed in Algo-
rithm 2. Within the FSSM block, one input is responsible for
generating the projection and timescale parameters, while the
other input is the sequence to be processed. The FusionMamba
block, consisting of eight FSSM blocks, is designed with a
symmetrical structure. For the input spatial and spectral feature
maps, denoted as Fa

in ∈ RH×W×C and Fb
in ∈ RH×W×C , we

employ a method similar to the four-directional Mamba block
to generate two sets of feature maps as follows:

Xa,Za = Conva
x(Norm(Fa

in)),Conva
z(Norm(Fa

in));

Xb,Zb = Convb
x(Norm(Fb

in)),Convb
z (Norm(Fb

in)).
(10)

Since this equation is a direct extension of Eq. 7, explanations
for the symbols are omitted. Next, Xa and Xb are flattened
separately in four directions. The resulting 1D sequences are
then forwarded to FSSM blocks for information integration:{

xa
i ,x

b
i = Flatteni(X

a),Flatteni(X
b),

ya
i ,y

b
i = FSSMa

i (x
a
i ,x

b
i ),FSSMb

i (xb
i ,x

a
i ).

i = 1, 2, 3, 4.

(11)
Here, FSSMa and FSSMb refer to the FSSM blocks on the
left and right halves of the FusionMamba block in Fig. 4. After
that, we process the two sets of outputs separately, producing
two new feature maps denoted as Ya ∈ RH×W×C and Yb ∈
RH×W×C . These maps are finally combined to form Fout:

Ya,Yb =

4∑
i=1

Unflatteni(y
a
i ),

4∑
i=1

Unflatteni(y
b
i ),

Fa
out = Conva

o(Ya · SiLU(Za)) + Fa
in,

Fb
out = Convb

o(Yb · SiLU(Zb)) + Fb
in,

Fout = Convo(Fa
out + Fb

out).

(12)

Here, Conva
o, Convb

o , and Convo represent 1× 1 convolu-
tion layers that generate Fa

out, Fb
out, and Fout, respectively.

4) Analysis of FLOPs: In a convolution layer with D pa-
rameters, the FLOP count is commonly calculated as 2HWD.
Given that a selective scan costs 9HWCN FLOPs [40], the
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TABLE I
QUANTITATIVE EVALUATION RESULTS ON 20 REDUCED-RESOLUTION AND 20 FULL-RESOLUTION SAMPLES FROM THE WV3 DATASET, WHICH BELONGS
TO THE PANSHARPENING TASK. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND THE SECOND-BEST RESULTS ARE UNDERLINED. ADDITIONALLY,

THE METHODS ABOVE THE DIVIDING LINE REPRESENT TRADITIONAL APPROACHES, WHILE THE METHODS BELOW IT ARE DL-BASED TECHNIQUES.

Methods Params Reduced-Resolution Full-Resolution (Real Data)
PSNR(±std) Q2n(±std) SAM(±std) ERGAS(±std) Dλ(±std) Ds(±std) QNR(±std)

TV [11] − 32.381±2.328 0.795±0.120 5.692±1.808 4.855±1.434 0.0234±0.0061 0.0393±0.0227 0.9383±0.0269
GLP-HPM [9] − 33.095±2.800 0.835±0.092 5.333±1.761 4.616±1.503 0.0206±0.0082 0.0630±0.0284 0.9180±0.0346
GLP-FS [10] − 32.963±2.753 0.833±0.092 5.315±1.765 4.700±1.597 0.0197±0.0078 0.0630±0.0289 0.9187±0.0347
BDSD-PC [8] − 32.970±2.784 0.829±0.097 5.428±1.822 4.697±1.617 0.0625±0.0235 0.0730±0.0356 0.8698±0.0531
PanNet [17] 0.08M 37.346±2.688 0.891±0.093 3.613±0.766 2.664±0.688 0.0165±0.0074 0.0470±0.0210 0.9374±0.0271
MSDCNN [49] 0.23M 37.068±2.686 0.890±0.090 3.777±0.803 2.760±0.689 0.0230±0.0091 0.0467±0.0199 0.9316±0.0271
BDPN [18] 1.49M 36.191±2.702 0.871±0.100 4.201±0.857 3.046±0.732 0.0364±0.0142 0.0459±0.0192 0.9196±0.0308
FusionNet [23] 0.08M 38.047±2.589 0.904±0.090 3.324±0.698 2.465±0.644 0.0239±0.0090 0.0364±0.0137 0.9406±0.0197
MUCNN [50] 2.32M 38.262±2.703 0.911±0.089 3.206±0.681 2.400±0.617 0.0258±0.0111 0.0327±0.0140 0.9424±0.0205
LAGNet [51] 0.15M 38.592±2.778 0.910±0.091 3.103±0.558 2.292±0.607 0.0368±0.0148 0.0418±0.0152 0.9230±0.0247
PMACNet [52] 0.94M 38.595±2.882 0.912±0.092 3.073±0.623 2.293±0.532 0.0540±0.0232 0.0336±0.0115 0.9143±0.0281
U2Net [30] 0.66M 39.117±3.009 0.920±0.085 2.888±0.581 2.149±0.525 0.0178±0.0072 0.0313±0.0075 0.9514±0.0115
Pan-Mamba [44] 0.48M 39.012±2.986 0.920±0.085 2.914±0.592 2.184±0.521 0.0183±0.0071 0.0307±0.0108 0.9516±0.0146
CANNet [34] 0.78M 39.003±2.900 0.919±0.084 2.941±0.590 2.175±0.530 0.0196±0.0083 0.0301±0.0074 0.9510±0.0126
FusionMamba 0.73M 39.374±2.973 0.922±0.084 2.843±0.577 2.092±0.510 0.0186±0.0078 0.0269±0.0058 0.9550±0.0110
Ideal Values − +∞ 1 0 0 0 0 1

overall FLOP counts for a bidirectional Mamba block, a four-
directional block, and a FusionMamba block, each with D
parameters, are 2HWD+18HWCN , 2HWD+36HWCN ,
and 2HWD + 72HWCN , respectively. As for a self/cross-
attention block in Transformers, the total FLOP count is
estimated to be around 2HWD + 4H2W 2C. The FLOP
comparison among these modules, as depicted in Fig. 5,
indicates that the Mamba and FusionMamba blocks possess
FLOP costs comparable to that of the convolution layer and are
significantly more efficient than the self/cross-attention block.

E. Loss Function

The main contributions of this study lie in the application
and innovation of the SSM. Therefore, we employ the simplest
`1 loss function for network training, as shown below:

Loss =
1

T

T∑
i=1

‖fΘ(Pi,Mi)−Oi‖1. (13)

Here, T denotes the total number of training examples, and
fΘ represents our network with learnable parameters Θ.
Additionally, Pi, Mi, and Oi refer to the i-th PAN image,
LRMS/LRHS image, and GT image in the training dataset,
respectively. Furthermore, ‖ · ‖1 defines the `1 normalization.

IV. EXPERIMENTS

In this section, we present the quantitative and qualitative
evaluation results for representative remote sensing image
fusion approaches on the pansharpening and hyper-spectral
pansharpening tasks. Additionally, we conduct comprehensive
ablation studies to demonstrate the superiority of our method.

A. Pansharpening

1) Datasets: For the pansharpening task [4], we conduct
experiments using the widely recognized WorldView-3 (WV3)

and GaoFen-2 (GF2) datasets. The WV3 dataset consists of
instances acquired by the sensor aboard the WV3 satellite.
This sensor captures data across eight spectral bands, covering
wavelengths from 0.4 to 1 µm, with a spatial resolution of 1.2
meters. The images in the GF2 dataset are collected by the
sensor onboard the GF2 satellite, which records data across
four spectral bands within the wavelength range of 0.4 to
0.9 µm. Additionally, this sensor provides a spatial resolution
of 4 meters. Both datasets utilized in this study are sourced
from the PanCollection1. The data generation process adheres
strictly to Wald’s protocol [53], with comprehensive details
provided in [3]. Specifically, the WV3 dataset includes 10000
training samples, with 90% allocated for training and 10%
for validation. Additionally, it contains 20 reduced-resolution
and 20 full-resolution testing samples. Each training sample
comprises an image triplet in the PAN/LRMS/GT format,
with dimensions of 64 × 64, 16 × 16 × 8, and 64 × 64 × 8,
respectively. The reduced-resolution testing samples include
PAN/LRMS/GT image triplets sized 256× 256, 64× 64× 8,
and 256×256×8, respectively. Additionally, the full-resolution
testing samples consist of image pairs in the PAN/LRMS
format, with sizes of 512×512 and 128×128×8, respectively.
In the GF2 dataset, there are 22010 training samples, divided
into 90% for training and 10% for validation. Addition-
ally, this dataset includes 20 reduced-resolution and 20 full-
resolution testing samples. Each training sample contains a
PAN/LRMS/GT image triplet of sizes 64×64, 16×16×4, and
64× 64× 4, respectively. The reduced-resolution testing sam-
ples comprise PAN/LRMS/GT image triplets sized 256×256,
64×64×4, and 256×256×4, respectively. Additionally, the
full-resolution testing samples consist of PAN/LRMS image
pairs sized 512×512 and 128×128×4. The primary distinction
between the WV3 and GF2 datasets lies in the number of
spectral bands included in their multi-spectral images.

1https://github.com/liangjiandeng/PanCollection

https://github.com/liangjiandeng/PanCollection
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Fig. 6. Qualitative results on a reduced-resolution example from the WV3 dataset. Rows 1 and 3: Pseudo-color images representing spectral bands 1, 3, and
5. Rows 2 and 4: The corresponding absolute error maps (AEMs) for spectral band 7. The values on both sides of the color bar indicate the degree of errors.

2) Benchmarks: We compare FusionMamba with represen-
tative pansharpening techniques, including four traditional ap-
proaches: TV [11], GLP-HPM [9], GLP-FS [10], and BDSD-
PC [8]; and ten DL-based methods: PanNet [17], MSDCNN
[49], BDPN [18], FusionNet [23], MUCNN [50], LAGNet
[51], PMACNet [52], U2Net [30], Pan-Mamba [44], and
CANNet [34]. For fairness, all DL-based methods are trained
using the same Nvidia GPU 3090 and PyTorch environment.

3) Quality Indices: In accordance with the research stan-
dards of pansharpening, we utilize four quality indices, namely
PSNR [54], Q2n [55], SAM [56], and ERGAS [53], to
evaluate the results on reduced-resolution samples. The ideal
values for these indices are +∞, 1, 0, and 0, respectively.
For full-resolution samples, we employ Dλ, Ds, and QNR
[57] as evaluation metrics, with ideal values of 0, 0, and
1, respectively. Notably, QNR, which combines Dλ and Ds,
provides a comprehensive measure of overall fusion quality.

4) Settings: In the pansharpening task, we set C to 32 and
N to 8. Additionally, we utilize the PixelShuffle technique [58]
for up-sampling. During the training of our networks on the
WV3 and GF2 datasets, the number of epochs is configured as
420 and 300, respectively. Besides, the batch size and initial
learning rate are uniformly configured as 32 and 5 × 10−4,
respectively. Furthermore, we employ the Adam optimizer,
with the learning rate halved every 200 epochs. As for other
DL-based methods, we adhere to the default settings specified
in the related papers or source codes.

5) Results: The quantitative evaluation results for the WV3
and GF2 datasets, respectively presented in Tables I and II,

indicate that FusionMamba achieves the best overall per-
formance on both the reduced-resolution and full-resolution
testing samples. Given that the indicator values are approach-
ing their limits, our method demonstrates significant im-
provements over other techniques. Additionally, the qualitative
evaluation results on both datasets, as depicted in Figs. 6 and
7, reveal that the FusionMamba’s absolute error maps (AEMs)
are the closest to the GT images. Consequently, our method
exhibits superior effectiveness in the pansharpening task.

B. Hyper-spectral Pansharpening
1) Datasets: We conduct experiments on three widely used

hyper-spectral pansharpening datasets [5]: Pavia, Botswana,
and Washington D.C. (WDC). The Pavia dataset includes
images acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor, which records data across 115
spectral bands within the wavelength range of 0.4 to 0.9
µm. Additionally, this sensor offers a spatial resolution of
1.3 meters. The images in the Botswana dataset are collected
by the Hyperion sensor aboard the Earth Observing-1 (EO-
1) satellite, operated by the National Aeronautics and Space
Administration (NASA). This sensor captures data across 242
spectral bands, spanning wavelengths from 0.4 to 2.5 µm, with
a spatial resolution of 30 meters. The WDC dataset comprises
images captured by the Hyper-spectral Digital Imagery Collec-
tion Experiment (HY-DICE) sensor, which records data across
210 spectral bands, covering a wavelength range from 0.4 to
2.4 µm, with a spatial resolution of 1 meter. The hyper-spectral
pansharpening datasets used in this study are sourced from
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TABLE II
RESULTS ON 20 REDUCED-RESOLUTION AND 20 FULL-RESOLUTION SAMPLES FROM THE GF2 DATASET, WHICH BELONGS TO PANSHARPENING.

Methods Params Reduced-Resolution Full-Resolution (Real Data)
PSNR(±std) Q2n(±std) SAM(±std) ERGAS(±std) Dλ(±std) Ds(±std) QNR(±std)

TV [11] − 41.262±2.264 0.907±0.029 1.911±0.447 1.737±0.447 0.0553±0.0430 0.1118±0.0226 0.8392±0.0441
GLP-HPM [9] − 41.582±2.217 0.900±0.034 1.650±0.392 1.588±0.405 0.0336±0.0129 0.1404±0.0277 0.8309±0.0334
GLP-FS [10] − 41.565±2.125 0.897±0.035 1.655±0.385 1.589±0.395 0.0346±0.0137 0.1429±0.0282 0.8276±0.0348
BDSD-PC [8] − 41.205±2.317 0.892±0.035 1.681±0.360 1.667±0.445 0.0759±0.0301 0.1548±0.0280 0.7812±0.0409
PanNet [17] 0.08M 46.268±2.031 0.967±0.010 0.997±0.212 0.919±0.191 0.0179±0.0110 0.0799±0.0178 0.9036±0.0198
MSDCNN [49] 0.23M 45.247±2.228 0.961±0.011 1.047±0.221 1.041±0.231 0.0243±0.0133 0.0730±0.0093 0.9044±0.0126
BDPN [18] 1.49M 42.080±2.625 0.923±0.024 1.481±0.326 1.546±0.432 0.0330±0.0223 0.0765±0.0199 0.8929±0.0250
FusionNet [23] 0.08M 45.663±2.270 0.964±0.009 0.974±0.212 0.988±0.222 0.0350±0.0124 0.1013±0.0134 0.8673±0.0179
MUCNN [50] 2.32M 48.256±1.930 0.979±0.008 0.808±0.171 0.731±0.146 0.0181±0.0093 0.0515±0.0088 0.9312±0.0107
LAGNet [51] 0.15M 48.760±1.447 0.980±0.009 0.786±0.148 0.687±0.113 0.0284±0.0130 0.0792±0.0136 0.8947±0.0200
PMACNet [52] 0.94M 45.041±2.135 0.963±0.011 1.359±0.133 1.248±0.204 0.0981±0.0215 0.0474±0.0115 0.8590±0.0171
U2Net [30] 0.66M 49.404±1.730 0.982±0.009 0.714±0.138 0.632±0.117 0.0236±0.0172 0.0510±0.0101 0.9265±0.0172
Pan-Mamba [44] 0.48M 48.931±1.811 0.982±0.008 0.743±0.156 0.684±0.129 0.0231±0.0110 0.0573±0.0116 0.9209±0.0148
CANNet [34] 0.78M 49.520±1.932 0.983±0.006 0.708±0.156 0.630±0.128 0.0194±0.0101 0.0630±0.0094 0.9188±0.0110
FusionMamba 0.73M 49.678±1.708 0.984±0.007 0.705±0.137 0.615±0.108 0.0174±0.0094 0.0295±0.0073 0.9536±0.0086
Ideal Values − +∞ 1 0 0 0 0 1

the HyperPanCollection2. The data generation process follows
Wald’s protocol [53], with a detailed explanation provided
in [59]. Specifically, the Pavia dataset contains 1680 training
samples, of which 90% are allocated for training and 10%
for validation. Additionally, this dataset includes two testing
samples. Each training sample consists of an image triplet in
the PAN/LRHS/GT format, with sizes of 64×64, 16×16×102,
and 64×64×102, respectively. The testing samples comprise
PAN/LRHS/GT image triplets sized 400×400, 100×100×102,
and 400 × 400 × 102, respectively. The Botswana dataset
contains 967 training samples, divided into 83% for training
and 17% for validation, alongside four testing samples. Each
training sample consists of a PAN/LRHS/GT image triplet with
dimensions of 64 × 64, 16 × 16 × 145, and 64 × 64 × 145,
respectively. The testing samples comprise PAN/LRHS/GT
image triplets of sizes 128 × 128, 32 × 32 × 145, and
128× 128× 145. In the WDC dataset, there are 1024 training
samples, divided into 90% for training and 10% for validation.
Additionally, this dataset includes four testing samples. Each
training sample contains a PAN/LRHS/GT image triplet of
sizes 64× 64, 16× 16× 191, and 64× 64× 191, respectively.
The testing samples consist of PAN/LRHS/GT image triplets
sized 128× 128, 32× 32× 191, and 128× 128× 191.

2) Benchmarks: The proposed method is compared with
several representative techniques, including four traditional
approaches: GLP [6], GSA [60], CNMF [61], and Hysure [62];
as well as five DL-based methods: HyperPNN [19], HSpeNet
series [63], FusionNet [23], Hyper-DSNet [59], and FPFNet
[64]. For a fair comparison, all DL-based methods are trained
using the same Nvidia GPU 3090 and PyTorch environment.

3) Quality Indices: In line with the research standards of
the hyper-spectral pansharpening task, we select five widely
used quality indices for evaluation, namely PSNR, cross-
correlation (CC), SSIM [54], SAM, and ERGAS. The ideal
values for these indices are +∞, 1, 1, 0, and 0, respectively.

2https://github.com/liangjiandeng/HyperPanCollection

4) Settings: For hyper-spectral pansharpening, we set C to
48 and N to 4. Additionally, we employ the bicubic interpo-
lation for up-sampling. Furthermore, in the U-shaped network
branches, the number of channels in the feature maps remains
constant across different stages, which slightly deviates from
the depiction in Fig. 3. During the training of our networks on
the Pavia, Botswana, and WDC datasets, the number of epochs
is set to 1600, 3500, and 4000, respectively. Additionally, the
batch size and initial learning rate are uniformly set to 32 and
2× 10−4. Furthermore, we use the Adam optimizer, with the
learning rate halving every 1000 epochs. As for other DL-
based methods, we follow the default settings specified in the
corresponding papers or source codes.

5) Results: The quantitative evaluation results on three
distinct datasets are presented in Table III. Clearly, our method
significantly outperforms other techniques across all quality in-
dices. Additionally, the qualitative evaluation outcomes, shown
in Fig. 8, illustrate that FusionMamba produces fusion results
that most closely resemble the GT images. Furthermore, Fig. 9
displays spectral vectors from various spatial locations of
a WDC testing sample, highlighting the minimal spectral
distortion achieved by our method. These results indicate that
FusionMamba excels in the hyper-spectral pansharpening task.

C. Ablation Studies

1) Network Architecture: To validate the effectiveness of
the proposed network architecture, we develop six variants
of the FusionMamba and evaluate their performance using
the reduced-resolution samples from the WV3 dataset, as
detailed in Table IV. For fairness, all compared methods are
designed with an identical number of network parameters.
Specifically, we maintain a consistent spatial resolution of
feature maps across different stages (w/o U-shape) to assess
the efficacy of hierarchical information learning. Additionally,
we remove the four-directional Mamba blocks from either the
spatial branch (w/o Spatial Branch) or the spectral branch (w/o
Spectral Branch) to determine the effectiveness of separate

https://github.com/liangjiandeng/HyperPanCollection
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Fig. 7. Results on a reduced-resolution example from the GF2 dataset. Rows 1 and 3: Natural color images. Rows 2 and 4: AEMs for spectral band 3.

TABLE III
RESULTS ON TESTING SAMPLES OF THE WDC, BOTSWANA, AND PAVIA DATASETS, WHICH BELONG TO THE HYPER-SPECTRAL PANSHARPENING TASK.

Methods Params Pavia Botswana WDC
PSNR CC SSIM SAM ERGAS PSNR CC SSIM SAM ERGAS PSNR CC SSIM SAM ERGAS

GLP [6] − 31.944 0.935 0.749 6.099 4.909 32.559 0.951 0.837 1.383 1.207 27.946 0.934 0.761 6.546 5.110
GSA [60] − 31.501 0.937 0.722 6.282 4.978 31.739 0.939 0.828 1.389 1.386 24.462 0.906 0.671 7.846 6.079
CNMF [61] − 31.184 0.894 0.659 6.953 6.263 30.220 0.917 0.788 1.934 1.718 24.604 0.890 0.678 8.441 6.682
Hysure [62] − 32.208 0.921 0.730 6.240 5.474 30.610 0.928 0.796 1.747 1.595 25.598 0.913 0.718 7.254 5.834
HyperPNN [19] 0.13-0.14M 33.394 0.963 0.827 4.566 3.750 33.114 0.961 0.873 1.366 1.195 29.258 0.945 0.860 4.051 5.749
HSpeNet1 [63] 0.18-0.19M 33.612 0.964 0.824 4.690 3.721 31.746 0.942 0.844 1.456 1.663 29.634 0.960 0.870 4.039 4.266
HSpeNet2 [63] 0.11-0.13M 33.472 0.962 0.819 4.642 3.818 32.575 0.953 0.849 1.400 1.348 29.700 0.961 0.872 4.009 4.261
FusionNet [23] 0.21-0.26M 34.739 0.969 0.847 4.462 3.446 32.506 0.952 0.850 1.397 1.367 29.696 0.959 0.866 3.917 4.339
HyperDSNet [59] 0.18-0.31M 34.376 0.969 0.849 4.295 3.434 33.538 0.964 0.876 1.305 1.126 30.232 0.964 0.875 4.102 3.943
FPFNet [64] 3.00-3.06M 33.581 0.959 0.825 4.627 3.931 33.451 0.962 0.871 1.369 1.135 30.291 0.957 0.855 4.440 4.250
FusionMamba 0.44-0.51M 35.628 0.973 0.872 3.963 3.171 33.943 0.966 0.881 1.277 1.076 31.860 0.965 0.881 3.755 3.882
Ideal Values − +∞ 1 1 0 0 +∞ 1 1 0 0 +∞ 1 1 0 0

feature extraction. Furthermore, we assess the validity of the
combination branch by incorporating the FusionMamba blocks
into the spectral branch (w/o Combination Branch). Finally,
we remove the MCA module (w/o MCA) or replace it with
the SENet [48] (w/ SENet) to evaluate the contribution of the
MCA. The results strongly support the validity of our designs.

2) Structures of Mamba and FusionMamba Blocks: To
validate the effectiveness of our structural designs for the
Mamba and FusionMamba blocks, we develop five variants
and evaluate them using the reduced-resolution samples from
the WV3 dataset, as presented in Table V. Specifically, we
assess the performance of the four-directional flattening tech-
nique [2] employed in our Mamba and FusionMamba blocks
by comparing it against the one-directional (OD) flattening

method, the bidirectional (BD) flattening approach [41], and
the shuffle flattening technique [43]. Additionally, we remove
either Fa

out (w/o Fa
out) or Fb

out (w/o Fb
out) from the Fu-

sionMamba block to verify the efficacy of our design. The
quantitative results strongly affirm the validity of our structural
designs for the Mamba and FusionMamba blocks.

3) The Application of FusionMamba Block: We investigate
the potential of the FusionMamba block by incorporating it
into several representative pansharpening frameworks, includ-
ing PanNet [17], FusionNet [23], and U2Net [30]. In this
process, we substitute the concatenation operation in PanNet
and FusionNet, as well as the S2Block in U2Net, with the Fu-
sionMamba block. Table VI showcases the evaluation results
on the reduced-resolution samples from the WV3 dataset. The
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Fig. 8. Qualitative evaluation results on the Pavia, Botswana, and WDC datasets. Row 1: Pseudo-color images for spectral bands 20, 40, and 60 from a
testing sample in the Pavia dataset. Row 2: AEMs for spectral band 68 from the testing sample in row 1. Row 3: Pseudo-color images for spectral bands 30,
50, and 70 from a testing sample in the Botswana dataset. Row 4: AEMs for spectral band 34 from the testing sample in row 3. Row 5: Pseudo-color images
for spectral bands 20, 50, and 80 from a testing sample in the WDC dataset. Row 6: AEMs for spectral band 25 from the testing sample in row 5.

Spectral Vectors at (44, 30) Spectral Vectors at (80, 47) Spectral Vectors at (115, 59)

Fig. 9. Comparison of spectral vectors at three randomly selected spatial locations from a testing sample in the WDC dataset.

FusionMamba block demonstrates significant performance im-
provements, particularly when the baseline metrics are low.
Moreover, even with high baseline performance, our method
is still capable of exceeding the performance threshold. Con-
sequently, the FusionMamba block proves to be an effective
plug-and-play module for information integration.

4) FSSM Block: The main contribution of the FSSM block
lies in its information interaction mechanism. Consequently,
we investigate different interactive combinations of the pro-
jection parameters B and C, along with the timescale pa-
rameter ∆. The quantitative evaluation results on 20 reduced-
resolution samples from the WV3 dataset, as illustrated in

Table VII, demonstrate the correctness of our strategy: one
input generates the projection and timescale parameters, while
the other input serves as the 1D sequence to be processed.

5) Feature Extraction and Information Integration Com-
binations: To emphasize the superiority of the Mamba and
FusionMamba blocks, we systematically examine various
combinations of feature extraction methods and information
integration approaches. Specifically, the candidate feature ex-
traction methods include the convolution (Conv) layer, self-
attention (SA) module, and four-directional Mamba (Mamba)
block. For information integration, we consider the concate-
nation (Concat) operation, cross-attention (CA) module, and
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TABLE IV
ABLATION STUDY ON OUR NETWORK ARCHITECTURE USING 20

REDUCED-RESOLUTION SAMPLES FROM THE WV3 DATASET. ALL
COMPARED METHODS HAVE AN IDENTICAL NUMBER OF PARAMETERS.

Methods GFLOPs PSNR Q2n SAM ERGAS
w/o U-shape 124 39.219 0.921 2.855 2.134
w/o Spatial Branch 31 39.255 0.920 2.869 2.121
w/o Spectral Branch 31 39.333 0.921 2.848 2.097
w/o Combination Branch 31 39.316 0.921 2.853 2.101
w/o MCA 31 39.324 0.921 2.861 2.099
w/ SENet 31 39.294 0.920 2.850 2.100
FusionMamba 31 39.374 0.922 2.843 2.092
Ideal Values − +∞ 1 0 0

TABLE V
ABLATION STUDY ON STRUCTURES OF MAMBA AND FUSIONMAMBA

BLOCKS USING THE REDUCED-RESOLUTION SAMPLES FROM THE WV3
DATASET. ALL METHODS HAVE THE SAME NUMBER OF PARAMETERS.

Methods PSNR Q2n SAM ERGAS
OD Flattening 39.014 0.917 2.951 2.178
BD Flattening 39.163 0.920 2.886 2.144
Shuffle Flattening 39.117 0.919 2.898 2.152
w/o Fa

out 39.309 0.921 2.855 2.106
w/o Fb

out 39.293 0.921 2.857 2.110
FusionMamba 39.374 0.922 2.843 2.092
Ideal Values +∞ 1 0 0

FusionMamba (FMamba) block. Notably, a convolution layer
is applied in Concat to adjust the number of channels. Ta-
ble VIII presents quantitative evaluation results on 20 reduced-
resolution samples from the WV3 dataset. To ensure a fair
comparison, all combinations are designed to have the same
number of network parameters. The combination of Mamba
+ FMamba achieves the best results across all quality indices
while maintaining a relatively low FLOP consumption, under-
scoring both the efficacy and efficiency of our method. Addi-
tionally, combinations with Mamba outperform those without
it, indicating the effectiveness of the Mamba block in feature
extraction. Moreover, combinations incorporating FMamba far
exceed those without it, demonstrating the superiority of the
FusionMamba block in merging different types of information.

V. DISCUSSION

A. Experiments for HISR

1) Dataset: To validate the effectiveness of FusionMamba
for image fusion tasks beyond remote sensing, we perform
experiments using the CAVE dataset3, which belongs to the
HISR task [72]. Initially introduced in [73], the CAVE dataset
contains 32 RGB/HRHS image pairs with dimensions of
512 × 512 × 3 and 512 × 512 × 31, which are not directly
suitable for training and testing purposes. During the data
generation phase, we select 20 samples for training and
reserve the remaining samples for testing. From the training
HRHS images, we extract 3920 overlapped patches of size
64 × 64 × 31 to serve as the GT images. Following this,
a 3 × 3 Gaussian blur kernel with a standard deviation of

3https://www.cs.columbia.edu/CAVE/databases/multispectral/

TABLE VI
THE APPLICATION OF THE FUSIONMAMBA (FMAMBA) BLOCK IN

VARIOUS PANSHARPENING FRAMEWORKS. ALL METHODS ARE ASSESSED
USING THE REDUCED-RESOLUTION SAMPLES FROM THE WV3 DATASET.

Methods Params PSNR Q2n SAM ERGAS
PanNet [17] 0.08M 37.346 0.891 3.613 2.664
PanNet + FMamba 0.09M 38.178 0.904 3.236 2.418
FusionNet [23] 0.08M 38.047 0.904 3.324 2.465
FusionNet + FMamba 0.09M 38.604 0.914 3.092 2.294
U2Net [30] 0.66M 39.117 0.920 2.888 2.149
U2Net + FMamba 0.83M 39.181 0.920 2.885 2.132
Ideal Values − +∞ 1 0 0

TABLE VII
ABLATION STUDY ON INTERACTIVE COMBINATIONS OF THE PARAMETERS

B, C, AND ∆ IN THE FSSM BLOCK. ALL METHODS ARE EVALUATED
USING 20 REDUCED-RESOLUTION SAMPLES FROM THE WV3 DATASET.

Interactiveness
PSNR Q2n SAM ERGAS

B C ∆

× × × 39.124 0.919 2.903 2.154
� × × 39.182 0.920 2.886 2.145
× � × 39.157 0.919 2.893 2.150
× × � 39.116 0.919 2.907 2.159
� � × 39.343 0.922 2.846 2.093
� × � 39.224 0.921 2.864 2.122
× � � 39.265 0.921 2.852 2.116
� � � 39.374 0.922 2.843 2.092

Ideal Values +∞ 1 0 0

0.5 is employed to down-sample the GT images, creating
LRHS samples of size 16×16×31. Additionally, we segment
the training RGB images into 3920 overlapped patches, each
sized 64 × 64 × 3, to match the spatial resolution of the
GT images. This process generates 3920 training samples,
each comprising an RGB/LRHS/GT image triplet of sizes
64 × 64 × 3, 16 × 16 × 31, and 64 × 64 × 31, respectively.
We process the testing data using a similar strategy, resulting
in testing samples containing RGB/LRHS/GT image triplets
sized 512× 512× 3, 128× 128× 31, and 512× 512× 31.

2) Benchmarks, Metrics, and Settings: We compare Fu-
sionMamba with several representative techniques for HISR,
including two traditional approaches, namely LTMR [65] and
UTV [66], alongside six DL-based methods: ResTFNet [67],
SSRNet [68], Fusformer [69], 3DT-Net [70], PSRT [71], and
U2Net [30]. In accordance with the research standards of
HISR, we choose four quality indices for evaluation: PSNR,
SSIM, SAM, and ERGAS. Their ideal values are +∞, 1, 0,
and 0, respectively. For the network configuration, we set C
and N to 64 and 4, respectively. Additionally, we utilize the
bicubic interpolation for up-sampling. During training, we set
the batch size, number of epochs, and initial learning rate to
32, 1100, and 2× 10−4, respectively. Besides, we employ the
Adam optimizer and halve the learning rate every 500 epochs.

3) Results: The quantitative evaluation results, as presented
in Table IX, indicate that our method outperforms all others.
Additionally, the qualitative evaluation outcomes, as depicted
in Fig. 10, illustrate that the FusionMamba produces fusion
outputs that most closely match the GT images. These findings

https://www.cs.columbia.edu/CAVE/databases/multispectral/
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TABLE VIII
DIFFERENT COMBINATIONS OF FEATURE EXTRACTION METHODS AND
INFORMATION INTEGRATION APPROACHES. ALL COMBINATIONS HAVE
THE SAME NUMBER OF NETWORK PARAMETERS AND ARE EVALUATED
USING 20 REDUCED-RESOLUTION SAMPLES FROM THE WV3 DATASET.

NOTABLY, COMBINATIONS INCORPORATING SA OR CA REQUIRE
SIGNIFICANTLY HIGHER FLOPS DUE TO THE QUADRATIC COMPLEXITY

WITH RESPECT TO THE NUMBER OF INPUT TOKENS.

Methods GFLOPs PSNR Q2n SAM ERGAS
Conv + Concat 20 38.729 0.917 3.013 2.258
Conv + CA 2511 38.885 0.917 2.995 2.211
Conv + FMamba 26 39.111 0.918 2.919 2.152
SA + Concat 2511 38.653 0.914 3.070 2.285
SA + CA 5003 38.690 0.915 3.052 2.266
SA + FMamba 2517 39.206 0.920 2.867 2.126
Mamba + Concat 26 38.822 0.917 2.958 2.230
Mamba + CA 2517 38.925 0.919 2.917 2.203
Mamba + FMamba 31 39.374 0.922 2.843 2.092
Ideal Values − +∞ 1 0 0

TABLE IX
QUANTITATIVE EVALUATION RESULTS ON THE TESTING SAMPLES FROM

THE CAVE DATASET, WHICH BELONGS TO THE HISR TASK.

Methods Params PSNR SSIM SAM ERGAS
LTMR [65] − 36.543 0.963 6.711 5.387
UTV [66] − 38.615 0.941 8.649 4.519
ResTFNet [67] 2.39M 45.584 0.994 2.764 2.313
SSRNet [68] 0.03M 48.620 0.995 2.542 1.636
Fusformer [69] 0.50M 49.983 0.994 2.203 2.534
3DT-Net [70] 3.16M 51.471 0.997 2.117 1.119
PSRT [71] 0.25M 50.595 0.997 2.146 2.001
U2Net [30] 2.65M 50.433 0.997 2.187 1.277
FusionMamba 2.58M 51.658 0.998 2.021 1.081
Ideal Values − +∞ 1 0 0

strongly demonstrate the effectiveness of FusionMamba in
image fusion tasks beyond remote sensing applications.

B. Comparison between Transformers and Mamba

Both Transformers and Mamba demonstrate strong global
perception capabilities, but Mamba consistently outperforms
Transformers, as shown in Table VIII. This superiority can
be attributed to two key factors. First, Mamba’s approach to
global perception aligns more intuitively with image process-
ing principles, where the influence of neighboring pixels on
the output is generally more significant. Second, Mamba dy-
namically learns projection and timescale parameters from the
input, making it content-aware. In contrast, while Transform-
ers offer some adaptability through their self/cross-attention
mechanisms, they lack input-derived parameters, which limits
their content-awareness compared to Mamba. Furthermore,
as discussed in Section III-D4, Mamba exhibits significantly
greater efficiency than Transformers. Consequently, Mamba
emerges as a highly effective alternative to Transformers.

C. Comparison between Pan-Mamba and FusionMamba

As the pioneering application of the SSM in pansharpening,
Pan-Mamba [44] employs stacked one-directional Mamba

Fusformer 3DT-Net PSRT U2Net Ours GT

Fig. 10. Qualitative evaluation results of SOTA HISR methods on three testing
samples from the CAVE dataset. Row 1: Pseudo-color images for spectral
bands 6, 10, and 26 from the testing example cd. Row 2: AEMs for spectral
band 13 from cd. Row 3: Pseudo-color images for spectral bands 6, 13, and
26 from the testing example feathers. Row 4: AEMs for spectral band 14
from feathers. Row 5: Pseudo-color images for spectral bands 6, 13, and 26
from the testing example clay. Row 6: AEMs for spectral band 8 from clay.

blocks to extract spatial and spectral features. For informa-
tion integration, it merely adds the outputs of two Mamba
blocks, resulting in limited interaction between spatial and
spectral data. In contrast, the FusionMamba incorporates four-
directional Mamba blocks into two U-shape network branches,
allowing for the effective and hierarchical learning of spatial
and spectral characteristics. Furthermore, the proposed Fusion-
Mamba block enhances information integration through data
interaction at the SSM level. Consequently, the FusionMamba
is more powerful and interpretable than Pan-Mamba.

D. Strengths, Limitations, and Future Work

1) Strengths: First, the proposed FusionMamba block en-
ables the effective combination of spatial and spectral features
with only linear computational complexity, representing a
significant advancement in the application of the SSM for
combining different types of information. With an identical
number of parameters, our method outperforms existing fusion
techniques like concatenation and cross-attention. Further-
more, experimental results in Table VI demonstrate that the
FusionMamba block can function as a plug-and-play module
for information integration. Second, our interpretable network
architecture allows for the separate and hierarchical learning of
spatial and spectral features. This architecture also facilitates
the progressive fusion of different information types and im-
proves the representation of spectral characteristics. Therefore,
the FusionMamba offers an optimal solution for image fusion.

2) Limitations: Our method exhibits two limitations. First,
the FusionMamba block is designed to support only two
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inputs, restricting its applicability in fusion tasks that involve
more than two inputs. Second, the FusionMamba block re-
quires both feature maps to have the same number of channels,
which is less flexible than the concatenation operation.

3) Future Work: In the future, we plan to expand the
dual-input FusionMamba block to accommodate an arbitrary
number of inputs, each with a variable number of feature
channels. Additionally, we will delve deeply into the theories
of the SSM to foster further groundbreaking innovations.

VI. CONCLUSION

In this paper, we propose FusionMamba, an innovative
method for efficient remote sensing image fusion. To suf-
ficiently merge spatial and spectral features, we expand the
single-input Mamba block to accommodate dual inputs, cre-
ating the FusionMamba block. This novel module surpasses
existing fusion techniques such as concatenation and cross-
attention, representing a successful application of the SSM for
information integration. Besides, the FusionMamba block can
serve as a plug-and-play module, effectively merging different
types of information. Additionally, our interpretable network
architecture supports the separate and hierarchical learning of
spatial and spectral characteristics, facilitates the progressive
combination of different feature maps, and enhances the repre-
sentation of spectral information. We evaluate the performance
of FusionMamba across six datasets covering three image fu-
sion tasks: pansharpening, hyper-spectral pansharpening, and
HISR. Our method yields exceptional results, demonstrating
the superiority of FusionMamba in image fusion.
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