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Abstract

Recently, implicit neural representations (INR) have made significant strides in
various vision-related domains, providing a novel solution for Multispectral and
Hyperspectral Image Fusion (MHIF) tasks. However, INR is prone to losing
high-frequency information and is confined to the lack of global perceptual capa-
bilities. To address these issues, this paper introduces a Fourier-enhanced Implicit
Neural Fusion Network (FeINFN) specifically designed for MHIF task, targeting
the following phenomena: The Fourier amplitudes of the HR-HSI latent code
and LR-HSI are remarkably similar; however, their phases exhibit different pat-
terns. In FeINFN, we innovatively propose a spatial and frequency implicit fusion
function (Spa-Fre IFF), helping INR capture high-frequency information and ex-
panding the receptive field. Besides, a new decoder employing a complex Gabor
wavelet activation function, called Spatial-Frequency Interactive Decoder (SFID),
is invented to enhance the interaction of INR features. Especially, we further
theoretically prove that the Gabor wavelet activation possesses a time-frequency
tightness property that favors learning the optimal bandwidths in the decoder. Ex-
periments on two benchmark MHIF datasets verify the state-of-the-art (SOTA)
performance of the proposed method, both visually and quantitatively. Also, abla-
tion studies demonstrate the mentioned contributions. The code can be available at
https://github.com/294coder/Efficient-MIF.

1 Introduction

Hyperspectral imaging captures scenes across contiguous spectral bands, offering intricate details
compared to traditional single or limited-band images, and improving computer vision application
accuracy, such as target recognition, classification [47], tracking, and segmentation [12, 38, 39, 37, 44,
48, 49]. However, practical optical sensors face challenges in balancing spatial resolution and spectral
precision. Images with over 100 bands often exhibit lower spatial resolution, while those with fewer
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Figure 1: Comparison of our method with other methods on the CAVE(× 4, × 8) and Harvard(× 4,
× 8) datasets. Closer to the top-right corner indicates better performance and the size of the circle
indicates the number of parameters in the model.

bands display higher spatial resolution. Efforts for MHIF are underway to fuse high spatial-resolution
multispectral images (HR-MSI) with low spatial-resolution hyperspectral images (LR-HSI) to finally
obtain high spatial-resolution hyperspectral images (HR-HSI). Actually, MHIF technology could fuse
hyperspectral images with multispectral images, extracting information not detectable by HR-MSI to
enhance richness and precision. Recent MHIF literature explores model-based approaches [8, 9, 45]
and deep learning methods [17, 10, 3, 54]. While model-based methods leverage image priors,
challenges persist in obtaining high-fidelity, low-distortion HR-HSI due to the lack of large-scale
training datasets. Among deep-learning approaches, CNN-based networks for HR-MSI and LR-HSI
tend to be limited and lack interpretability for MHIF tasks and Transformer frameworks [15, 7]
address the small receptive field of CNN but bring greater computational overhead.
In recent years, implicit representations of 3D scenes have garnered significant attention from
researchers. For instance, Neural Radiance Field [43] models 3D static scenes by mapping coordinates
to signals through a neural network. Inspired by this, researchers have revisited image representation
for 2D tasks. Recent studies [5, 20, 34, 4] have achieved arbitrary-scale super-resolution (SR) by
replacing commonly used upsampling layers with local implicit image functions. Though these
methods demonstrate superior performance in 2D tasks, they still have some drawbacks. Firstly, INR
calculates the RGB values of a queried coordinate based on the relative distances to the surrounding
four pixels, treating it as a local operation in space that lacks consideration for global information.
Additionally, the MLP-ReLU structure used in traditional INR inherent high-frequency information
bias [29] which is challenging to be eliminated during training.

To address these issues, we propose implicit fusion functions tailored for the MHIF task as a novel
fusion paradigm. We first employ encoders to extract prior information from LR-HSI and HR-MSI,
which is then fed into the implicit fusion functions in the form of latent codes. Unlike traditional INR,
we transform latent codes into the Fourier domain and simultaneously perform spatial and frequency
fusion in a unified network. This approach not only rectifies the high-frequency insensitivity induced
by the MLP but also effectively extends the receptive field, encompassing a more comprehensive
scope of global information. To integrate spatial and frequency domain representations efficiently,
we design a decoder with time-frequency tightness, mapping features on both domains to pixel space.
The contributions of this work are three folds:

• We define a novel fusion framework based on INR, which innovatively extracts information
from the spatial and Fourier domains, effectively enhances the representation ability of
high-frequency information, and expands the receptive field.

• We propose a new decoder employing a Gabor wavelet activation function to enhance
the interaction of INR features. Furthermore, we theoretically prove that the complex
Gabor wavelet activation possesses a time-frequency tightness property, which facilitates
the decoder in learning the optimal bandwidths.

• The proposed network reaches state-of-the-art (SOTA) performance on the MHIF task
across two widely used hyperspectral datasets at various fusion ratios. Fig. 1 provides a fair
comparison with other SOTA methods.
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Figure 2: (a) The amplitude of latent code from the encoder fed by HR-HSI and LR-HSI (combined
with HR-MSI) share a similarity, but the phases differ from each other. Eψ∗ is a trained encoder. (b)
3× 3 convolution would suffer from the issue of spectrum leakage, which can be alleviated by 1× 1
convolution.

2 Related works
Implicit Neural Representation Unlike traditional discrete representations, neural implicit repre-
sentation (INR) provides a more elegant and continuous parameterized approach. Initially applied
in 3D modeling tasks, NeRF [43] revolutionized 3D computer vision by representing intricate
three-dimensional scenes with just 2D pose images. This line of work extends to the 2D imaging
domain, where INR performs a weighted average on adjacent sub-codes to ensure output value
continuity. LIIF [5] recently introduces a local implicit image function for SR, leveraging MLP to
sample pixel signals across the spatial domain. Several improvements focus on decoding networks;
for example, UltraSR [46] incorporates residual networks, merging spatial coordinates and depth
encoding. DIINN [26] utilizes a dual-interactive implicit neural network to decouple content and
position features, improving decoding capabilities. JIIF [36] proposes joint implicit image functions
for multimodal learning, extracting priors from guided images. Regarding activation functions in
the MLP, SIREN [34] recommends utilizing periodic activation functions for continuous INR to fit
complex signals. On the other hand, WIRE [32] further employs continuous complex Gabor wavelet
activation functions to activate non-linearity, focusing more on spatial frequencies. However, there is
limited research dedicated to designing INR architectures specifically for the MHIF task. The unique
characteristics of hyperspectral images pose challenges for INR networks, in their insensitivity to
high-frequency information.
Latent Enhancement by Fourier Transform Fourier transform is a commonly used time-
frequency analysis technique in signal processing, which converts signals from the time domain to
the frequency domain. The Fourier domain has global statistical properties, and in recent years, many
works use the Fourier transform to enhance the representation ability of neural networks. For example,
FDA [53] proposes exchanging amplitude and phase components in Fourier space between images to
enhance and adjust frequency information. FFC [6] introduces a novel convolution module that inter-
nally fuses cross-scale information to capture global features in Fourier space. Similarly, GFNet [30]
uses 2D discrete Fourier transform to extract features, implements learnable global filtering, and
replaces the self-attention layer in Transformer. UHDFour [21] embeds Fourier transform into the
image enhancement network to model global information. Together, these studies demonstrate the
utility of frequency domain information in improving performance on visual tasks. We exploit the
architecture of FeINFN to transform latent codes into the frequency domain, implicitly integrating
representations of amplitude and phase components, and enhancing high-frequency injection.
Motivation [29] finds that most neural networks exhibit a phenomenon of spectral bias through
Fourier analysis. This includes neural networks such as MLP, which tend to learn low-frequency
information during the early stages of training and are insensitive to high-frequency information.
Moreover, we found this issue occurs in the MHIF task according to an experimental analysis as
shown in Fig. 2(a), where HR-HSI and LR-HSI were concatenated with HR-MSI and fed into a
trained encoder to obtain latent codes. These codes were transformed into the frequency domain to
visualize the amplitude and phase. It can be observed that the amplitudes from HR-HSI and LR-HSI
are very similar, while the phases differ significantly. The phase of HR-HSI should naturally contain
more texture than LR-HSI, a hypothesis validated by the visualized phase maps. Based on this finding,
we transformed the latent codes into the Fourier domain to separately process amplitude and phase,
to enhance the global learning of high-frequency information in the images.
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3 Methodology

In this section, we first present the preliminary of INR and then provide the proposed framework
tailored for MHIF task. Subsequently, we elaborate on the implementation details of the composited
modules of the proposed FeINFN.

Figure 3: The flowchart of the FeINFN framework which is composed of a spectral encoder Eχ, a
spatial encoder Eψ , MHIF task-designed spatial and Fourier domains implicit fusion functions, and a
pixel space mapping decoder. Please note that ILR is the LR-HSI, IHR is the HR-MSI, ILRup is the
bicubic interpolation LR-HSI, and XHR is the HR normalized 2D coordinate map. zspe, zspa, zhp,
δx correspond to individual pixel units, A and P represents amplitude and phase, respectively.

3.1 Preliminary: Implicit Neural Representation

Neural Radiance Fields [43] is represented by integral construction scenes. The value of a pixel
in a certain viewing angle image is regarded as the integral of the characteristics of the sampling
point from the proximal end to the far end of the ray. During actual training, the integral needs
to be discretized. Extended to 2D image representation [5], it is sampled pixel by pixel from the
vicinity of the query target. Taking the low-resolution (LR) image I ∈ Rh×w×3 upsampling to the
high-resolution (HR) image Î ∈ RH×W×3 as an example, the process of generating the RGB values
of the target coordinates xq ∈ R2 can be regarded as interpolation form, expressed as:

Î(xq) =
∑
i∈Nq

wq,ivq,i, (1)

where vq,i ∈ R4×4×3 is the interpolation pixel of i interpolated by q’s surrounding pixels Nq ∈ R4

and wq,i ∈ R signifies the interpolation weight. In the implicit representation of local image features,
the weights wq,i = Si/S, where Si represents the area formed by q and i in the diagonal region and
S denotes the total area enclosed by the set Nq . The interpolation value vq,i is effectively generated
by a basis function:

vq,i = ϕθ(zi,xq − xi), (2)

where ϕθ is typically an MLP, zi is the latent code generated by an encoder for the coordinates xi,
and xq − xi represents the relative coordinates. From the above equations, it can be inferred that the
interpolation features can be represented by a set of local feature vectors in the LR domain. Typically,
interpolation-based methods [28, 18] achieve upsampling by querying xq − xi in the arbitrary SR
task. See more details in [5].

3.2 Overview of the FeINFN Framework

In this work, we propose the FeINFN, which adopts a novel framework for simultaneously performing
neural implicit representation in both the spatial and frequency domains to execute the MHIF task.
Fig. 3 provides an overview of the proposed framework, designed to fuse LR-HSI ILR ∈ Rh×w×S

and HR-MSI IHR ∈ RH×W×s to generate HR-HSI Ĩ ∈ RH×W×S based on a upsampling scale r.
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Initially, the LR-HSI is fed into encoder Eχ to extract spectral features Zspe ∈ Rh×w×C . Simul-
taneously, the concatenated bicubic interpolation LR-HSI ILRup ∈ RH×W×S and IHR, are fed into
encoder Eψ to extract spatial features Zspa ∈ RH×W×C . Additionally, the pixel’s central position is
represented as the coordinate point. The coordinate map is normalized into a two-dimensional grid
[−1, 1]× [−1, 1], obtaining a HR normalized 2D coordinate map XHR ∈ RH×W×2. The extracted
Zspe and Zspa, along with the 2D coordinates of IHR, are forwarded to Spatial-Frequency Implicit
Fusion Function (Spa-Fre IFF), outputting spatial domain features Es ∈ RH×W×S and frequency
domain features Ef ∈ RH×W×S . The Es and Ef as inputs to a pixel space mapping decoder which
generates the residual image IHRr ∈ RH×W×S . Finally, the residual image IHRr is combined with
the bicubicly upsampled image ILRup via element-wise addition, yielding the ultimate fusion image Ĩ.

3.3 INR Encoder Networks

Analogous to local implicit representation functions [5, 20, 34, 4], the initial step involves extracting
latent code representations. For the MHIF task, we address the challenges of both upsampling and
fusion simultaneously, employing implicit neural representations as the solution.

The INR encoders try to extract spatial and spectral latent codes Zspa ∈ RH×W×C ,Zspe ∈ Rh×w×C :
one is extracted from ILR, serving as the carrier for spectral information; the other is encoded from
the concatenation of ILRup and IHR, aiding in spatial information during the fusion process. This
process can be denoted as:

Zspe = Eχ(I
LR), Zspa = Eψ

(
Cat(ILRup , I

HR)
)
, (3)

where Eχ is the spectral encoder parameterized by χ, Eψ is the spatial encoder parameterized by ψ,
and Cat(ILRup , I

HR) denotes the concatenation along the channel dimension. In practice, we utilize
EDSR [23] as INR encoder networks.

3.4 Spatial-Frequency Implicit Fusion Function

To address the mentioned issues 2, we propose Spatial-Frequency Implicit Fusion Function, dubbed
Spa-Fre IFF which is a dual-branch fusion function and utilized for computing the fusion feature of
Zspe and Zspa in the spatial and frequency domains, respectively. Given a queried HR coordinate
xq ∈ XHR of a pixel unit q, Spa-Fre IFF estimates spatial feature vector εs ∈ R1×1×S (εs ∈ Es)
and frequency feature vector εf ∈ R1×1×S (εf ∈ Ef ) as follows:

εs, εf = Spa-Fre IFF(zspe, zspa, δx), (4)

where zspe ∈ R1×1×C represents the spectral latent code vector corresponding to xq, and zspa ∈
R4×4×C is the spatial latent code vector. δx denotes the set of local relative coordinates, expressed
by the following formula:

δx = {xq − xq,i}i∈Nq
, (5)

where xq,i refers to the coordinates most proximate to the query coordinate xq , representing the four
corner pixels closest to q in the HR space.

Spatial Implicit Fusion Function The Spatial Implicit Fusion Function aims to leverage the
powerful representation capabilities of INR to achieve implicit fusion in the spatial domain, as shown
in Fig. 3 (see branch “Spatial Domain”). Specifically, we employ high-pass operators H to filter the
spectral latent codes, as a complement to the high-frequency information on the spectrum:

zhp = H(zspe), (6)

where zhp ∈ R1×1×C represents the high-frequency latent code of ILR. Also, we suggest frequency
encoding for relative positional coordinates as follows:

γ(δx) = [sin(20δx), cos(20δx), · · · , sin(2L−1δx), cos(2L−1δx)], (7)

where L is a hyperparameter, in practice, we set L to 10. Additionally, leveraging the graph attention
mechanism [36], we parameterize the solution for interpolation weights wq,i ∈ R1×S , and the
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implicit fusion function simultaneously outputs fusion interpolation values vq,i ∈ R4×4×S and
interpolation weights wq,i. The implicit fusion function is specifically expressed as:

wq,i,vq,i = ϕθ(zspe, zspa, zhp, γ(δx)), (8)

where ϕθ is an MLP parameterized by θ. The weights used for interpolation need to pass through a
softmax function, obtaining normalized weights wq,i. The spatial implicit fusion interpolation, as
shown in Eq. (1), yields the fused spatial feature εs ∈ R1×1×S and can be described as follows:

εs =
∑
i∈Nq

wq,i ∗ vq,i. (9)

Frequency Implicit Fusion Function From Fig. 2(a), we observed characteristics in the frequency
features between LR-HSI and HR-HSI. Hence, we design a frequency implicit fusion function to
express global features continuously in the Fourier domain. Notably, directly applying static kernel
convolution in the frequency domain would only enhance a specific frequency range, which is
inappropriate for the fusion task. However, by learning feature content to generate weights, INR can
be seen as a dynamic interpolation method in continuous space, adaptively enhancing information in
the frequency domain without overly altering the frequency distribution. Therefore, introducing INR
into the Fourier domain is reasonable. Since amplitude and phase exhibit different forms, as shown in
Fig. 2(a), we handle them separately.

With the considerations mentioned above, as illustrated in Fig. 3 (see branch “Fourier Domain”), we
initially employ FFT to transform latent codes zspe and zspa from the spatial domain to the frequency
domain, obtaining fspe ∈ R1×1×C and fspa ∈ R4×4×C . After the transformation, we further obtain
amplitude components A(fspe) and A(fspa), as well as phase components P(fspe) and P(fspa).

For the amplitude, as shown in Fig. 2(b), the amplitude distribution of LR-HSI and HR-HSI are very
similar, and the non-point-wise convolution (e.g. Conv 3× 3) causes an issue of spectrum leakage,
confusing channel information. In contrast, point-wise convolution does not span multiple locations
in the frequency domain and has no overlap allowing it to capture information across channels
effectively. Thus the fusion function for amplitude components is more suitable when applying
point-wise convolution:

wA
q,i,v

A
q,i = ϕAα (A(fspe),A(fspa), δx), (10)

where wA
q,i ∈ R1×S and vA

q,i ∈ R4×4×S are the weights and interpolated values for the corresponding
amplitude component, and ϕAα is a simple network composed of two layers of point convolutions
parameterized by α. Similar to operations in the spatial domain, implicit fusion interpolation is
performed after obtaining interpolated values vA

q,i and the normalized weights wA
q,i:

A′
f =

∑
i∈Nq

wA
q,i ∗ vA

q,i, (11)

where A′
f ∈ R1×1×S is the integrated amplitude component.

For the phase, which encapsulates information such as texture details, LR-HSI and HR-HSI often
have different phase information. It is known that point convolutions fail to capture sufficient spatial
representations. Therefore, we use a 3 × 3 convolution to learn phase information. Additionally,
small changes in the frequency domain may result in significant variations in the spatial domain.
We still consider using the form of INR interpolation for phase learning. The handling of the phase
components P(fspe) and P(fspa) are formally similar to Eqs. (10) and (11):

wP
q,i,v

P
q,i = ϕPβ (P(fspe),P(fspa), δ(x)), P ′

f =
∑
i∈Nq

wP
q,i ∗ vP

q,i. (12)

The simple network ϕPβ consists of two layers of 3 × 3 convolutions parameterized by β. P ′
f ∈

R1×1×S represents the integrated phase component.

Finally, IFFT is applied to map the frequency features A′
f and P ′

f back to the image space, obtaining
the frequency domain feature εf ∈ Ef . Since in frequency space, one frequency point may correspond
to multiple pixels at different positions in the spatial domain, the receptive field of INR in the frequency
domain is enlarged in the spatial domain.
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3.5 Spatial-Frequency Interactive Decoder

Figure 4: Detailed composition of the proposed SFID.

After obtaining the spatial feature map and
frequency domain feature map, it is essential
to consider how to integrate them seamlessly.
Firstly, our decoder needs to have dual input
and interactive capabilities. Secondly, it is nec-
essary to focus on representing images in the
spatial-frequency domain. With this in mind,
we introduce the complex Gabor wavelet acti-
vation function with good time-frequency tight-
ness and propose the Spatial-Frequency Interac-
tive Decoder (SFID). Specifically, SFID consists
of three layers, taking spatial and frequency domain features as inputs. The outputs IHRr and IHRup
contribute to the final fused image Ĩ. The decoding process is illustrated in Fig. 4. The complex
Gabor wavelet function is defined as:

G(x) = ejω0xe−|υ0x|2 , (13)

where ω0 is the center frequency in the frequency domain, υ0 is a constant that is consid-
ered as the standard deviation of the Gaussian function, and x is a vector in the time (or spa-
tial) domain. In what follows, we provide a theorem below that this Gabor wavelet activa-
tion has time-frequency tightness [1], which is helpful for the decoder’s information interaction.
Theorem 1. The complex Gabor wavelet activation in Eq. (13) has the time-frequency tightness
property (more preliminary can be found in [1]). Moreover, from the perspective of signal spectrum
analysis, this activation helps the decoder learn the optimal bandwidths.

Figure 5: The complex Gabor wavelet function.
(a) and (b) depict the visualization of the complex
Gabor wavelet function. (c), (d), and (e) represent
the frequency responses of GT and decoder’s mean
feature using Gabor and regular ReLU activations,
respectively.

Proof: First, for the time-domas, the function
|G(x)| in the time domain is primarily concen-
trated around x = 0 due to the exponential de-
cay term. The Gaussian term e−|υ0x|2 ensures
that G(x) is bounded and rapidly decreases in
the time domain. Second, for the frequency-
domain Tightness, the Fourier transform is given
by:

F [G(x)] =
∫
ejω0xe−|υ0x|2e−jωxdx. (14)

The Fourier transform of the Gaussian term
e−|v0x|2 remains a Gaussian function, and its
bandwidth in the frequency domain is influenced
by υ0. Due to the characteristics of the Gaus-
sian function in the frequency domain, G(x) is
mainly concentrated around ω = ω0. Com-
bining the narrow-bandwidth properties in both
time and frequency domains, we can apply the
uncertainty principle to demonstrate the time-
frequency tightness of the complex Gabor func-
tion:

|ω0| · υ0 ≥ 1

4π
, (15)

where υ0 is the time-domain bandwidth, and
|ω0| is the frequency-domain bandwidth. In
practical training, we provide an initial set of
bandwidths and allow the network to learn the
optimal bandwidths, which concludes the proof.

As depicted in Fig. 5, the frequency response of the decoder with Gabor wavelet activation closely ap-
proximates the optimal bandwidth. Moreover, the decoder with Gabor activation achieves consistency
with GT in frequency, demonstrating rapid frequency alignment.
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Table 1: The average and standard deviation calculated for all the compared approaches on 11 CAVE
examples and 10 Harvard examples simulating a scaling factor of 4. The best results are in bold,
second-best in underline. “M” refers to millions.

Methods CAVE ×4 Harvard ×4

PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params

Bicubic 34.33±3.88 4.45±1.62 7.21±4.90 0.944±0.029 − 38.71±4.33 2.53±0.67 4.45±1.81 0.948±0.027 −
CSTF-FUS [22] 34.46±4.28 14.37±5.30 8.29±5.29 0.866±0.075 − 39.15±3.45 6.93±2.69 4.66±1.81 0.914±0.049 −

LTTR [9] 35.85±3.49 6.99±2.55 5.99±2.92 0.956±0.029 − 40.88±3.94 4.01±1.27 4.03±2.18 0.957±0.035 −
LTMR [8] 36.54±3.30 6.71±2.19 5.39±2.53 0.963±0.021 − 42.06±3.56 3.51±0.99 3.59±2.03 0.970±0.020 −

IR-TenSR [45] 35.61±3.45 12.30±4.68 5.90±3.05 0.945±0.027 − 40.47±3.04 4.36±1.52 5.57±1.57 0.963±0.014 −
ResTFNet [24] 45.58±5.47 2.82±0.70 2.36±2.59 0.993±0.006 2.387M 45.94±4.35 2.61±0.69 2.56±1.32 0.985±0.008 2.387M
SSRNet [52] 48.62±3.92 2.54±0.84 1.63±1.21 0.995±0.002 0.027M 48.00±3.36 2.31±0.60 2.30±1.42 0.987±0.007 0.027M
HSRNet [16] 50.38±3.38 2.23±0.66 1.20±0.75 0.996±0.001 0.633M 48.29±3.03 2.26±0.56 1.87±0.81 0.988±0.006 0.633M

MogDCN [10] 51.63±4.10 2.03±0.62 1.11±0.82 0.997±0.002 6.840M 47.89±4.09 2.11±0.52 1.89±0.82 0.988±0.007 6.840M
Fusformer [15] 49.98±8.10 2.20±0.85 2.50±5.21 0.994±0.011 0.504M 47.87±5.13 2.84±2.07 2.04±0.99 0.986±0.010 0.467M

DHIF [17] 51.07±4.17 2.01±0.63 1.22±0.97 0.997±0.002 22.462M 47.68±3.85 2.32±0.53 1.95±0.92 0.988±0.007 22.462M
PSRT [7] 50.47±6.19 2.19±0.64 2.06±3.71 0.996±0.003 0.247M 47.96±3.21 2.18±0.55 1.89±0.86 0.988±0.006 0.247M

3DT-Net [25] 51.38±4.18 2.16±0.70 1.14±1.00 0.996±0.003 3.464M 47.78±4.42 2.04±0.51 1.98±0.86 0.989±0.006 3.464M
DSPNet [35] 51.18±3.92 2.15±0.64 1.13±0.82 0.997±0.002 6.064M 48.29±3.16 2.30±0.55 1.93±0.93 0.988±0.006 6.064M

MIMO-SST [11] 50.98±3.39 2.23±0.70 1.18±0.73 0.997±0.002 4.983M 47.08±5.56 2.09±0.53 2.07±0.82 0.988±0.007 4.983M
FeINFN(Ours) 52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.002 3.165M 49.06±3.15 2.10±0.53 1.78±0.75 0.989±0.007 3.165M

4 Experiments

Datasets To evaluate the efficacy of our model, we conducted experiments using the CAVE and
Harvard datasets. The CAVE dataset comprises 32 Hyperspectral Images (HSIs) with 31 spectral
bands spanning from 400 nm to 700 nm at 10 nm intervals. We randomly selected 20 images for
training and used the remaining 11 for testing. The Harvard dataset consists of 77 HSIs depicting
indoor and outdoor scenes, covering the spectral range from 420 nm to 720 nm. We standardized the
data by cropping the upper left sections of 20 Harvard images, with 10 for training and the rest for
testing. The simulation of data can be found in Appendix.

Implementation Details We implement the proposed method FeINFN with Pytorch [27] on a
workstation with an Intel I9 CPU and two 3090 GPUs. The optimizer is chosen as AdamW [19] and
we use a Cosine anneal learning rate scheduler. The base channel number of the encoder is 128, that
of the proposed implicit fusion function is 32 and in the decoder, the channel number is 31.

Results on CAVE Dataset In this section, we evaluate the effectiveness of FeINFN on the CAVE
dataset and compare it with five traditional methods and some state-of-the-art deep learning-based
approaches. As shown in Tab. 1 on the left, our method achieves optimal performance in the
tasks of ×4 in all metrics. In the ×4 experiment, compared to currently leading methods such
as DSPNet [35], 3DT-Net [25], and MogDCN [10], our approach demonstrates improvements in
PSNR by 1.29dB/1.09dB/0.84dB, respectively. Notably, our method exhibits even more pronounced
superiority in the ×8 experiment, showcasing good generalization across various resolutions. To
illustrate the advantages of our method, we provide visual comparisons in Fig. 6, including close-ups
and error maps to highlight specific details. Our fusion results closely match the ground truth,
achieving the best quality. In comparing error maps, the darker colors indicate closer proximity to the
original image. In contrast to other excellent methods, the error maps of FeINFN distinctly exhibit
superior restoration effects on details.

Results on Harvard Dataset In Tab. 1, the right columns present the comparison results of our
FeINFN with other methods on the Harvard dataset at scale factors 4. Our method performs excep-
tionally well, with only SAM being slightly surpassed by 3DT-Net [25]. FeINFN exhibits significant
gains in PSNR/ERGAS metrics compared to the current state-of-the-art [16], with improvements
of 0.77dB/0.09, respectively. The results with a scale factor of 8 can be found in Appendix. As
depicted in Fig. 1, our model outperforms others, highlighting the crucial role of FeINFN’s continuous
representation capability in high-scale factor scenarios. To better visualize the performance gap,
Fig. 6 illustrates the fused images and error maps, confirming that our FeINFN maintains high fidelity
in recovering the texture details of the images.
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Figure 6: The upper and lower parts respectively showcase the results of “Chart and Stuffed Toy”
from the CAVE dataset and “Backpack” from the Harvard dataset using pseudo-color representation.
Green rectangles depict some close-up shots. The second and fourth rows show the residuals between
the ground truth (GT) and the fusion products.

Table 2: Quantitative comparisons with other up-
sampling methods on the CAVE (×4) dataset.

Methods PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params

Bilinear 52.23±4.40 1.92±0.60 1.03±0.86 0.997±0.0021 3.119M
Bicubic 52.22±4.31 1.95±0.61 1.02±0.82 0.997±0.0021 3.119M
Pixel Shuffle 52.26±4.37 1.90±0.59 1.02±0.85 0.997±0.0022 3.057M
Our 52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.0015 3.165M

Table 3: Quantitative comparisons with reduced
models on the CAVE (×4) dataset. S & F mean
the domain difference.
S F PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params

52.11±4.22 1.95±0.59 1.04±0.82 0.998±0.0017 2.869M
47.86±3.42 3.49±1.30 1.67±1.13 0.995±0.0020 2.940M
52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.0015 3.165M

Table 4: Quantitative comparisons with different
activation functions in SFID on the CAVE (×4)
dataset.

Nonlinear PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑)

ReLU 52.03±3.84 2.00±0.59 1.02±0.74 0.998±0.0013
GELU 51.96±3.88 2.01±0.60 1.03±0.75 0.998±0.0014
Leaky ReLU 51.98±3.92 2.01±0.60 1.03±0.76 0.998±0.0014
Our 52.47±4.10 1.91±0.59 0.98±0.74 0.998±0.0015

Figure 7: Changes in PSNR on the CAVE dataset
of our FeINFN over iterations with and without
the “Fourier Domain”. The Frequency IFF can
help the network learn the high-frequency details
and converge faster.

4.1 Ablation Studies

Upsampling Methods Implicit image representation can be seen as an advanced interpolation
algorithm, offering additional spatial information and parameterized weight generation. In this
section, we compare INR with other upsampling methods. We replace INR with pixel-shuffle [33]
and traditional CNN interpolation methods, presenting a comparative analysis. As seen in Tab. 2, our
approach outperforms other methods in MHIF tasks.

Spatial Domain and Fourier Domain To assess the dual-domain model’s efficacy, we performed
model reduction, preserving spatial and Fourier domains independently. As shown in Tab. 3, FeINFN
excels by using both spatial and Fourier domains concurrently, underscoring the positive impact of
Fourier domain integration on overall network performance.

Spectral deviation occurs during training, where the network tends to prioritize low-frequency
information, capturing high-frequency details only in later stages. To validate our resolution of this
issue, we remove the “Fourier Domain” from Spa-Fre IFF, or retain it, and the corresponding training
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data is illustrated in Fig. 7. Our FeINFN, which incorporates Fourier domain fusion, leads to faster
PSNR convergence and overall higher efficiency. The visual comparison of high-frequency details
in “chart and stuffed toy” from the cave dataset at 80k iterations further supports the significant
improvement achieved with our results.

Decoder with Different Nonlinear In this section, we evaluate the impact of different activation
functions in SFID, aiming to match SFIFF. Our dual-input decoder incorporates a complex Gabor
wavelet activation function to facilitate the fusion of spatial and frequency domain features.

Through experiments, we replaced the Gabor wavelet activation with other activations, presenting
the results in Tab. 4. The findings distinctly demonstrate the enhanced fusion quality achieved with
the complex Gabor wavelet activation. This emphasizes the critical role of wavelet activation in
promoting robust and reliable learning in SFID.

5 Conclusion

Inspired by the distinct behaviors of LR-HSI and HR-HSI in the Fourier domain, we introduce a
novel Fourier-enhanced Implicit Neural Fusion Network (FeINFN) based on INR. Through Fourier
transformation, latent features are converted into the frequency domain, allowing the modeling of
frequency components to enrich high-frequency information in images. Additionally, we propose a
spatial-frequency decoding module, achieving a unified representation of both spatial and frequency
domains using a time-frequency-tight activation function. Thanks to the unique design of our network,
it outperforms state-of-the-art methods in MHIF with appealing efficiency. We desire that our work
will inspire future research on frequency fusion-based MHIF methods.
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A Appendix / supplemental material

This supplementary material provides additional insights into the background, methodologies, and
experimental details outlined in our paper. It includes limitations and broader impact, experiments
compute resources, details on CNNs in MHIF, 2D Fourier transform, an elucidation of the global
receptive field of convolution operations within the Fourier Domain , a description of data simulation,
and quality metrics. Furthermore, we present a comprehensive comparison of all methods applied to
the CAVE and Harvard datasets with a scale factor of 8. This includes an ablation study, affirming
the efficacy of incorporating the Fourier domain on the CAVE(×8). The provided information aims
to enhance the reader’s understanding of the intricacies involved in our research and its practical
applications.

A.1 Limitations and Broader Impact

Limitations This study has certain limitations that should be acknowledged. One primary limitation
is the unavailability of ground truth (GT) data in real-world settings for the task of multispectral
and hyperspectral image fusion. Due to this constraint, all datasets used in our experiments are
simulated. The detailed steps for data simulation can be found in Appendix A.6. This reliance on
simulated data may affect the generalizability of our results to real-world scenarios. Consequently,
while our methods show promising performance in experiments, their effectiveness in practical
applications remains to be fully validated. However, this limitation is a challenge faced by the entire
field, not unique to our work. Surveys [40, 31] in the field of multispectral and hyperspectral image
fusion highlight this common issue and discuss the need for improved data simulation methods and
benchmarks.

Broader Impact This research addresses the task of multispectral and hyperspectral image fusion,
which is crucial for enhancing the spatial resolution of hyperspectral images while preserving their
spectral fidelity. The resulting high-resolution hyperspectral images (HR-HSI) are invaluable for
various applications, such as resource monitoring, environmental management, and urban planning. In
the environmental domain, fused images aid in pollution tracking, vegetation analysis, and precision
agriculture, contributing to sustainable practices and environmental protection. These fused images
facilitate more accurate and detailed analysis in these fields, potentially leading to better-informed
decisions and more effective resource management. Despite these benefits, there are potential negative
consequences to consider. Image fusion is a low-level task that significantly impacts subsequent
image-processing steps. If the fusion process fails, resulting in distorted HR-HSI, it may adversely
affect follow-up tasks and analyses, leading to incorrect conclusions or misguided decisions. Thus,
ensuring the robustness and accuracy of the image fusion algorithm is critical to mitigating these
risks.

A.2 Experiments Compute Resources

Our experiments were conducted on a workstation equipped with an Intel 12th Gen i7-12700K
processor, two NVIDIA RTX 3090 GPUs, and 128GB of memory. This setup provided sufficient
computational power to handle the intensive tasks involved in multispectral and hyperspectral image
fusion.

A.3 Related Works: CNNs in MHIF

In recent years, CNN-based methods have exhibited significant success in the domain of multi-
spectral and hyperspectral image fusion (MHIF). Their efficacy lies in their adeptness to extract
high-level features from input data through end-to-end learning. SSRNet [52] leverages three distinct
convolutional modules, w.r.t, a fusion module, a spatial edge module, and a spectral edge module,
excelling in image reconstruction by associating a spatial-spectral loss function, contributing to robust
learning outcomes. Similarly, ResTFNet [24] adopts residual structures and a two-stream fusion
network, drawing inspiration from the extensive application of ResNet [13] in super-resolution image
processing. In contrast, the MHF network [50] incorporates a well-explored linear mapping that
connects HR-HSI to HR-MSI and LR-HSI, facilitating ease of interpretation. MoG-DCN [10] em-
ploys a dedicated subnet to approximate the decomposition matrix and conducts hyperspectral image
super-resolution using DCN-based image regularization, leveraging prior knowledge of HSI. For the
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simultaneous extraction of spatial and spectral information and the acquisition of high-quality details,
HSRNet [16] integrates spatial and channel attention modules, enhancing the fusion performance.
However, due to the model scaling and limited convolutional receptive field, the CNN-based models
still struggle to obtain satisfactory results for the MHIF task.

A.4 Preliminary: 2D Fourier Transform

Fourier transform is commonly employed in digital signal processing [2], aiming to convert signals
from the time domain to the frequency domain. Through this domain transformation, previously
imperceptible features often become observable. For two-dimensional images, the Fourier transform
converts the signal from the spatial domain to the frequency domain, enabling the transformation of
images into spectrograms in the frequency domain. Given a single-channel image X ∈ RH×W , the
Fourier transform translates it into the Fourier space as the complex component Y ∈ CH×W . This
process can be represented as follows:

F(X)(u, v) = Y(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

X(h,w)e−j2π(
hu
H +wv

W ), (16)

where (h,w) denotes the coordinates of x in the spatial space, and (u, v) represent the coordinates of
Y in the Fourier space. The Fourier space is spanned by complex orthogonal basis functions, and each
complex frequency component can be expressed as amplitude A(Y(u, v)) and phase P(Y(u, v))
components:

A(Y(u, v)) =
√

ℜ2 {Y(u, v)}+ ℑ2 {Y(u, v)}, (17)

P(Y(u, v)) = arctan

[
ℑ(Y(u, v))

ℜ(Y(u, v))

]
, (18)

where ℜ(Y) and ℑ(Y) respectively represent the real and imaginary parts. For multi-channel images,
in the utilization of the Fourier transform, we perform individual Fourier calculations for each
channel. Additionally, the Fourier transform is a reversible transformation, enabling bidirectional
conversion between the original signal and the transformed signal, we denote F−1 as the Fourier
inverse transform.

A.5 The Receptive Field of INR in the Fourier Domain

Figure 8: Convolving an image in the frequency domain is globally impactful in the spatial domain.

To validate the global nature of implicit feature fusion in the Fourier domain, we conducted exper-
iments as illustrated in Fig. 8. We transform the “chart and stuffed toy" sample from the CAVE
dataset into the Fourier domain, performed convolutions only on specific frequency features, and then
transform it back to the spatial domain. It can be observed that Fourier domain convolution yields a
global response in the spatial domain. Performing INR in the frequency domain indeed expands the
receptive field of INR, freeing it from local constraints.

A.6 Data Simulation

The proposed architecture takes LR-HSI and HR-MSI pairs (ILR, IHR) as input, with the training
ground-truth (GT) being HR-HSI. However, due to the unavailability of HR-HSI as a reference, a
simulation phase is necessary. In our experiments using the CAVE dataset, we cropped 20 training
images, generating 3920 overlapping patches of size 64× 64× 31. These patches serve as HR-HSI
(ground truth) patches. To simulate appropriate LR-HSIs, we applied a 3× 3 Gaussian blur kernel
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(g) (h) (i) (j) (k)

Figure 9: The testing images from the CAVE dataset: (a) balloons, (b) cd, (c) chart and stuffed toy,
(d) clay, (e) fake and real beers, (f) fake and real lemon slices, (g) fake and real tomatoes, (h) feathers,
(i) flowers, (j) hairs, and (k) jelly beans. An RGB color representation is used to depict the images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: The 10 images tested on the Harvard dataset are (a) bikes, (b) sofa1, (c) window, (d) fence,
(e) tree, (f) sofa2, (g) backpack, (h) wall, (i) door and (j) parcels.

with a standard deviation of 0.5 to the original HR-HSIs. Subsequently, we downsampled the blurred
patches by a factor of 4. HR-MSI patches were generated using the spectral response function of
a Nikon D700 camera. Therefore, input pairs (ILR, IHR) consist of 3920 LR-HSI patches of size
16 × 16 × 31 and RGB image patches of size 64 × 64 × 3. Paired with their corresponding GTs,
these pairs were randomly split into training data (80%) and validation data (20%). The testing set
of the CAVE dataset is shown in Fig. 9. The same procedure was employed to simulate the input
LR-HSI and HR-MSI pairs and GTs for the Harvard dataset. The Harvard test set is shown in Fig. 10.

A.7 Quality Metrics

We compare our method with other methods using different image quality metrics to validate the
image fusion capability of our model, including the Spectral Angle Mapper (SAM) [51], the Erreur
Relative Globale Adimensionnelle de Synthèse (ERGAS) [41], the Peak Signal-to-Noise Ratio
(PSNR) [14], and the Structural SIMilarity (SSIM) [42].

PSNR evaluates the spatial quality of each band in the reconstructed HR-HSI. It is calculated as
follows:

PSNR(I, Ĩ) =
1

B

B∑
i=1

PSNR(Ii, Ĩi), (19)

Here, Ii ∈ RH×W and Ĩi ∈ RH×W represent the i-th band of I ∈ RH×W×B and Ĩ ∈ RH×W×B ,
respectively. The PSNR function is defined as:

PSNR(Ii, Ĩi) = 20 · log10

 max(Ii)√
MSE(Ii, Ĩi)

 , (20)

where MSE (Mean Square Error) between Ii and Ĩi, and max(·) is the maximum value of Ii.
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SAM measures the spectral distortion of each hyperspectral pixel in the reconstructed HR-HSI. It is
given by:

SAM(I, Ĩ) =
1

HW

HW∑
i=1

cos−1

(
ITi Ĩi

||Ii||2||̃Ii||2

)
, (21)

where cos−1 is the arccosine function, Ii ∈ RB×1 and Ĩi ∈ RB×1 are the spectra of the i-th pixel of
I and Ĩ, respectively, || · ||2 is the ℓ2 norm, and ·T denotes the transpose.

ERGAS measures the global statistical quality of the reconstructed HR-HSI, taking into account the
ratio of the ground sample distances between HR-MSI and LR-HSI. It is formulated as:

ERGAS(I, Ĩ) =
100

c

√√√√ 1

B

B∑
i=1

MSE(Ii, Ĩi)
µ2
Ĩi

, (22)

where c is the scaling factor, and µ2
Ĩi

is the square of the mean value of Ĩi.

SSIM is used to assess the structural differences between GT and the reconstructed HR-HS, incorpo-
rating both luminance and structural contrast functions. The SSIM function is defined as:

SSIM(I, Ĩ) =
1

B

B∑
i=1

(2µIiµĨi + C1)(2σIiĨi + C2)

(µ2
Ii + µ2

Ĩi
+ C1)(σ2

Ii + σ2
Ĩi
+ C2)

, (23)

where, B is the number of bands, and I and Ĩ are sets containing Ii and Ĩi for i = 1 to B, respectively.
µIi and µĨi represent the mean values of Ii and Ĩi, while σ2

Ii and σ2
Ĩi

denote their variances. The

term σIiĨi indicates the covariance between Ii and Ĩi. Constants C1 and C2 are fixed values.

Higher PSNR values indicate better performance, while lower SAM and ERGAS values signify
higher quality of the reconstructed HR-HSI. SSIM values range from −1 to 1, with values closer to 1
indicating better quality. Ideally, PSNR should be infinite, SAM and ERGAS should be zero, and
SSIM should be one.

A.8 Benchmark

To evaluate FeINFN’s performance, we compare it with MHIF methods on the CAVE and Harvard
datasets. The bicubic-interpolated result of the upsampled LR-HSI in Tab. 1 serves as our base-
line. Various model-based techniques, including the CSTF-FUS [22], LTTR [9], LTMR [8], and
IR-TenSR [45] approaches, are considered. Additionally, we compare our approach with various
deep learning methods, such as SSRNet [52], ResTFNet [24], HSRNet [16], MoGDCN [10], Fus-
former [15], and DHIF [17], PSRT [7], 3DT-Net [25], DSPNet [35], MIMO-SST [11]. We compare
our method with other methods using different image quality metrics to validate the image fusion
capability of our model, including SAM [51], ERGAS [41], PSNR [14], and SSIM [42].

A.9 More Comparisons with the Larger Scaling Factor on CAVE and Harvard Datasets

Due to space constraints in the main text, we present a more detailed comparison of our FeINFN with
other methods on four metrics for the CAVE dataset and the Harvard dataset in the supplementary
material. As shown in Tab. 5, FeINFN demonstrates the best overall performance. While it ranks
second in SAM on the CAVE dataset, it maintains the optimal results for other metrics.

A.10 Ablation Study: The Effectiveness of Fourier Domain Incorporation on CAVE (×8)

In the main text, we described our ablation experiments to investigate the effectiveness of incor-
porating the Fourier domain. Additionally, we were interested in assessing its efficacy at larger
scale factors. Therefore, we applied pruning to the model on the CAVE (×8) dataset to validate its
effectiveness. The experimental results, as shown in Tab. 6, indicate that the model performs best
when incorporating the Fourier domain operation, aligning with our hypothesis. This provides robust
evidence supporting the enhancement of network performance through INR in the Fourier domain.
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Table 5: The average and standard deviation calculated for all the compared approaches on 11 CAVE
examples and 10 Harvard examples simulating a scaling factor of 8. The best results are in bold,
second-best in underline. “M” refers to millions.

Methods CAVE ×8 Harvard ×8

PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params #flops PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑) #params #flops

Bicubic 29.96±3.54 5.89±2.32 5.56±3.08 0.887±0.066 − − 33.18±6.85 3.10±0.90 3.83±1.84 0.894±0.073 − −
CSTF-FUS [22] 38.44±4.25 7.00±2.65 2.11±1.15 0.959±0.033 − − 39.84±6.51 4.49±1.52 2.40±1.84 0.932±0.092 − −

LTTR [9] 37.92±3.59 5.37±1.96 2.44±1.05 0.972±0.018 − − 42.09±4.56 3.62±1.34 1.80±0.96 0.960±0.048 − −
LTMR [8] 38.41±3.57 5.04±1.70 2.24±0.97 0.974±0.017 − − 42.09±4.56 3.62±1.34 1.80±0.92 0.959±0.060 − −

IR-TenSR [45] 36.79±3.64 12.87±4.98 2.68±1.41 0.944±0.031 − − 40.04±3.89 5.40±1.76 4.75±1.55 0.958±0.016 − −
ResTFNet [24] 43.77±5.34 3.49±0.94 1.38±1.25 0.992±0.006 2.387M 1.75G 43.50±3.96 3.53±1.11 1.74±0.93 0.979±0.012 2.387M 1.75G
SSRNet [52] 46.23±4.19 3.13±0.97 1.05±0.73 0.993±0.004 0.446M 0.11G 45.76±3.34 2.99±0.98 1.34±0.74 0.983±0.010 0.027M 0.11G
HSRNet [16] 46.69±4.48 2.91±0.86 0.93±0.63 0.994±0.003 3.010M 2.00G 44.02±4.89 3.64±1.79 1.49±0.81 0.980±0.013 0.633M 2.00G

MogDCN [10] 49.21±4.99 2.44±0.74 0.76±0.63 0.996±0.003 6.840M 47.48G 45.14±5.41 3.19±1.45 1.75±1.66 0.980±0.019 7.444M 47.48G
Fusformer [15] 47.96±7.79 2.75±1.30 1.45±2.69 0.990±0.022 0.551M 9.83G 44.93±5.65 3.63±2.40 1.49±0.96 0.979±0.017 0.467M 9.83G

DHIF [17] 48.46±4.89 2.50±0.79 0.83±0.67 0.996±0.003 22.462M 54.27G 45.00±4.13 3.70±1.68 1.32±0.61 0.983±0.011 22.462M 54.27G
PSRT [7] 47.86±7.53 2.73±0.80 1.52±3.02 0.994±0.005 0.247M 1.14G 45.10±4.06 2.90±0.84 1.37±0.84 0.985±0.009 0.247M 1.14G

3DT-Net [25] 49.41±5.83 2.26±0.66 0.83±1.07 0.996±0.003 3.464M 68.07G 44.41±5.38 2.93±0.88 1.55±0.89 0.983±0.010 3.464M 68.07G
DSPNet [35] 49.18±4.84 2.57±0.79 0.75±0.62 0.996±0.003 6.064M 6.81G 45.84±3.62 2.97±0.75 1.33±0.64 0.984±0.010 6.064M 6.81G

MIMO-SST [11] 48.31±5.04 2.88±0.86 0.89±0.79 0.995±0.004 4.983M 1.58G 46.59±3.34 2.91±0.75 2.29±1.03 0.985±0.009 4.983M 1.58G
FeINFN(Ours) 50.32± 5.17 2.33±0.75 0.67±0.60 0.996±0.003 3.165M 10.53G 46.89±3.59 2.78±0.73 1.16±0.57 0.986±0.009 3.165M 10.53G

Table 6: The four average QIs and the corresponding parameters on the 11 testing images from the
CAVE dataset simulating a scaling factor of 8. S & F means the domain difference.

S F PSNR(↑) SAM(↓) ERGAS(↓) SSIM(↑)

50.01±5.33 2.36±0.72 0.71±0.68 0.996±0.0031
47.60±4.18 4.24±1.69 0.88±0.61 0.993±0.0041
50.32±5.17 2.33±0.75 0.67±0.60 0.996±0.0028

A.11 Ablation Study: The Effectiveness of Decoder with Complex Gabor Wavelet Activation

Figure 11: Error map for fusing an image with edges.

The Gabor wavelet activation demonstrates high representational power for visual signals, as depicted
in Fig. 11. Compared to other activation functions, we observe that models utilizing the Gabor
wavelet function exhibit lower error and spatial compactness.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the main contributions and scope
of the paper, ensuring that the claims made are supported by the theoretical and experimental
results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in Appendix A.1, such as assumptions
made in the model and potential areas where the results may not be generalized.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: For Theorem 1 presented in the paper, a complete proof is given in the main
text, along with detailed explanations and illustrations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the network architecture and
experimental settings, and the datasets used are publicly available. The complete code will
be published on GitHub upon acceptance for further research and discussion.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets are publicly accessible, and the code will be released soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Sec. 4, we present the datasets and implementation details, and the simula-
tion details of the datasets can be found in Appendix A.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not involve error bars or experiments concerning statistical
significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources for the experiments can be found in the implementation
details of Sec. 4 (Experiments) and Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the ethical guidelines set forth by NeurIPS, ensuring
responsible conduct in all aspects of the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts of this work can be found in Appendix A.1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models compared in the paper have either received author permission or
are publicly available. The datasets are public, and original papers are cited meticulously.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models compared in the paper have either received author permission or
are publicly available. The datasets are public, and original papers are cited meticulously.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25


	Introduction
	Related works
	Methodology
	Preliminary: Implicit Neural Representation
	Overview of the FeINFN Framework
	INR Encoder Networks
	Spatial-Frequency Implicit Fusion Function
	Spatial-Frequency Interactive Decoder

	Experiments
	Ablation Studies

	Conclusion
	Acknowledgement
	Appendix / supplemental material
	Limitations and Broader Impact
	Experiments Compute Resources
	Related Works: CNNs in MHIF
	Preliminary: 2D Fourier Transform
	The Receptive Field of INR in the Fourier Domain
	Data Simulation
	Quality Metrics
	Benchmark
	More Comparisons with the Larger Scaling Factor on CAVE and Harvard Datasets
	Ablation Study: The Effectiveness of Fourier Domain Incorporation on CAVE (8)
	Ablation Study: The Effectiveness of Decoder with Complex Gabor Wavelet Activation


