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A B S T R A C T

Pansharpening refers to fusing a low-resolution multispectral image (LRMS) and a high-resolution panchromatic
(PAN) image to generate a high-resolution multispectral image (HRMS). Traditional pansharpening methods
use a single pair of LRMS and PAN to generate HRMS at full resolution, but they fail to generate high-quality
fused products due to the assumption of a (often inaccurate) linear relationship between the fused products.
Convolutional neural network methods, i.e., supervised and unsupervised learning approaches, can model any
arbitrary non-linear relationship among data, but performing even worse than traditional methods when testing
data are not consistent with training data. Moreover, supervised methods rely on simulating reduced resolution
data for training causing information loss at full resolution. Unsupervised pansharpening suffers from distortion
due to the lack of reference images and inaccuracy in the estimation of the degradation process. In this paper,
we propose a zero-shot semi-supervised method for pansharpening (ZS-Pan), which only requires a single pair
of PAN/LRMS images for training and testing networks combining both the pros of supervised and unsupervised
methods. Facing with challenges of limited training data and no reference images, the ZS-Pan framework
is built with a two-phase three-component model, i.e., the reduced resolution supervised pre-training (RSP),
the spatial degradation establishment (SDE), and the full resolution unsupervised generation (FUG) stages.
Specifically, a special parameter initialization technique, a data augmentation strategy, and a non-linear
degradation network are proposed to improve the representation ability of the network. In our experiments, we
evaluate the performance of the proposed framework on different datasets using some state-of-the-art (SOTA)
pansharpening approaches for comparison. Results show that our ZS-Pan outperforms these SOTA methods,
both visually and quantitatively. The code is available at https://github.com/coder-qicao/ZS-Pan.

1. Introduction

Remote sensing images usually require high spatial resolution that is
essential in many fields, e.g., forecasting, agriculture, and environmen-
tal observation [1]. The enhancement of spatial and spectral resolutions
of remote sensing products by improving satellite hardware [2–4] is a
hard task when we have as constraint the preservation of the signal-
to-noise ratio (SNR). As a result, many commercial sensors, including
WorldView-3 (WV3) and WorldView-2 (WV2), produce two images
with complementary features: a low-resolution multispectral (LRMS)
image, retaining spectral information; and a high spatial resolution
panchromatic (PAN) image, i.e., a monochromatic data with a finer
resolution than the MS counterpart. Pansharpening, which refers to
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the fusion of an MS and a PAN image, has as goal to build a high-
resolution multispectral image (HRMS) combining the best features of
the acquired LRMS/PAN pair, as illustrated in Fig. 1.

In recent years, many pansharpening algorithms [7–10] have been
put forth to extract the spectral information from the MS image and the
spatial information from the PAN image, and to produce an image that
effectively combines them. They can be roughly categorized into four
classes [11–13], i.e. (i) component substitution (CS) methods, (ii) multi-
resolution analysis (MRA) techniques, (iii) variational optimization
(VO) approaches, (iv) deep learning (DL) methods.

CS [14–16], MRA [17–19], and VO [20–22] approaches are three
conventional pansharpening classes that are (often) heavily reliant
on linear mathematical modeling and optimization. For instance, the
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Fig. 1. The first row: flowchart for pansharpening on an 8-band WV3 satellite data.
The second row: the pansharpened HRMS images provided by three pansharpening
approaches, i.e. PRACS [5] (HQNR/Elaboration time = 0.9365/0.47 s), CDIF [6]
(0.9509/118.22 s), and the proposed ZS-Pan (0.9666/134.26 s). The third row: the
HNQR maps for the three methods.

CS-based Gram–Schmidt spectral sharpening method applies the GS
orthogonalization to the MS image [23], the MRA-based generalized
Laplacian pyramid method designs MS sensor’s modulation transfer
function (MTF) matched filters [24] to get high performance [25].
The VO-based methods view the pansharpening task as an ill-posed
inverse optimization problem, including Bayesian methods [26,27],
variational approaches [28,29], metaheuristics-based approaches [30,
31], and compressed sensing techniques [32,33]. These approaches are
based on a solid mathematical foundation, and have the benefit of
using only a single pair of LRMS and PAN to generate HRMS. However,
because of their (often not valid) assumption of linear relationship
among LRMS, PAN, and HRMS [34], many of them exhibit spectral and
spatial distortions implying reduced performance on their outcomes.

DL methods, such as, [35–37], leverage on the convolutional neural
network’s effective feature extraction capabilities to achieve high per-
formance. DL is widely used in many computer vision fields, i.e., image
super-resolution [38,39], image segmentation [40,41], and image de-
raining [42,43]. Because there is no reference at full resolution, the
way to deal with this problem can be mainly divided into two cat-
egories, i.e., supervised learning and unsupervised learning methods.
As for supervised learning methods, the training of networks relies
on simulating data at reduced resolution, and the trained network at
reduced resolution is used at full resolution for testing, thus generating
the HRMS. However, the training at reduced resolution can distort the
original features at full resolution, and, thus, supervised pansharpening
usually performs worse in full resolution experiments than reduced
resolution ones [44]. Unsupervised pansharpening [45,46] has recently
drawn attention as a solution for improving full resolution perfor-
mance. The training of unsupervised networks is done directly at full
resolution, and the training is based on modeling the degradation
process to compute the loss function. However, the (often linear)
estimate of the degradation process exploited by these techniques is
inaccurate [45,47]. Moreover, these approaches still need a lot of
training data, and when the training data are not consistent with test
data, their performance can be even worse than traditional methods.
Zero-shot learning (introduced in computer vision [48,49]) can use the

same image for both the training and testing phases. The zero-shot
approaches can be trained relatively quickly because of the minimal
size of the training data. Furthermore, because training and testing
are performed on the same image, no additional simulated images are
required and the training and testing data are totally consistent.

The proposed zero-shot semi-supervised learning for pansharpening
(ZS-Pan) attempts to address the drawbacks of traditional and DL
pansharpening. ZS-Pan exploits a single pair of LRMS and PAN images
as input for the non-linear network exploring their original features.
The challenges of applying zero-shot learning include limited training
data and the lack of reference images. To deal with these challenges, the
proposed ZS-Pan framework is built with three-dependent components,
i.e., the reduced resolution supervised pre-training (RSP), the spatial
degradation establishment (SDE), and the full-resolution unsupervised
generation (FUG) stages. The contributions of this work are as follows:

• We propose a zero-shot semi-supervised learning for the task of
multispectral pansharpening (ZS-Pan). Any pansharpening net-
work can use ZS-Pan as a plug-and-play module to be trained
at full resolution and using a unique LRMS/PAN pair without
requiring labeled data. As far as we know, this is the first at-
tempt to apply the zero-shot semi-supervised learning strategy for
pansharpening.

• A two-phase three-component semi-supervised model is designed
to deal with the challenges of limited training data and no ref-
erence images. More specifically, in the RSP stage, a supervised
training is conducted only on the available pair of LRMS and PAN
images. In the SDE stage, an MS2PAN-Net is designed to learn
the non-linear spatial degradation process. Finally, in the FUG
stage, an unsupervised training is performed supported by the
above-mentioned two stages to get the HRMS image.

The results show that the proposed ZS-Pan overcomes traditional
state-of-the-art (SOTA) approaches1 both qualitatively and quantita-
tively. Furthermore, we compare our method with some SOTA su-
pervised and unsupervised pansharpening methods, demonstrating its
advantages when small-scale training data are used. An ablation study
is also carried out to reveal the crucial role of each component of
ZS-Pan.

The paper is organized as follows. The related works and moti-
vations will be introduced in Section 2. The challenges in applying
zero-shot to pansharpening and how they are overcome will be detailed
in Section 3. Section 4 will be devoted to the experimental results and
the related discussions. Finally, conclusions will be drawn in Section 5.

2. Related works and motivations

The proposed ZS-Pan semi-supervised framework belongs to the DL
class. Because there is no natural reference for pansharpening, the ex-
isting paradigms can be divided into two categories, i.e., supervised and
unsupervised. In this section, we will introduce first existing supervised
and unsupervised learning strategies for pansharpening, and the zero-
shot learning in other computer vision fields. Afterwards, we will point
out the motivations under this work. The frameworks of the different
pansharpening strategies are depicted in Fig. 2.

2.1. Supervised learning for pansharpening

Thanks to the powerful feature extraction ability of convolutional
neural networks, the use of DL is recently a hot topic for pansharpening.
The core idea of the supervised pansharpening is to train the network
at reduced resolution using simulating data. The LRMS and PAN images

1 For fair comparison, we mainly compare our method with traditional
approaches, since they also only require a single pair of PAN/LRMS images
as input without any large-scale training.
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are downsampled to reach a reduced resolution and used as input.
Instead, the original LRMS image is exploited as reference. Afterwards,
the trained network at reduced resolution is used at full resolution for
testing, thus generating the HRMS image. One of the first convolutional
neural networks for pansharpening has been developed in [50], the
so-called PNN. PNN applies a simple three-layer fully-convolutional
model with rectified linear unit (ReLU) activations. In [36], Yang et al.
designed a deep convolutional neural network (CNN), called PanNet.
PanNet is divided into two parts, one is for the preservation of spatial
details, while the other is to retain spectral information. To better
extract this information, a deep residual network has been employed
using four ResNet blocks [35] with skip connection to deepen the
network depth. In [51], Deng et al. explored the combination of CNN
methods and traditional fusion schemes, i.e., CS and MRA, to address
the task of pansharpening and create a new CNN-based architecture,
called FusionNet.

However, two limitations exist in most of the supervised methods:
(1) full resolution distortion, i.e., due to the absence of HRMS images,
the training of the network is conducted at reduced resolution, thus
neglecting features at original (full) resolution; (2) large-scale dataset
dependency, i.e., the training of CNN-based networks requires a huge
amount of data implying the use of high-performance equipments
and long training times. Moreover, when training data are not con-
sistent with testing data, these supervised networks can get lower
performance.

2.2. Unsupervised learning for pansharpening

To overcome the shortcomings of supervised learning approaches,
some pansharpening methods [45,52,53] based on unsupervised learn-
ing have been proposed. Unsupervised learning implies that the train-
ing no longer depends on simulating high-resolution MS images, but,
instead, depends on the PAN and MS images themselves (indicating
that the network can be trained at full resolution). The main problem,
in this case, is that the loss function does not exploit any reference
data and should be computed using the input LRMS and PAN data,
and the fused HRMS cube. Thus, to work in an unsupervised way,
the following questions have to be answered: (1) how to model the
spectral relationship between the HRMS and LRMS images? (2) how
to model the spatial relationship between the HRMS and PAN images?
About the first question, the HRMS images are usually downsampled to
the LRMS resolution using this latter for comparison. Instead, for the
second question, linear models are often exploited. For instance, Ma
et al. [45] considered the spectral average of the HRMS bands to be
compared with the PAN image. In [52], Luo et al. combined the HRMS
bands through a linear model with the related coefficients calculated by
the minimization of the mean squared error between the down-sampled
version of the PAN image and the LRMS cube. In [53], the spatial
relationship has been modeled exploiting traditional methods with high
spatial fidelity. Non-linear and multi-stage models are usually preferred
by other unsupervised approaches, because they relax the linear as-
sumption. For example, GTP-PNet [54] designed a TNet to establish
a gradient connection between HRMS and PAN images. SUFNet [55]
proposed a cross-scale learning and a two-stage comparison. Zhang
et al. [56] also designed P2Net and STNet for non-linear spatial relation
and multi-stage training in P2Sharpen. Although these methods use
more reasonable non-linear relationships, they use complicated loss
functions, e.g., five loss functions in P2Sharpen and four loss functions
in SUFNet, making the parameter adjustment process too hard and,
thus, good results are difficult to be obtained.

Some limitations still exist in unsupervised pansharpening methods:
(1) the absence of reference data leading to a hard design of proper
loss functions and a high sensitivity of the approaches to the selected
loss and the related hyperparameters, thus resulting in a complicated
tuning phase; (2) the large-scale dataset dependency of the training,
even requiring more computational resources than supervised learning
because it is done at full resolution; (3) the inconsistency between
training and testing data can lead to non-ideal pansharpened results,
as for supervised techniques.

Fig. 2. The comparison of the different pansharpening paradigms: (a) supervised, (b)
unsupervised, (c) traditional, and (d) semi-supervised pansharpening.

2.3. Zero-shot learning

Zero-shot learning relies upon a single image, where the training
and testing are performed on the same image. The zero-shot approach
does not require a huge amount of training data, thus the training is
very light. The zero-shot learning method in the image processing field
has been presented first for image super-resolution. In [48], Shocher
et al. stated that the visual entropy inside a single image is much
smaller than in a general external collection of images, thus training the
network using a single image can be possible. Indeed, the core of zero-
shot super-resolution is an implicit cross-scale patch matching approach
using a lightweight network. Afterwards, zero-shot has been attempted
many times for super-resolution and even in other research fields. For
image restoration, Wang et al. proposed a zero-shot learning strategy
using a denoising diffusion null-space model [57]. In the field of remote
sensing and multispectral image sharpening, Nguyen et al. applied zero-
shot learning for Sentinel-2 sharpening with a skipped connection CNN
outperforming SOTA methods [58].

Anyway, there are still some difficulties in applying zero-shot learn-
ing to pansharpening: (1) how to build spatial and spectral relation-
ships? There is no reference image for zero-shot learning, thus, the
typical challenges in unsupervised learning also exist in the zero-shot
task. (2) how to settle the problem of limited data? The input of zero-
shot pansharpening is only a single LRMS/PAN pair. How to generate
a high-quality HRMS image using a limited amount of data is another
relevant issue.

2.4. Motivations

DL-based pansharpening has a large dataset dependency, but tra-
ditional pansharpening methods remind us that small data can also
generate high-quality fused products. Although data-driven methods
produce satisfactory results in some fields, the poor performance of
DL pansharpening when training and testing data are not consistent
makes us think how to optimize training data to avoid this problem.
Model-based methods hardly overcome DL approaches because of their
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Table 1
Comparison of the different pansharpening paradigms.

Traditional Supervised Unsupervised ZS-Pan

Non-linear
transformation

× ✓ ✓ ✓

Reduced resolution
training

× ✓ × ✓

Full resolution
training

× × ✓ ✓

Consistent training
and testing data

✓ × × ✓

Small-scale
dataset

✓ × × ✓

assumption of linear relationship among LRMS, PAN, and HRMS, but
they still generate excellent visual results, and they are more flexible
because they do not need a huge amount of data and they do not (usu-
ally) require any simulation step. Thus, the use of small-scale datasets
and non-linear models can be a good solution for pansharpening.

Supervised and unsupervised pansharpening both have their ben-
efits and drawbacks. Supervised pansharpening cannot explore the
information at full resolution, but it has a reference image to guide the
training process. Unsupervised pansharpening explores full resolution
features, but the lack of reference makes the training difficult. Thus,
a combination of these two strategies can improve the representation
ability of networks.

As a result, we compare the pros and cons of the different pan-
sharpening paradigms, as shown in Table 1, and we propose a zero-shot
semi-supervised framework for pansharpening. The input data for our
ZS-Pan are a single LRMS/PAN pair. The original (full resolution)
features can be explored by non-linear neural networks.

There are some benefits in applying zero-shot semi-supervised learn-
ing to pansharpening: (1) consistent training and testing data, i.e., the
training and testing data of the zero-shot pansharpening are both the
single LRMS/PAN pair to be fused; (2) cross-scale training, i.e., the
training of our approach is performed both at reduced and at full
resolution, which means that the reference at reduced resolution can
help to improve the representation ability, even without neglecting the
information at full (original) resolution.

3. The proposed method

This section is devoted to presenting the ZS-Pan framework and the
techniques we use to deal with the zero-shot issues. Firstly, we will
introduce the notation and the general fusion framework for DL-based
pansharpening. Then, the two phases with three components of the
ZS-Pan method will be detailed.

3.1. Notation and DL-based pansharpening

The notation used in this paper is presented first. LRMS images are
defined as 𝐌𝐒 ∈ Rℎ×𝑤×𝑐 , while PAN images are defined as 𝐏 ∈ R𝐻×𝑊 .
𝑐 is the number of the LRMS spectral bands, ℎ and 𝑤 denote the height
and width of the LRMS images, respectively, while 𝐻 and 𝑊 represent
the height and width of the PAN images, respectively. The fused HRMS
images are denoted as 𝐌𝐒 ∈ R𝐻×𝑊 ×𝑐 . The downsampled LRMS and
PAN images, which are called reduced resolution multispectral images
(RRMS) and reduced resolution panchromatic images (RRPAN), are
denoted as 𝐌𝐒 ∈ Rℎ∕𝑟×𝑤∕𝑟×𝑐 and �̃� ∈ Rℎ×𝑤×𝑐 , respectively. Instead, 𝑟
stands for the resolution ratio between PAN and MS.

About the pansharpening methods based on deep learning, the core
idea is to estimate a fusion function. The inputs of this function are
𝐌𝐒 ∈ Rℎ×𝑤×𝑐 and 𝐏 ∈ R𝐻×𝑊 , and the related output is 𝐌𝐒 ∈ R𝐻×𝑊 ×𝑐 .
The fusion equation is as follows:

𝐌𝐒 =  (𝐏,𝐌𝐒; 𝜃), (1)

where  (⋅) refers to the fusion function, and 𝜃 represents the parame-
ters of the function to be estimated.

The training of pansharpening networks is an optimization pro-
cess. In case of supervised pansharpening, the training process using
simulated (reference) ground-truth (GT) data can be represented as:

min
𝜃


(

𝐆𝐓 − (𝐏,𝐌𝐒; 𝜃)
)

, (2)

where (⋅) is a function to measure the distance (e.g., 𝓁1 or 𝓁2 norms)
between the outcome of the network, 𝐌𝐒, and the reference image, 𝐆𝐓.

3.2. Overall framework

The ZS-Pan framework is a two-phase semi-supervised framework
with three components, i.e., RSP, SDE, and FUG. In the first phase, RSP
and SDE are performed simultaneously. In the second phase, FUG is
executed to generate HRMS. Subsequently, we will delve into a detailed
discussion of the three components of ZS-Pan. The complete ZS-Pan
approach is illustrated in Fig. 3.

3.3. RSP

As stated in Section 2.3, one of the issues for zero-shot learning
is to generate a high-quality HRMS with a reduced number of data.
To this aim, we propose a RSP strategy. In this strategy, we train the
proposed zero-shot network (ZS-Net) first at reduced resolution using
the LRMS as reference, see Fig. 4. Afterwards, we initialize the ZS-Net
at full resolution with the parameters trained at reduced resolution.

In the following, we will present each step of RSP with the re-
lated equations. We downsample first (using MTF-matched filters) the
original LRMS and PAN images to get RRMS and RRPAN, where the
decimation rate is equal to the resolution ratio between PAN and MS:

𝐌𝐒 =   (𝐌𝐒),

�̃� =   (𝐏),
(3)

where   represents the MTF-matched filter function plus decima-
tion. We perform data augmentation, i.e., cropping the original images
into five pieces and flipping them with mirror symmetric transforma-
tion, on RRMS, RRPAN, and LRMS, as follows:

𝐌𝐒1,𝐌𝐒2,… ,𝐌𝐒𝑛 = (𝐌𝐒),

�̃�1, �̃�2,… , �̃�𝑛 = (�̃�),
𝐌𝐒1,𝐌𝐒2,… ,𝐌𝐒𝑛 = (𝐌𝐒),

(4)

where  denotes the data augmentation process, 𝐌𝐒𝑖, 𝐏𝑖, and 𝐌𝐒𝑖
represent the 𝑖th augmented data, respectively, and 𝑛 refers to the
amount of the augmented data. Afterwards, we train ZS-Net with the
augmented data optimizing the following function:

min
𝜃𝑍𝑆

‖𝐌𝐒𝑖 − (�̃�𝑖,𝐌𝐒𝑖; 𝜃𝑍𝑆 )‖2, (5)

where ‖ ⋅ ‖2 is the 𝓁2 norm, and the weights of ZS-Net are indicated
with 𝜃𝑍𝑆 . The trained weights (i.e., 𝜃𝑍𝑆 ) are saved for the final stage.

Supervised learning leverages on reference images. The training
done in this way puts the network in a more favorable state for applying
the zero-shot method. By initially conducting supervised training at
reduced resolution, the network’s representation pattern can be ini-
tialized with the aid of reference data. Subsequently, unsupervised
training at full resolution serves as fine-tuning, enabling the network
to be effective with original (full resolution) images. The superiority of
this approach with respect to just conducting unsupervised learning is
proved in Section 4.4.

Data augmentation is proposed for the reduced resolution super-
vised training in our ZS-Pan. It should be noted that the data augmen-
tation strategy is just applied to the LRMS and PAN pair, ensuring that
ZS-Pan remains consistent with the requirement of zero-shot learning.
As ZS-Net is initially trained on the LRMS and PAN images at reduced
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Fig. 3. The flowchart of the ZS-Pan framework. SDE and FUG are simultaneously performed first, and then the trained parameters of ZS-Net and MS2PAN-Net are transferred
to the FUG stage. FUG generates the final (HRMS) pansharpened product. The ‘‘locked’’ and ‘‘unlocked’’ symbols indicate the fixed and learnable parameters during the training,
respectively.

Fig. 4. The flowchart of the RSP stage. ‘‘×𝑁 ’’ is the multiplicative factor due to data augmentation.

resolution, applying this network to the original (full resolution) LRMS
and PAN images helps prevent overfitting. Data augmentation serves to
expand the dataset size, facilitating ZS-Net in learning a more general-
ized network rather than becoming biased towards specific patterns,
thus mitigating overfitting. However, for the production of higher-
quality HRMS images, data augmentation should only be applied during
reduced resolution training and not at full resolution. We refer to this
training phase as the RSP stage.

3.4. SDE

As stated in Section 2.3, the zero-shot learning has to address
the problem of generating spatial and spectral degradation processes,
which are used to compute the loss function. Thus, how to model the

spectral relationship between HRMS and LRMS images and how to
model the spatial relationship between HRMS and PAN images is a
problem to consider during the design phase.

About the spatial relationship, we train a non-linear network (called
MS2PAN) in the SDE stage, as shown in Fig. 5. We present first each
step of the SDE with the related equations. Again, the PAN image is
downsampled (using MTF-based filters) to get RRPAN. Thus, we have:

�̃� =   (𝐏). (6)

Afterwards, we extract the spatial features of the LRMS exploiting the
channel weighted sum block (CWSB) module. CWSB extracts spatial
details by a weighted sum including all the LRMS channels, even
considering sigmoid functions to account for non-linearity. Thus, we
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Fig. 5. The flowchart of SDE stage. 𝑐𝑖𝑛 and 𝑐𝑜𝑢𝑡 denote the number of channels before and after the CWSB, respectively.

Fig. 6. Comparison of two kinds of network architectures discussed in the SDE stage:
(a) resilient network (with more parameters); (b) restricted network (with fewer
parameters).

have:
𝐅1 = (𝐌𝐒),
𝐅2 = (𝐅1),

...

𝐅𝑖 = (𝐅𝑖−1),

(7)

where  denotes the CWSB module and �̃�𝑖 is the 𝑖th extracted
feature. The MS2PAN-Net consists of several CWSBs. LRMS images are
fed into the MS2PAN-Net to extract the spatial features, i.e.:

𝐅𝑠 =  (𝐌𝐒; 𝜃𝑀2𝑃 ), (8)

where 𝐅𝑠 denotes the extracted spatial features and the weights of the
MS2PAN-Net are indicated as 𝜃𝑀2𝑃 . The cost function to be optimized
for MS2PAN-Net is:

min
𝜃𝑀2𝑃

‖�̃� − 𝐅𝑠‖2. (9)

𝜃𝑀2𝑃 is saved to be used in the final stage.
As for the previous unsupervised pansharpening approaches, lin-

ear functions are commonly applied to HRMS images to model the

HRMS-PAN relationship. However, a simple linear function might cause
distortion during the extraction of the spatial details from the HRMS
image [34], while a non-linear function might be more accurate in
getting the spatial information. Therefore, we consider the training of
the non-linear MS2PAN network.

It is worth to be noted that we train the MS2PAN-Net on LRMS
images to make this network also applicable for HRMS images, thus
overfitting should be avoided in this phase. To settle the problem
of overfitting, the trade-off between a deep resilient and a restricted
network should be considered. A deep resilient network (with more
parameters) has a better ability to represent a general (non-linear)
transformation, but overfitting can significantly reduce the perfor-
mance of such networks, especially for the zero-shot task. Instead, a
simple restricted network has a lower representation ability, but with
a reduced overfitting phenomenon. The comparison of these two kinds
of networks is shown in Fig. 6. CWSB modules are selected to build the
restricted network. The experiments in Section 4.4 show better perfor-
mance of this latter network with respect to more complex solutions for
the zero-shot task. As described in Section 3.3, data augmentation has
also been applied before the training to avoid overfitting. Considering
that the MS2PAN network (MS2PAN-Net) is used to extract spatial
features, this stage is called SDE.

3.5. FUG

The first two components (i.e., RSP and SDE) are exploiting dur-
ing the first phase working at reduced resolution. Instead, the FUG
component is used during the second phase of the ZS-Pan framework.
The network architecture for the ZS-Net can be any state-of-the-art DL-
based pansharpening architecture, such as, FusionNet [51] or any other
recent development in this field.

To train the ZS-Net in an unsupervised way, spatial and spectral
losses should be defined. For the spatial loss, the MS2PAN-Net, which
has already been trained in the SDE stage, can be applied. HRMS is fed
into the MS2PAN-Net to extract spatial features:

�̂�𝑠 =  (𝐌𝐒; 𝜃𝑀2𝑃 ), (10)

where the trained weights of MS2PAN-Net in the SDE stage are indi-
cated with 𝜃𝑀2𝑃 and �̂�𝑠 represents the extracted spatial features. The
trained weights (𝜃𝑀2𝑃 ) should not change in the FUG stage. The spatial
loss is computed by comparing �̂�𝑠 with the PAN image:

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = ‖𝐏 − �̂�𝑠‖2, (11)

As spectral loss, we adopt a widely-used 𝓁2 distance between the
LRMS and the downsampled version of the HRMS image. Thus, we
have:

𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 = ‖𝐌𝐒 −  (𝐌𝐒)‖2, (12)

where   indicates the operation of MTF-based filtering plus deci-
mation.
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Hence, the ZS-Net can be trained in an unsupervised manner. The
overall loss is simply a weighted sum of the spatial and spectral losses:

 = 𝜆1𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝜆2𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 , (13)

where 𝜆1 and 𝜆2 are two weighting coefficients.
To train ZS-Net in a zero-shot way, it should be initialized using the

weights obtained in the RSP stage. Thus, the weights (indicated with
𝜃𝑍𝑆 ) are properly initialized as described above, and they can be fine-
tuned during the FUG stage, driving the process with the full resolution
loss in (13). Finally, the output of this procedure is the outcome of the
proposed pansharpening approach.

3.6. MTF

In the proposed ZS-Pan, MTF-matched filters are applied to down-
sample the PAN and MS. MTF-matched filters are blur filters designed
to match MS sensors’ MTFs. They usually have a Gaussian-like shape,
where the unique free parameter (the standard deviation) is prop-
erly set to get the matching. To this aim, gains at Nyquist frequency
are exploited (because usually distributed by remote sensing sensors
providers) to define these Gaussian filters obtaining the desired match-
ing. The use of MTF-matched filters is a widespread practice in remote
sensing pansharpening. The interested readers can refer to the related
literature [24,59] for more details.

Overall, we design the ZS-Pan model with the aim of addressing
challenges as mentioned in Section 2.3: (1) The RSP and FUG stages
help to solve the ‘‘limited dataset’’ problem with cross-scale training
and data augmentation. (2) The SDE and FUG stages support the solu-
tion to the ‘‘spatial/spectral relationship’’ problem with establishing a
non-linear degradation relationship and applying MTF-matched filters.

4. Experimental results

In this section, we compare first the suggested strategy with some
current SOTA pansharpening methods. The experiment settings will
also be described. Afterwards, we will assess the performance at full
resolution comparing our ZS-Pan with SOTA traditional methods (CS,
MRA, VO) and some unsupervised and supervised DL-based methods
to prove the strength of our approach using small-scale datasets. After
that, we complete the performance assessment using reduced resolu-
tion datasets. Finally, ablation studies and further discussions will be
provided to the readers.

4.1. Experiment settings

The settings for the experiments will be discussed in this section
together with the selected datasets, the considered benchmark, the
quality indexes, and the training parameter settings.

4.1.1. Datasets
The datasets were collected by the WorldView-2 (WV2) and

WorldView-3 (WV3) sensors, two sensors that are widely used for
comparison. Eight LRMS bands (red, green, blue, near-infrared 1,
coastal, yellow, red edge, and near-infrared 2) and a high-resolution
PAN channel are acquired by WV2. The spatial resolution ratio is equal
to 4 since the PAN and LRMS images have a spatial resolution of 0.5 m
and 2 m, respectively. The radiometric resolution is 11 bits. Instead,
WV3 provides a different spatial resolution for PAN and LRMS sensors,
that is 0.3 m and 1.2 m, respectively, retaining the other features of
WV2.

All the used data (i.e., the PanCollection dataset [60]) are publicly
available. Details and related data can be found at.2 At full resolution,

2 https://github.com/liangjiandeng/PanCollection

for 8-bands (WV2 and WV3) data, we have a size of 512 × 512 and
128 × 128 × 8 for PAN and LRMS images, respectively, to get HRMS
data with a size of 512 × 512 × 8. At reduced resolution, we have a size
of 256 × 256 and 64 × 64 × 8 for PAN and LRMS images, respectively.
These reduced resolution LRMS and PAN images are simultaneously
blurred and downsampled according to Wald’s protocol [61] starting
from full resolution data.

4.1.2. Benchmark
For fair comparison, many SOTA approaches belonging to the CS,

MRA, and VO classes are employed. The selection of the approaches in
these classes is mainly based on the ranking in a recent review paper
about the pansharpening full resolution assessment [62]. Moreover, we
added some latest unsupervised and supervised DL-based techniques.
More details can be found in Section 4.3.

4.1.3. Quality assessment
The used quality indexes at reduced resolution are: the spectral

angle mapper (SAM) [63], the relative dimensionless global error in
synthesis (ERGAS) [61], the spatial correlation coefficient (SCC) [64],
the universal image quality index for 8-band images (Q8) [65], and
the structural similarity index metric (SSIM) [66] averaged along the
spectral bands. Optimal values for Q8, SSIM, and SCC are 1, whereas
they are 0 for SAM and ERGAS.

For the full resolution assessment, the quality with no reference
(QNR) [67] index is widely used [62]. However, because of its well-
known inconsistencies [62], the hybrid QNR (HQNR) [62] index has
been exploited in this work. The HQNR index consists of two distortion
metrics, the spatial one, 𝐷𝑠, and the spectral one, 𝐷𝜆. The HQNR has
an ideal value of 1, instead, 𝐷𝑠 and 𝐷𝜆 have an ideal value of 0.

4.1.4. Training platform and parameters setting
The proposed network is coded with Python 3.8.2 and Pytorch

1.11.0, and it is trained with an NVIDIA GPU GeForce RTX 3060. We
use the ADAM optimizer, in which the betas and weight decay are set
to (0.9, 0.999) and 0, respectively. Because of the peculiarities of the
zero-shot learning, we set the batch size to 1. The learning rate is set
to 0.0005. For the three stages, we minimize the loss function in (9)
for 100 epochs, the loss function in (5) for 150 epochs, and the loss
function in (13) for 50 epochs. Finally, FusionNet [51] is always used
in our ZS-Net, if not explicitly stated otherwise.

4.2. Full resolution assessment

This section is devoted to the performance assessment at full reso-
lution of the proposed framework.

4.2.1. Comparison with traditional methods
Traditional pansharpening techniques, which are quick and effec-

tive, represent an ideal benchmark because they do not require any
reference for training and, thus, a single pair of LRMS and PAN images
can produce the HRMS, consistently with our zero-shot training. A
number of representative techniques are selected for our benchmark.
Thus, we have:

EXP: MS image interpolated by a polynomial kernel with 23 coeffi-
cients [68].

CS methods:

• BT-H: Brovey transform with haze correction pansharpening ap-
proach [69].

• BDSD-PC: band-dependent spatial details with physical
constraints pansharpening approach [16].

• C-GSA: Gram–Schmidt adaptive with clustering pansharpening
approach [19].

• PRACS: partial replacement adaptive component substitution pan-
sharpening approach [5].

https://github.com/liangjiandeng/PanCollection
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Fig. 7. Visual comparison in natural colors of the most representative 11 approaches on a full resolution WV3 example.

Fig. 8. Visual comparisons in natural colors of the most representative 11 approaches on a full resolution WV2 example.

MRA methods:

• MTF-GLP-HPM-R (MGHR): MTF-GLP-HPM [24,70] with
regression-based spectral matching pansharpening approach [71].

• MTF-GLP-FS (MGF): MTF-GLP [24,68] with full scale regression-
based injection model pansharpening approach [72].

• C-MTF-GLP-CBD (CMGC): MTF-GLP-CBD [24,68,72] with local
parameter estimation exploiting clustering pansharpening ap-
proach [19]

.
VO methods:

• FE-HPM: filter estimation based on a semiblind deconvolution
framework and HPM injection model pansharpening approach
[73].

• SR-D: sparse representation of injected details pansharpening ap-
proach [33].

• CDIF: context-aware details injection fidelity for variational pan-
sharpening approach [6].

Regarding to the WV3 dataset, Table 2 reports the quantitative
evaluation for all the compared approaches. Our ZS-Pan is the best
approach according to the overall HQNR index. Moreover, ZS-Pan has
the best 𝐷𝜆 value suggesting a great ability of the proposed approach
to be spectral consistent with respect to the original LRMS image. Fur-
thermore, the standard deviation (std) of the HQNR for our approach
gets the second-smallest values for all the indexes, thus demonstrating
the robustness of the proposed ZS-Pan.

Table 2
Average quantitative comparisons on 20 full resolution WV3 examples.

Name 𝐷𝜆 (± std) 𝐷𝑠 (± std) HQNR (± std)

EXP 0.0401 ± 0.0102 0.0813 ± 0.0318 0.8821 ± 0.0374
BT-H 0.0561 ± 0.0228 0.0810 ± 0.0374 0.8682 ± 0.0540
BDSD-PC 0.0683 ± 0.0244 0.0730 ± 0.0356 0.8645 ± 0.0539
C-GSA 0.0472 ± 0.0200 0.0583 ± 0.0340 0.8979 ± 0.0490
PRACS 0.0449 ± 0.0152 0.0455 ± 0.0241 0.9119 ± 0.0365
MGF 0.0389 ± 0.0121 0.0630 ± 0.0284 0.9009 ± 0.0378
MGHR 0.0381 ± 0.0113 0.0630 ± 0.0289 0.9016 ± 0.0375
CMGC 0.0362 ± 0.0101 0.0287 ± 0.0145 0.9363 ± 0.0217
FE-HPM 0.0401 ± 0.0143 0.0661 ± 0.0328 0.8968 ± 0.0432
SR-D 0.0344 ± 0.0084 0.0236 ± 0.0057 0.9429 ± 0.0119
CDIF 0.0317 ± 0.0075 0.0305 ± 0.0152 0.9389 ± 0.0213
LDP-Net 0.1037 ± 0.0341 0.1055 ± 0.0434 0.8038 ± 0.0641
ZS-Pan 0.0185 ± 0.0060 0.0279 ± 0.0141 0.9542 ± 0.0188

Best results are in boldface. Second-best results are underlined.

Table 3 reports the quantitative results for the WV2 dataset. As for
WV3 data, ZS-Pan is the best approach (showing the highest HQNR
value). Again, the lowest value for the 𝐷𝜆 metric indicates that ZS-Pan
has a high spectral fidelity.

The visual analysis further corroborates these numerical results. The
visual performance on a full resolution WV3 dataset is shown in Fig. 7,
with ZS-Pan exhibiting very high spectral and spatial fidelity. Instead,
Fig. 8 depict the performance on WV2 data, corroborating the visual
appearance and features of ZS-Pan shown in the WV3 test case.
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Fig. 9. Visual comparisons in natural colors of the most representative 10 approaches on a reduced resolution WV3 example.

Table 3
Average quantitative comparisons on 20 full resolution WV2 examples.

Name 𝐷𝜆 (± std) 𝐷𝑠 (± std) HQNR (± std)

EXP 0.0515 ± 0.0084 0.0599 ± 0.0127 0.8917 ± 0.0149
BT-H 0.0553 ± 0.0173 0.0858 ± 0.0164 0.8638 ± 0.0287
BDSD-PC 0.0944 ± 0.0204 0.0386 ± 0.0178 0.8708 ± 0.0316
C-GSA 0.0541 ± 0.0157 0.0796 ± 0.0125 0.8708 ± 0.0237
PRACS 0.0503 ± 0.0125 0.0324 ± 0.0085 0.9190 ± 0.0175
MGF 0.0507 ± 0.0220 0.0674 ± 0.0194 0.8855 ± 0.0343
MGHR 0.0436 ± 0.0074 0.0756 ± 0.0247 0.8843 ± 0.0285
CMGC 0.0437 ± 0.0074 0.0576 ± 0.0121 0.9013 ± 0.0169
FE-HPM 0.0650 ± 0.0445 0.0792 ± 0.0249 0.8617 ± 0.0599
SR-D 0.0443 ± 0.0079 0.0263 ± 0.0077 0.9305 ± 0.0125
CDIF 0.0378 ± 0.0053 0.0348 ± 0.0054 0.9287 ± 0.0090
LDP-Net 0.1311 ± 0.0812 0.0718 ± 0.0458 0.8090 ± 0.1049
ZS-Pan 0.0285 ± 0.0152 0.0386 ± 0.0155 0.9341 ± 0.0260

Best results are in boldface. Second-best results are underlined.

4.2.2. Comparison with unsupervised DL methods
Unsupervised pansharpening represents a family of SOTA solutions

that can be trained at full resolution. Although some approaches con-
sider large-scale datasets, we can train unsupervised methods with a
single LRMS/PAN pair as done for ZS-Pan.

The models for unsupervised pansharpening can be roughly divided
into two categories: (1) pansharpening based on GAN models [74], i.e.,
PanGAN [45] and PGMAN [47]. (2) pansharpening based on proposing
loss functions to model the degradation process, i.e., LDP-Net [75]
and Z-PNN [44]. Because of the characteristics of GAN models, input
data should be large enough to train both the generator and the
discriminator. As a result, GAN-based methods cannot be selected for
our experiments. Instead, for the second category, LDP-Net3 is exploited
as benchmark.

The comparison with unsupervised approaches is reported in Ta-
bles 2, 3. It can be remarked that unsupervised pansharpening fails to
generate high-quality pansharpened products when small-sized samples
are used to train the network, resulting in worse outcomes with respect
to the proposed ZS-Pan (see Fig. 7 and Fig. 8).

4.2.3. Comparison with supervised DL methods
To demonstrate the superiority of our method at full resolution, we

chose some SOTA DL-based supervised methods for comparison. It is
worth to be remarked that supervised methods are trained with a huge
amount of reduced resolution images, instead, our method is trained
with a single LRMS/PAN pair.

The selected approaches are as follows:

3 Code link: https://github.com/suifenglian/LDP-Net.

Table 4
Average quantitative comparisons on 20 full resolution WV3 examples.

Name 𝐷𝜆 (± std) 𝐷𝑠 (± std) HQNR (± std)

PNN 0.0399 ± 0.0116 0.0428 ± 0.0143 0.9192 ± 0.0240
PanNet 0.0395 ± 0.0119 0.0470 ± 0.0207 0.9156 ± 0.0303
MSDCNN 0.0407 ± 0.0120 0.0467 ± 0.0194 0.9147 ± 0.0293
BDPN 0.0472 ± 0.0160 0.0459 ± 0.0187 0.9093 ± 0.0321
DiCNN 0.0487 ± 0.0148 0.0462 ± 0.0171 0.9076 ± 0.0288
FusionNet 0.0424 ± 0.0121 0.0364 ± 0.0133 0.9228 ± 0.0215
LagNet 0.0482 ± 0.0184 0.0418 ± 0.0148 0.9122 ± 0.0279
ZS-Pan 0.0185 ± 0.0060 0.0279 ± 0.0141 0.9542 ± 0.0188

Best results are in boldface. Second-best results are underlined.

Table 5
Average results of ZS-Pan used with different supervised DL-based methods on 20 full
resolution WV3 examples.

Name 𝐷𝜆 (± std) 𝐷𝑠 (± std) HQNR (± std)

w FusionNet 0.0185 ± 0.0060 0.0279 ± 0.0141 0.9542 ± 0.0188
w PanNet 0.0193 ± 0.0056 0.0303 ± 0.0156 0.9511 ± 0.0203
w PNN 0.0187 ± 0.0061 0.0180 ± 0.0101 0.9637 ± 0.0148

• PNN4: pansharpening via convolutional neural networks (CNNs)
[50]

• PanNet5: CNN in the high-frequency domain for pansharpen-
ing [36]

• DiCNN6: CNN based on detail injection pansharpening method
[76]

• MSDCNN7: CNN based on multi-scale and multi-depth pansharp-
ening method [77]

• BDPN8: pansharpening method based on bidirectional networks
[78]

• FusionNet9: deep CNN inspired by traditional CS and MRA meth-
ods [51]

• LagNet10: CNN panchromatic sharpening based on local content
adaptation [79]

The results are shown in Table 4 and Fig. 11. Although supervised
methods rely on a huge amount of training data, the quantitative results

4 Code link: http://openremotesensing.net/kb/codes/pansharpening/.
5 Code link: https://xueyangfu.github.io/.
6 Code link: http://openremotesensing.net/kb/codes/pansharpening/.
7 Code link: https://github.com/liangjiandeng/DLPan-Toolbox.
8 Code link: https://github.com/liangjiandeng/DLPan-Toolbox.
9 Code link: https://github.com/liangjiandeng/FusionNet.

10 Code link: https://github.com/liangjiandeng/LAGConv.

https://github.com/suifenglian/LDP-Net
http://openremotesensing.net/kb/codes/pansharpening/
https://xueyangfu.github.io/
http://openremotesensing.net/kb/codes/pansharpening/
https://github.com/liangjiandeng/DLPan-Toolbox
https://github.com/liangjiandeng/DLPan-Toolbox
https://github.com/liangjiandeng/FusionNet
https://github.com/liangjiandeng/LAGConv
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Fig. 10. Visual comparisons in natural colors of the most representative 10 approaches on a reduced resolution WV2 example.

Fig. 11. Visual comparisons in natural colors of 7 DL-based approaches on a full resolution WV3 example.

Fig. 12. Visual results in natural colors of the comparison using different supervised DL-based solutions in the proposed framework and the performed ablation study.

are still worse than our ZS-Pan. These results show the importance of
the consistency between training and testing data.

4.2.4. ZS-Pan with DL methods
As mentioned in Section 3.5, the proposed ZS-Net framework can

include any pansharpening network to be trained at full resolution in a
zero-shot learning manner. Thus, we chose some SOTA supervised pan-
sharpening methods, i.e., PNN [50], PanNet [36] and FusionNet [51], to
analyze their performance when considered in our framework. Table 5
shows the related outcomes on WV3 data. High performance (HQNR
values always greater than 0.92) can be remarked for all the configu-
rations, demonstrating that our framework can be well-integrated with
supervised DL-based techniques.

4.3. Reduced resolution assessment

This section is devoted to the performance assessment at reduced
resolution, where the ground-truth (GT) image is used as reference.
SOTA pansharpening methods from many categories are considered,
including conventional techniques (CS, MRA, and VO techniques).

Table 6 reports the quantitative evaluation for WV3 data. According
to the ERGAS and SCC indexes, our technique outperforms conventional
pansharpening methods. Fig. 9 depicts the visual performance on a
reduced resolution WV3 dataset, showing excellent spectral and spatial
accuracies for ZS-Pan.

Table 7 reports the quantitative results on the WV2 dataset. The
best Q8, ERGAS, and SCC values indicate that ZS-Pan can generate
high-quality pansharpened products, even corroborated by Fig. 10.

Table 6
Average quantitative comparisons on 20 reduced resolution WV3 examples.

Name Q8 (± std) SAM (± std) ERGAS (± std) SCC (± std) SSIM (± std)

EXP 0.6300 ± 0.0971 5.7534 ± 1.7829 7.1220 ± 1.7543 0.7434 ± 0.0268 0.7878 ± 0.0831
BT-H 0.8337 ± 0.0992 4.8734 ± 1.3442 4.5496 ± 1.4193 0.9253 ± 0.0230 0.9232 ± 0.0217
BDSD-PC 0.8277 ± 0.0943 5.4024 ± 1.7304 4.6766 ± 1.5393 0.9075 ± 0.0392 0.9173 ± 0.0268
C-GSA 0.8155 ± 0.0914 5.6706 ± 1.6653 4.8733 ± 1.4762 0.8925 ± 0.0391 0.9050 ± 0.0278
PRACS 0.7842 ± 0.1097 5.5403 ± 1.7815 5.3383 ± 1.5839 0.8791 ± 0.0539 0.8954 ± 0.0286
MGF 0.8286 ± 0.0998 5.2971 ± 1.6714 5.1301 ± 2.6770 0.8909 ± 0.1104 0.9135 ± 0.0264
MGHR 0.8254 ± 0.0904 5.2791 ± 1.6758 4.6776 ± 1.5189 0.9007 ± 0.0439 0.9153 ± 0.0262
CMGC 0.8177 ± 0.0880 5.5562 ± 1.5772 4.8331 ± 1.4962 0.8960 ± 0.0369 0.9080 ± 0.0253
FE-HPM 0.8277 ± 0.0945 5.1884 ± 1.5675 4.6430 ± 1.3013 0.9156 ± 0.0230 0.9107 ± 0.0242
SR-D 0.8262 ± 0.0960 4.9190 ± 1.3776 4.6397 ± 1.3794 0.9166 ± 0.0212 0.9064 ± 0.0246
CDIF 0.8322 ± 0.1032 4.8548 ± 1.4788 4.5029 ± 1.5338 0.9163 ± 0.0298 0.9187 ± 0.0242
ZS-Pan 0.8118 ± 0.1099 5.3000 ± 1.2026 4.4397 ± 1.1382 0.9339 ± 0.0193 0.9206 ± 0.0195

Best results are in boldface. Second-best results are underlined.

4.4. Ablation study

This section is devoted to some ablation studies to investigate the
effect of each component of the ZS-Pan framework. For simplicity, we
consider the WV3 dataset as reference. Table 8 reports the results of
this study and Fig. 12 depicts the related visual results. It is clear that
the proposed ZS-Pan shows the highest quantitative performance and
the best visual effects.

4.4.1. The effect of RSP
To investigate whether the RSP stage contributes to the final result,

we remove the RSP stage from the ZS-Pan framework. Table 8 presents
the quantitative outcomes for ZS-Pan with and without RSP (w/o RSP).
It can be observed that performance is strongly reduced by removing
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Table 7
Average quantitative comparisons on 20 reduced resolution WV2 examples.

Name Q8 (± std) SAM (± std) ERGAS (± std) SCC (± std) SSIM (± std)

EXP 0.6400 ± 0.0771 6.5295 ± 0.8808 6.7679 ± 0.7981 0.7340 ± 0.0210 0.7047 ± 0.0642
BT-H 0.8286 ± 0.1014 5.8910 ± 0.7457 4.3980 ± 0.5754 0.9173 ± 0.0097 0.8737 ± 0.0193
BDSD-PC 0.8431 ± 0.1040 6.1427 ± 0.8911 4.2525 ± 0.6993 0.9118 ± 0.0180 0.8809 ± 0.0170
C-GSA 0.8216 ± 0.1005 6.2450 ± 0.8733 4.5209 ± 0.6497 0.8920 ± 0.0203 0.8611 ± 0.0218
PRACS 0.7657 ± 0.0966 6.3163 ± 0.8683 5.3044 ± 0.7645 0.8587 ± 0.0242 0.8128 ± 0.0305
MGF 0.8242 ± 0.1001 6.3521 ± 0.9353 4.5549 ± 0.7608 0.8901 ± 0.0362 0.8594 ± 0.0216
MGHR 0.8251 ± 0.1007 6.1865 ± 0.9114 4.4545 ± 0.6859 0.8945 ± 0.0235 0.8645 ± 0.0208
CMGC 0.8224 ± 0.0999 6.2256 ± 0.8394 4.5236 ± 0.7200 0.8912 ± 0.0213 0.8604 ± 0.0222
FE-HPM 0.8294 ± 0.0998 6.0927 ± 0.8097 4.4228 ± 0.5679 0.9087 ± 0.0097 0.8657 ± 0.0227
SR-D 0.8250 ± 0.0999 5.8779 ± 0.7643 4.5226 ± 0.6219 0.9011 ± 0.0103 0.8570 ± 0.0202
CDIF 0.8410 ± 0.1036 5.6297 ± 0.7127 4.2655 ± 0.5800 0.9097 ± 0.0139 0.8759 ± 0.0172
ZS-Pan 0.8441 ± 0.1054 6.1298 ± 0.7838 4.2345 ± 0.5186 0.9202 ± 0.0123 0.8852 ± 0.0160

Best results are in boldface. Second-best results are underlined.

Table 8
Average results of the ablation study for our ZS-Pan framework on 20 full resolution
WV3 examples.

Name 𝐷𝜆 (± std) 𝐷𝑠 (± std) HQNR (± std)

ZS-Pan 0.0185 ± 0.0060 0.0279 ± 0.0141 0.9542 ± 0.0188
w/o RSP 0.0413 ± 0.0145 0.0552 ± 0.0258 0.9060 ± 0.0341
w/o MS2PAN 0.0218 ± 0.0078 0.0415 ± 0.0218 0.9377 ± 0.0283
w/o MTF 0.0263 ± 0.0085 0.0622 ± 0.0298 0.9133 ± 0.0348
w/o DA 0.0219 ± 0.0076 0.0281 ± 0.0193 0.9508 ± 0.0251

Best results are in boldface. Second-best results are underlined.

Table 9
Average computational times for six traditional methods and our ZS-Pan. The size of
the PAN is 512 × 512. The unit is seconds.

CS MRA VO DL

GSA PRACS MGF CMGC SR-D CDIF ZS-Pan

1.73 0.47 0.27 1.93 3.60 118.22 134.26

the RSP module, thus demonstrating that it can help to improve the
zero-shot performance in the FUG stage.

4.4.2. The effect of MS2PAN-net
As mentioned in Section 3.4, there are two ways to build MS2PAN-

Net, see Fig. 6. To prove the validity of our choice, we replace the
MS2PAN-Net with the method represented in Fig. 6. As shown in
Table 8 and Fig. 12, ZS-Pan without MS2PAN-Net (w/o MS2PAN) has
lower performance with respect to the original ZS-Pan with MS2PAN-
Net, which verifies that a simple restricted network is a good solution
to avoid overfitting, even boosting the performance.

4.4.3. The effect of MTF
In this section, the role of MTF filters is analyzed. Indeed, we replace

MTF filters with bicubic ones to investigate the validity of MTF-based
(selected) filters. We denoted the ZS-Pan without MTF as w/o MTF.
The quantitative results reported in Table 8 demonstrate that w/o MTF
yields the second-worst performance, also corroborated by Fig. 12.

4.4.4. The effect of data augmentation
In RSP, data augmentation is exploited. To investigate the effect

of this module, an ablation study without data augmentation in the
RSP stage is performed (denoted as w/o DA). The quantitative results
are reported in Table 8. The higher 𝐷𝑠 value obtained by w/o DA
demonstrates that data augmentation does not negatively affect the
spatial detail quality. The lower HQNR value instead indicates that data
augmentation is needed to get more accurate results.

4.5. Discussions

Based on the previously shown results, it is clear that ZS-Pan obtains
good pansharpened products. In this section, we will discuss about the
training time of the ZS-Pan framework and the hyperparameters used
in the loss function.

Fig. 13. The processing time of ZS-Pan considering different PAN data sizes.

Fig. 14. The computational load of the different parts of ZS-Pan.

Fig. 15. The line chart of quality index and hyperparameters.

4.5.1. Training time
Fig. 13 reports the training times of ZS-Pan on 8-bands data (i.e.,

WV3) varying the PAN size. The training time for 8-bands data with
512 × 512 pixels is 134.26 s, with 256 × 256 pixels is 61.87 s, and
with 128 × 128 pixels is 36.76 s. The computation times are reported
in Table 9 comparing the proposed approach with traditional methods.
Our result (134.26 s) is slightly higher than that of the slowest VO
method, i.e., CDIF, which is 118.22 s. It is worth to be noted that DL-
based pansharpening methods require hours to be trained, e.g., 25 h
for PNN [50], 6 h for TDNet [80], and 2 h for FusionNet [51], thus
proving the efficiency of our method. Moreover, Fig. 14 shows the
computational load of the different parts of our ZS-Pan. RSP requires
more time to be trained because of the adopted data augmentation
strategy.

4.5.2. Loss function hyperparameters
As described in Section 3.5, two hyperparameters (𝜆1 and 𝜆2) weigh

two sub-loss functions. Hence, the ratio between 𝜆1 and 𝜆2 determines
the importance of one loss function with respect to the other. The
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Fig. 16. SWOT analysis for our ZS-Pan.

higher the ratio is, the more important the spectral loss is, while the
lower the ratio is, the more important the spatial loss is. Fig. 15 shows
the changes in the 𝐷𝑠, 𝐷𝜆, and HQNR indexes varying 𝜆1 ∶ 𝜆2 on
WV3 data. When the ratio is lower than 8, HQNR grows, while 𝐷𝑠 and
𝐷𝜆 decrease. However, when the ratio is higher than 8, HQNR starts
decreasing because of the spatial loss leads to increase 𝐷𝑠. Thus, we
chose a ratio between the two 𝜆 coefficients equal to 8 for training our
ZS-Pan.

4.5.3. Improvement analysis
In this section, we propose the analysis of the strengths, weaknesses,

opportunities, and threats (SWOT) for our ZS-Pan. These latter are
summed up in Fig. 16 aiding the readers in catching in a quick way
the pros and cons of the proposed methodology.

5. Conclusions

In this paper, we investigated a new training strategy for DL-based
pansharpening. In particular, we studied a two-phase three-stage model
for zero-shot semi-supervised pansharpening (ZS-Pan), including the re-
duced resolution supervised pre-training (RSP), the spatial degradation
establishment (SDE), and the full-resolution unsupervised generation
(FUG) stages. Afterwards, the ZS-Pan framework has been assessed on
real WV2 and WV3 data. ZS-Pan yielded the best quantitative and
visual performance compared with many SOTA techniques. Ablation
studies and further discussions demonstrated the high performance of
the proposed approach for the pansharpening problem.
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