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Abstract
Pansharpening is a crucial and challenging task
that aims to obtain a high spatial resolution im-
age by merging a multispectral (MS) image and
a panchromatic (PAN) image. Current methods use
CNNs with standard convolution, but we’ve ob-
served strong correlation among channel dimensions
in the kernel, leading to computational burden and
redundancy. To address this, we propose Learnable
Gaussian Perturbation Convolution (LGPConv), sur-
passing standard convolution. LGPConv leverages
two properties of standard convolution kernels: 1)
correlations within channels, learning a premier ker-
nel as a base to reduce parameters and training diffi-
culties caused by redundancy; 2) introducing Gaus-
sian noise perturbations to simulate randomness and
enhance nonlinear representation within channels.
We incorporate LGPConv into a well-designed pan-
sharpening network and demonstrate its superiority
through extensive experiments, achieving state-of-
the-art performance with minimal parameters (27K).
Code is available on the GitHub page of the authors.

1 Introduction
With the rapid development of satellite sensors, remote sensing
images have become widely used in many fields, i.e., classifi-
cation, super-resolution, pansharpening, and so on. However,
because of the physical limitations of remote sensing imaging
devices, images with high spatial and spectral resolutions are
hard to achieve by a single sensor. The most typical solution
is to make a trade-off between the spatial and spectral resolu-
tions. Therefore, pansharpening, which aims at fusing a low
resolution multispectral (LR-MS) image and panchromatic
(PAN) data and yielding a high spatial resolution MS image
(HR-MS), has become a fundamental task in remote sensing
image processing.
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Figure 1: First row: Standard convolution kernels are nonlinear among
channels (shown by different colors) but have redundancy (see Fig. 2).
Second row: [Haase and Amthor2020] proposed Blueprint Separable
Convolution (BSConv) to reduce parameters. However, its kernels are
linear among channels (shown by specific color categories, i.e., yel-
low and pink), limiting feature representation. Third row: Learnable
Gaussian Perturbation Convolution (LGPConv) uses perturbation to
make kernels nonlinear while analyzing correlations among channels.
Also, ours has fewer parameters than standard convolution.

Many research efforts have been donated to pansharpen-
ing, which can be divided into four groups, i.e., component
substitution (CS), multiresolution analysis (MRA), variational
optimization (VO), and deep learning (DL) based methods. A
detailed review can be found in [Vivone et al.2020]. However,
the first three methods restrict performance and optimization.
With the advancements of hardware in image processing ap-
plications, DL-based methods, particularly convolution neural
networks (CNNs)-based techniques, are emerging lines of pan-
sharpening [Guo et al.2020a, Yang et al.2020, T.-J. Zhang and
Vivone2022, Jin et al.2022b, Zhou et al.2022, Yan et al.2022a].
However, these DL-based methods often acquire a large num-
ber of parameters and suffer from high computational costs
and low efficiency.

CNNs have achieved state-of-the-art (SOTA) in many im-
age restoration tasks such as super-resolution, denoising, and
pansharpening. The standard convolution focuses on feature
extraction and correlation between spatial and channel dimen-
sions. However, the number of parameters of existing convolu-



Figure 2: Analysis of correlation among channels of standard convo-
lution kernels. We reshape the standard convolution kernel size from
32× 3× 3× 32 to 32× 4× 32 using PCA for the analysis. (a) The
principal components of the standard convolution kernel. The vertical
axis denotes the first four principal components after PCA, and the
horizontal axis represents the representation range of the kernel. (b)
The visualized results of the first four principal components of the
standard convolution kernel. In each subfigure, the closer two colors,
the greater the similarity among channels. This observation indicates
the redundancy in the standard convolution kernel.

tion kernels depends on the number of channels of the target
feature map. The correlation among channels often makes the
convolution kernels redundant. In order to improve the perfor-
mance and reduce redundancy, many previous attempts have
tried to address these issues and have obtained relatively good
performances. MobileNets [Howard et al.2017] proposed a
lightweight structure called a depthwise separable convolu-
tion (DSC) module. The DSC module factorizes a standard
convolution into a depthwise convolution and a pointwise
convolution. In 2020, Hasse et al. [Haase and Amthor2020]
exploited high redundancy in DSC by visualizing the learned
filter kernels, which showed intra-kernel correlations along
the depth axis of convolution kernels. Thus, they proposed
blueprint separable convolutions (BSConv) with a “blueprint”
convolution kernel to generate the whole one and cut down
the parameters successfully. However, BSConv has limited
representation capability due to its ease of transformation (see
Fig. 1 and Fig. 3). For more reviews, please see related works.
The main contributions of this paper can be summarized as
follows:

• We propose a novel generation of convolution kernels
based on channel-wise linear transformation of kernels
and noise perturbation bias, namely LGPConv, which
uses randomness of noise to achieve kernel nonlinearity.
It provides high efficiency for feature representation and
facilitates network training with small parameters.

• Using linear algebra, we conduct an in-depth analysis
of the unnecessary redundancy caused by the original
kernel generation and demonstrate the latent correlation
and difference among convolution kernel channels. In
addition, we theoretically prove LGPConv’s convergence
and explain its implementation in detail.

• Comprehensive analysis on pansharpening performance
of our method is conducted through ablation studies, qual-
itative and quantitative results. Also, to the best of our
knowledge, the proposed method can achieve SOTA per-
formance with a small parameter scale (only 27K).

2 Related Works and Motivations
2.1 CNNs for Pansharpening
As one of the DL-based methods for pansharpening, CNNs
have been widely applied in this area by virtue of their pow-
erful nonlinear fitting capabilities. In 2016, Masi et al. [Masi
et al.2016a] pioneered the use of a stacked three-layer con-
volution network, named PNN, to solve the pansharpening
problem, achieving satisfactory results. In the follow-up CNN-
based works, researchers have studied from different perspec-
tives, including residual networks [Yang et al.2017, Fu et
al.2020], high-pass filtering details [Yang et al.2017, Fu et
al.2020], multiscale pyramid structure [Yuan et al.2018, Jin
et al.2022a], and bidirectional fusion [Zhang et al.2019] to
establish a CNN with superior performance to continuously
refresh the fusion results of pansharpening. In 2019, Zhuang et
al. [Zhuang et al.2019] developed a method with gradient do-
main guided image filtering. In order to establish the posterior
probability model, [Guo et al.2020b] used Bayesian theory
to address the pansharpening problem. Furthermore, Deng et
al. [Deng et al.2021] proposed a simple and efficient deep
learning network based on traditional CS and MRA method,
attaining the current SOTA performance. [Cao et al.2022] im-
proved the interpretability. and [Yan et al.2022b] combined
model-driven and data-driven approaches to design the net-
work.

In general, the existing framework of pansharpening using
CNNs can be uniformly expressed as F (·; θ), where θ is the
parameters of CNNs. Thus the process can be described as,

M̃ = M↑S + F((P,M↑S); θ), (1)
where M̃ ∈ RH×W×C is the fusion of PAN and LR-MS,
M↑S ∈ RH×W×C is the pre-upsampled MS, and P ∈
RH×W×1 denotes the high-resolution (HR) PAN image.

However, the general trend of pansharpening has been to
make deeper and more complicated networks without thinking
about improving efficiency. Besides, they also ignore the corre-
lations lying in the channel dimension of kernels, which leads
to a lot of parameters and duplication that isn’t necessary.

2.2 The Standard Convolution and BSConv
The standard convolution. The convolution is mainly to use
a set of kernels with the size of Cout × K × K × Cin to
convert an input X = [x1,x2, · · · ,xCin

] ∈ RH×W×Cin

to an output Y = [y1,y2, · · · ,yCout
] ∈ RH×W×Cout ,

where K is the kernel size, and Cin and Cout denote the
number of the input and the output channels, respectively.
Since the output is determined by a group of kernel sets
W = [w1,w2, · · · ,wCout

] ∈ RCout×K×K×Cin , where wi



Figure 3: The representation ability of standard convolution, BSConv [Haase and Amthor2020], and the proposed LGPConv through PCA.
(a) The representation range shows that the proposed LGPConv has the best represent ability. (b) The standard convolution kernel with size
K ×K × Cin is reshaped to Cin kernel vectors with size K2 × 1 according to Def. 3. We set Cin = 7 and K2 = 3 for easier illustration in
R3 space. The kernel vectors of standard convolution are distributed in R3 space. (c) The kernel vectors of BSConv [Haase and Amthor2020]
are linear correlated, which can only span a subspace of R3 space. This observation motivates us to add some perturbation to make it
nonlinear correlated. (d) LGPKernel is distributed in R3 space, resulting in high representation ability. The dotted lines stand for the Gaussian
Perturbation.

is the ith set of kernels with the size Cin, the output feature
map of ith channel can be expressed as,

yi = wi ∗X =

Cin∑
m=1

wm
i ∗ xm, (2)

where ∗ denotes convolution, wi = [w1
i ,w

2
i , · · · ,w

Cin
i ] ∈

RK×K×Cin , and xm ∈ RH×W .
BSConv. In BSConv [Haase and Amthor2020], we define

each kernel set can be represented by a “blueprint” Bi ∈
RK×K and the weights ki = [ki

1, · · · , kiCin ] ∈ RCin as
follows,

w̃m
i = ki

m ·Bi, (3)

where w̃i = [w̃1
i , w̃

2
i , · · · , w̃

Cin
i ] ∈ RK×K×Cin is the ith

set of BSConv kernels and i ∈ {1, · · · , Cout}. For BSConv,
we rewrite Eq. 2 and Eq. 3 to equivalently get the following
pointwise convolution and depthwise convolution,

y′
i = X ∗ ki, (4)

yi = y′
i ∗Bi. (5)

Eq. 4 can be seen as a 1×1 pointwise convolution with a set
of weights ki, while Eq. 5 is a K ×K depthwise convolution
with the “blueprint” kernel Bi. Since BSConv [Haase and
Amthor2020] utilizes the correlations among channels, it cuts
down the parameters from Cout×K×K×Cin to Cout×(K2+
Cin), which achieves the magnificent parameter reduction.
However, BSConv can only generate the whole convolution
kernel with the linear transformation of the “blueprint” and
ignore the nonlinearity among the convolution kernel channels,
weakening the convolution’s representation ability.

2.3 Motivation
Even though the solutions discussed above have shown
promise in solving the pansharpening problem, there is still
potential for improvement.

First, the number of learnable parameters increases substan-
tially as the number of layers and channels of convolution

increases in pansharpening problem. But few works in this
field focus on lightweight network design, which aims to re-
duce the scale of parameters by a large amount compared to
SOTA approaches. Furthermore, principal component analysis
(PCA) demonstrates that not all parameters are fully utilized.
Fig. 2 shows that the channels of the standard convolution ker-
nel correlate with each other, resulting in redundancy, which
further reduces the efficiency of the network and causes huge
computational costs and memory storage.

Second, though BSConv [Haase and Amthor2020] can cut
down the parameters by generating a convolution kernel via a
“blueprint” and a set of weights, it only has linear representa-
tion capability, which restricts the feature extraction ability of
BSConv as a general module in CNN. Fig. 3 shows that the
BSConv can only span a linear subspace while both the stan-
dard convolution and LGPConv are distributed in the whole
kernel space.

Third, the above two items motivate us to use the advantage
of BSConv to maintain low-scale parameters while taking non-
linearity and randomness into consideration in the design of
pansharpening network (see Fig. 1). Since Gaussian distribu-
tion is a commonly existing distribution of random variables, it
can approximate the probability distribution of the randomness
among channels. Thus, generating random perturbations by
Gaussian noise is reasonable while considering the correlation
among channels.

3 Method
3.1 Learnable Gaussian Perturbation Convolution
In this section, we propose a novel convolution operation
named Learnable Gaussian Perturbation Convolution (LGP-
Conv). To extract key information from feature maps, LGP-
Conv employs the Learnable Gaussian Perturbation Kernel
(LGPKernel, see Fig. 1), generated based on the premier ker-



nel (see the following) and noise perturbations. Specifically,
the premier kernel is presented as a template considering chan-
nel correlations. Furthermore, Gaussian perturbation is used to
achieve channel randomization and nonlinear representation.

The preparation of linear algebra. To illustrate the given
method, we need to first present some basic concepts in linear
algebra, which can be found from the book in [Meyer2000].
Definition 1. If a set α = {α1, · · · , αr} where αi ∈ Rn, and
the r vectors are independent, then α can span a subspace M
of Rn.
Definition 2. Suppose α̃ = {α̃1, · · · , α̃m} where α̃i ∈ Rn,
and all vectors in α̃ are independent. If m ≥ r, then α̃ can
represent the subspace M. Otherwise, α̃ can not represent the
subspace M.

The premier kernel. As shown in Fig. 2, different channels
in a standard kernel have a high degree of correlation, resulting
in redundancy and computational inefficiency. The premier
kernel, inspired by BSConv [Haase and Amthor2020], can
simplify the kernel of the standard convolution. As shown
in Fig. 4, the premier kernel for ith output channel mainly
composes of a “blueprint” kernel Bi ∈ RK×K and a set
of corresponding weights ki ∈ RCin . Thus, the convolution
based on the premier kernel w̃i can be represented as:

yi =

Cin∑
m=1

(
w̃m

i ∗ xm

)
=

Cin∑
m=1

((
kmi ·Bi

)
∗ xm

)

=

Cin∑
m=1

(( pointwise︷ ︸︸ ︷
kmi · xm

)
∗Bi

)
︸ ︷︷ ︸

depthwise

, (6)

where yi is ith output channel, and xm,m ∈ {1, · · · , Cin},
denotes the input tensor. The generation of the premier ker-
nel is two operations in sequence, i.e., pointwise convolution
and depthwise convolution. The premier kernel, on the other
hand, just analyzes the similarity among channels, ignoring
randomness and nonlinearity. In the following, we will give
out the relevant mathematical explanations and introduce the
solution for the premier kernel’s limitations, i.e., Gaussian
perturbation.
Definition 3. For easy analysis, we can reshape the wi ∈
RK×K×Cin to Cin vectors vi ∈ RK2

. The following kernel
set is defined as,

V =
{
vi|i = 1, 2, · · · , Cin, vi ∈ RK2

, Cin ∈ N
}
, (7)

where vi are distributed as points in RK2

space.
Based on Def. 1 and Def. 3, the standard kernel wi with

K2 independent vectors can represent a kernel space RK2

.
However, the premier kernel w̃i is linear along the channel
dimension. The premier kernel contains Cin points in RK2

space (actually located on a line, see an example in Fig. 3 (c)),
and is just a subspace of RK2

, according to Def. 2.
Gaussian Perturbation. The premier kernel only considers

the correlation among channels and simplifies the standard
kernel by a linear transformation, limiting the kernel’s rep-
resentation capability. To achieve the nonlinearity among all

channels, we apply random perturbation to increase random-
ness, thus expanding the representation range of the premier
kernel. Formally, the newly designed kernel is the sum of the
premier kernel and the random bias.
wi = [k1i ·Bi + η1i , k

2
i ·Bi + η2i , · · · , k

Cin
i ·Bi + ηCin

i ]

= [k1i ·Bi, k
2
i ·Bi, · · · , kCin

i ·Bi] + [η1i , η
2
i , · · · , η

Cin
i ]

= ki ·Bi + ηi, (8)

where ηi = [η1i , η
2
i , · · · , η

Cin
i ] ∈ RK×K×Cin can be viewed

as Cin independent vectors with the size of K2 × 1 according
to Def. 1. Based on Eq. 2 and Eq. 8, we can rewrite the formu-
lation of convolution operation for the i-th output channel as
follows,

yi =
(
ki ·Bi + ηi

)
∗X =

Cin∑
m=1

((
kmi ·Bi + ηmi

)
∗ xm

)
=

Cin∑
m=1

((
kmi · xm

)
∗Bi + ηmi ∗ xm

)
. (9)

In the following part, we will demonstrate how to generate
ηi. As one type of commonly existing noise, Gaussian noise
can produce multiple independent and identically distributed
(i.i.d) vectors, which have a probability density function equal
to that of the normal distribution. The probability density
function p of a Gaussian random variable ϵ is shown as,

pG(ϵ) =
1

σ
√
2π

exp

(
− (ϵ− µ)

2

2σ2

)
, (10)

where µ and σ are the mean and standard deviation.
Due to the random and independent nature of Gaussian

noise, we use it to generate a group of ηi, named Gaussian
perturbation, see as follows,

ηi = ki ·Bi ∗ H(ϵ), (11)
where ϵ is a tensor of Gaussian random variables and H(·)
denotes the operations of generating Gaussian perturbation.
Given the variety of possible options for H(·), the sim-
plest depthwise and pointwise convolutions in sequence are
chosen for cutting down the parameters in this work. Be-
cause of the randomness of noise, H(ϵ) can be generated in
RCout×K×K×Cin , which includes multiple independent vec-
tors. Thus, Gaussian perturbation based on η can extend across
the entire kernel space.

Though Gaussian perturbation has the same size as the
premier kernel, it is independent and random in the kernel
space, alleviating the constraints imposed by the linearity of
the premier kernel. By injecting Gaussian perturbation into
the premier kernel, we obtain the LGPKernel as the following,

wi = ki ·Bi + ηi = ki ·Bi + ki ·Bi ∗ H(ϵ). (12)
According to Def. 1 and Def. 3, it can be deduced that LGPKer-
nel can represent the kernel space RK2

and extract additional
rich features.

Implementation of LGPConv. To sum up, as Fig. 4 shows,
the input feature map is initially extracted using the premier
kernel in a convolution process. Then the output is fed into



Figure 4: Detailed illustration of the Learnable Gaussian Perturbation
Convolution (LGPConv).

Figure 5: The architecture for LGPConv-Net. The channel number
and details of LGPConv-Net are specified in supplementary material.

the Gaussian perturbation through convolution operation. Fol-
lowing that, the outputs of two processes (i.e., the convolution
based on premier kernel and Gaussian perturbation) are added,
and the entire procedure can be summarized as follows,

yi =

Cin∑
m=1

((
km
i · xm

)
∗Bi

)
+

Cin∑
m=1

((
km
i · xm

)
∗Bi∗H(ϵ)

)
.

(13)
LGPConv can reduce parameters from Cout×K×K×Cin

to Cout × (2K2 + 2Cin) using Eq. 13. See the parameter
comparison in Tab. 1.

Convolution Type Parameters

Standard Conv Cout ×K ×K × Cin

BSConv [Haase and Amthor2020] Cout × (K2 + Cin)

LGPConv Cout × (2K2 + 2Cin)

Table 1: The parameters of three convolutions.

3.2 Architecture of LGPConv-based
Pansharpening Network (LGPConv-Net)

We propose the network for pansharpening, i.e., LGPConv-
Net, where all convolutions are realized by LGPConv. In Fig. 5,
the proposed network has three simple components, i.e., an
initial feature extractor, a deep inference block, and a fusion
reconstruction. More details please see supplementary.

Figure 6: Convergence comparison when using only premier kernel
and LGPKernel.

Training process uses a simple ℓ1 loss to minimize the
difference between the predicted image M̃i and the ground
truth Mgt,i,

ℓ(θ) =
1

N

N∑
i=1

∥Mgt,i − M̃i∥1, (14)

where N is the sample number, and ∥ · ∥1 is the ℓ1 norm.

3.3 Mathematical Explanations: Convergence
Analysis with Lipschitz Condition

Recent research has demonstrated that the Lipschitz constant
can be utilized to demonstrate the robustness of DL-based net-
works [Liu et al.2018,Hein and Andriushchenko2017,Weng et
al.2018]. In this paper, we use it to explain that the training of
LGPConv-Net is equivalent to Lipschitz regularization, which
further explains the convergence of the proposed network. The
Lipschitz constant of LGPConv-Net is given as the following
definition.
Definition 4. For the network with specific perturbation, we
define the loss function as ℓϵ that has a Lipschitz constant Lℓϵ .
Also we have the following inequality,

| ℓϵ(θ)− ℓϵ(θ̃) |≤ Lℓϵ∥θ − θ̃∥, (15)
for network parameters θ and θ̃.

Although LGPConv contains Gaussian perturbation, a the-
oretical convergence analysis shows it is still robust. Then,
we demonstrate that our network can regulate the Lipschitz
constant by expanding the expectation function,

Eϵ∼N(µ,σ2)ℓϵ(θ) = Eϵ∼N(µ,σ2)

[
ℓ0(θ) + ϵT∇ℓ0(θ)+

1

2
ϵT∇2ℓ0(θ)ϵ+ · · ·+ 1

k!
ϵk∇kℓ0(θ) + · · ·

]
≈ Eϵ∼N(µ,σ2)

[
ℓ0(θ) + ϵT∇ℓ0(θ) +

1

2
ϵT∇2ℓ0(θ)ϵ

]
.

(16)

In Eq. 16, we employ Taylor expansion at ϵ = 0 and retain
only the second-order term because the variance of Gaussian
random variables is relatively small in default. By noticing
the Gaussian vector ϵ is i.i.d with mean µ and the quadratic
term is directly dependent on variance of noise and the trace



Method SAM(±std)↓ ERGAS(±std)↓ SCC(±std)↑ Q8(±std)↑ Params GFLOPS A.T.
BDSD [Garzelli et al.2007] 6.9997±2.8530 5.1670±2.2475 0.8712±0.0798 0.8126±0.1234 - - 0.0151

MTF_GLP_CBD [Aiazzi et al.2006] 5.2861±1.9582 4.1627±1.7748 0.8904±0.0698 0.8540±0.1144 - - 0.0161
CVPR19 [Fu et al.2019] 5.2058±1.8688 5.1411±2.1191 0.8667±0.0604 0.7927±0.1228 - - 1.5844
PanNet [Yang et al.2017] 4.0921±1.2733 2.9524±0.9778 0.9495±0.0461 0.8942±0.1170 83K 0.340 0.0025
PNN [Masi et al.2016b] 4.0015±1.3292 2.7283±1.0042 0.9515±0.0465 0.9083±0.1122 104K 0.299 0.0011
DiCNN [He et al.2019] 3.9805±1.3292 2.7367±1.0156 0.9517±0.0472 0.9097±0.1170 47K 0.192 0.0005

DMDNet [Fu et al.2020] 3.9714±1.2482 2.8572±0.9663 0.9527±0.0447 0.9000±0.1142 100K 0.359 0.0043
FusionNet [Deng et al.2021] 3.7435±1.2259 2.5679±0.9442 0.9580±0.0450 0.9135±0.1122 79k 0.323 0.0022

LPPN [Jin et al.2022a] 3.9021±1.2901 2.6404±0.9600 0.9552±0.0450 0.9130±0.1110 51k 1.285 0.0051
LGPConv-Net 3.5940±1.2141 2.4560±0.9295 0.9596±0.0446 0.9161±0.1107 27K 0.112 0.0034

Table 2: Quantitative comparisons on 1258 samples from WV-3 dataset. (Bold: best)

of Hessian, Eq. 16 can be formulated as,

Eϵ∼N(µ,σ2)ℓϵ(θ) ≈ ℓ0(θ) + µ∇ℓ0(θ) +
σ2

2
Tr
{
∇2ℓ0(θ)

}
.

(17)
As a convex relaxation, if we assume ℓ0(θ) is convex, then
Eq. 17 can be formulated as follows according to Def. 4.,

ℓϵ(θ) ≈ ℓ0(θ) +
(
µ+

σ2

2

)
Lℓ0 , (18)

which indicates that the training of LGPConv-Net is equiva-
lent to training the network without perturbation and an extra
regularization of the Lipschitz constant. By controlling both
mean and variance of Gaussian noise, we can balance the con-
vergence of LGPConv-Net. The training loss curves for only
using the premier kernel and LGPConv are shown in Fig. 6.
It can be observed that huge fluctuations exist when having
no Gaussian perturbation (i.e., only premier kernel), while
LGPConv holds a steady loss convergence.

4 Experiments
Due to the page limitation, dataset, metrics, compared meth-
ods, and training platform are mentioned in supplementary.

4.1 Assessment on 8-band and 4-band Dataset
In Tab. 2, we show the average quantitative results of differ-
ent methods on the 1258 samples from WV-3 dataset with
eight bands. The proposed LGPConv-Net clearly has the best
performance and the fewest computational costs (parameters
and GFLOPS) compared to all other methods simultaneously.
Furthermore, we exhibit the average inference time for each
fusion method, denoted as A.T. in seconds. We also assess the
proposed method on 4-band datasets, i.e., GF-2 and QB data.
The quantitative results in terms of all compared methods are
shown in Tab. 3. As can be seen, LGPConv-Net outperforms
other competing methods with lower SAM and ERGAS and
higher Q4 and SCC, which proves that the proposed LGPConv-
Net can tackle with 4-band dataset efficiently while maintain-
ing the smallest parameter scale. For visual comparisons,
please refer to supplementary material.

4.2 Discussion
The number of Resnet-like blocks in LGPConv-Net. Since
we have set the number of Resnet-like blocks (N ) to 4 in de-
fault, the influence of Resnet-like blocks will be demonstrated

Figure 7: The impact of the number of Resnet-like blocks (N ). The
horizontal axis stands for the parameters that the corresponding net-
works need.

by justifying its number. We have tested the performance of
LGPConv-Net with the different number of Resnet-like blocks
in the deep inference block, where N = 2, 4, 6, 8. The experi-
ments are only conducted on WV-3 dataset in the discussion.
As Fig. 7 shows, all the LGPConv-Net with varying N have
good performance and all outperform LPPN [Jin et al.2022a]
and FusionNet [Deng et al.2021] with less parameters. Though
there are fluctuations with N increasing, N = 4 is an econom-
ical choice.

Gaussian perturbation and Gaussian noise. In this sec-
tion, we assess the effectiveness of Gaussian perturbation and
the corresponding Gaussian noise in LGPConv. In order to
illustrate this, we design the following three cases to compare
and the results are shown in Tab. 4 (the standard error is omit-
ted for page limiting). LGPKernel outperforms the other two
by replacing all LGPKernel with the premier kernel and LGP-
Kernel without (w/o) the Gaussian noise. Thus, both Gaussian
perturbation and Gaussian noise are indispensable for LGP-
Kernel. Different convolution types. Three different convolu-
tional operations, i.e., standard convolution, BSConv [Haase
and Amthor2020], and LGPConv, are embedded into the pro-
posed network (Fig. 5). Since the parameters of BSConv are
less than LGPConv, the number of Resnet-like blocks (N ) is
added to 10 for a fair comparison. As shown in Tab. 5, though
standard convolution and BSConv-based network consume



(a) 81 samples from GF-2 dataset (b) 48 samples from QB dataset
Method SAM(±std)↓ ERGAS(±std)↓ SCC(±std)↑ Q4(±std)↑ SAM(±std)↓ ERGAS(±std)↓ SCC(±std)↑ Q4(±std)↑ Params

BDSD [Garzelli et al.2007] 2.29±0.66 2.07±0.61 0.87±0.05 0.87±0.04 7.75±1.93 7.46±0.99 0.85±0.06 0.70±0.12 -
MTF_GLP_CBD [Aiazzi et al.2006] 2.26±0.72 2.02±0.60 0.87±0.05 0.87±0.04 7.67±1.88 7.42±0.97 0.85±0.06 0.65±0.14 -

CVPR19 [Fu et al.2019] 2.15±0.50 2.24±0.64 0.87±0.04 0.86±0.02 7.69±1.84 9.15±1.52 0.82±0.04 0.55±0.19 -
PanNet [Yang et al.2017] 1.39±0.32 1.22±0.28 0.95±0.01 0.94±0.02 5.31±0.99 5.23±0.54 0.93±0.06 0.82±0.08 78K
PNN [Masi et al.2016b] 1.45±0.36 1.27±0.32 0.94±0.02 0.94±0.02 5.20±0.95 4.87±0.46 0.93±0.05 0.83±0.07 80K
DiCNN [He et al.2019] 1.49±0.38 1.32±0.35 0.94±0.02 0.94±0.02 5.30±0.99 5.23±0.54 0.92±0.05 0.81±0.08 43K

DMDNet [Fu et al.2020] 1.29±0.31 1.12±0.26 0.96±0.01 0.95±0.02 5.11±0.94 4.74±0.65 0.94±0.06 0.83±0.07 98K
FusionNet [Deng et al.2021] 1.18±0.27 1.00±0.22 0.97±0.01 0.96±0.01 5.31±1.02 5.16±0.68 0.93±0.05 0.82±0.08 76k

LPPN [Jin et al.2022a] 1.34±0.25 1.05±0.22 0.96±0.01 0.96±0.02 4.84±0.83 4.61±0.88 0.95±0.05 0.84±0.07 160K
LGPConv-Net 1.17±0.28 0.98±0.24 0.97±0.01 0.97±0.02 4.42±0.74 3.70±0.27 0.96±0.05 0.86±0.06 27K

Table 3: Quantitative comparisons on 81 samples from GF-2 dataset and 48 samples from QB dataset, respectively. (Bold: best)

Kernel Type SAM↓ ERGAS↓ SCC↑ Q8↑
Only premier kernel 4.064 2.796 0.950 0.905

LGPKernel w/o Gaussian noise 3.823 2.607 0.956 0.913
LGPKernel 3.594 2.456 0.961 0.918

Table 4: Quantitative results by replacing all the LGPKernel in
LGPConv-Net with the premier kernel and LGPKernel w/o Gaussian
perturbation. (Bold: best)

more parameters than LGPConv, the proposed LGPConv still
obtains the best performance among all. Therefore, LGPConv
has addressed the existing problems for standard convolution
and BSConv, i.e., reducing the scale of parameter and enlarg-
ing the representation range simultaneously.

Convolution Type SAM↓ ERGAS↓ SCC↑ Q8↑ N Params
Standard Conv 3.803 2.593 0.956 0.914 4 87K

BSConv [Haase and Amthor2020] 3.845 2.857 0.952 0.910 10 29K
LGPConv 3.594 2.456 0.961 0.918 4 27K

Table 5: Quantitative results with three different types of convolution,
i.e., standard convolution, BSConv, and LGPConv, which are embed-
ded in the same network architecture. (Bold: best)

σ1 σ2 SAM↓ ERGAS↓ SCC↑ Q8↑
0.003 0.005 3.695 2.513 0.959 0.915
0.001 0.005 3.665 2.515 0.959 0.915
0.005 0.003 3.615 2.485 0.960 0.918
0.005 0.001 3.650 2.505 0.960 0.917
0.005 0.005 3.594 2.456 0.961 0.918

Table 6: Quantitative comparisons with different initial Gaussian
noise distribution, i.e., N(0, σ2

1) and N(0, σ2
2), for depthwise and

pointwise convolutions, respectively. (Bold: best)

The initial distribution of Gaussian noise. As mentioned
in the accomplishment of LGPConv, Gaussian noise is the
key input for generating Gaussian perturbation, and depthwise
and pointwise convolutions are used in sequence for parame-
ter reduction. Thus, there are two sets of Gaussian noise for
both depthwise and pointwise convolutions. Next, we will
examine how the initial distributions, i.e., µ and σ, affect the
performance of LGPConv-Net. First, considering the Gaus-
sian noise for depthwise and pointwise convolutions follows

Figure 8: (a) The impact of initial Gaussian distribution with varying
mean values. (b) The impact of initial Gaussian distribution with
varying standard deviations.

different initial distributions, i.e., N(µ1, σ
2
1) and N(µ2, σ

2
2),

respectively. For easier analysis, we set the µ1 = µ2 = 0
as the default. Tab. 6 demonstrates that optimal performance
is achieved when the initial distributions are identical. Then,
the impact of µ and σ will be tested with two sets of Gaus-
sian noise, whose initial distributions are identical. Fig. 8 (a)
shows that µ = 0 has the best outcomes. From Fig. 8 (b),
the results have improved with σ increasing, which indicates
that the initial distribution of Gaussian noise is valid and our
LGPConv-Net is robust to the perturbation.

5 Conclusion

Standard convolution is highly redundant due to the unaware-
ness of channel-across correlations. We propose a novel convo-
lution, i.e., LGPConv, which consists of he premier kernel and
Gaussian perturbation. The premier kernel effectively reduces
the parameters by considering the similarity among channels,
while Gaussian perturbation promises the randomness and
nonlinearity of the LGPKernel. Based on the LGPConv, a sim-
ple end-to-end network, i.e., LGPConv-Net, is designed for
pansharpening task. Extensive experiments show the promi-
nent performance of LGPConv-Net in terms of quantitative
and visual results, while only requiring a very minor scale of
parameters to the best of our knowledge. Also, our method has
relatively limited generalization, this may be due to Gaussian
random perturbation, and it is more sensitive to the distribution
changes of datasets acquired by different sensors.
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