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Abstract— Pansharpening (which stands for panchromatic
(PAN) sharpening) involves the fusion between a multispectral
(MS) image with a higher spectral content than a fine spatial
resolution PAN image to generate a high spatial resolution MS
(HRMS) image. A widely used concept is the construction of
the relationship between PAN and HRMS images by designing
pixel-based coefficients. Previous pixel-based methods compute
the coefficients pixel-by-pixel while suffering from inaccuracies
in some areas leading to spatial distortion. However, we found
that the coefficients inherit the spatial properties of the HRMS
image, e.g., the local smoothness and nonlocal self-similarity,
and the spatial correlation between the coefficients and the
HRMS image can increase the accuracy of the estimation
process. In this article, we propose a novel spatial fidelity
with nonlocal regression (SFNLR) to describe the relationship
between PAN and HRMS images. Unlike from the pixel-based
perspective, the SFNLR can jointly use the local smoothness
and nonlocal self-similarity of the coefficients for preserving
spatial information. Besides, the SFNLR is integrated with a
widely used spectral fidelity to formulate a new variational
model for the pansharpening problem. An effective algorithm
based on the alternating direction method of multiplier (ADMM)
framework is designed to solve the proposed model. Qualitative
and quantitative assessments on reduced and full resolution
datasets from different satellites demonstrate that the proposed
approach outperforms several state-of-the-art methods. The code
is available at: https://github.com/Jin-liangXiao/SFNLR.

Index Terms— Coefficient estimation, local smoothness, non-
local self-similarity, pansharpening, remote sensing, variational
models.

NOMENCLATURE
Notations Explanations
X , X, x, x Tensor, matrix, vector, scalar.
X(3) Mode-3 unfolding of X .
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X ∈ RH×W×S HRMS image.
Y ∈ Rh×w×S LRMS image.
Ỹ ∈ RH×W×S Upsampled LRMS image.
P ∈ RH×W PAN image.
P ∈ RH×W×S Extended PAN image.
PL ∈ RH×W×S Low-pass version of the extended

PAN image.
G ∈ RH×W×S Adaptive coefficient.
⊙ Hadamard product.
⊘ Elementwise division.

I. INTRODUCTION

WITH the rapid progress of satellite technology, remote
sensing satellites can provide accurate reproductions of

the globe surface [1]. Due to physical constraints, images with
both high spectral and spatial resolution cannot be directly
obtained. Thus, satellite systems, e.g., GaoFen-2, QuickBird
(QB), and WorldView series, simultaneously capture low spa-
tial resolution MS (LRMS) images and high spatial resolution
panchromatic (PAN) images. PAN sharpening (pansharpening)
refers to fusing the above-mentioned pairs to obtain high
spatial resolution MS (HRMS) images.

Recently, pansharpening has gained comprehensive atten-
tion, and numerous methods have been proposed. These
methods are approximately divided into four classes [4], [5],
[6], [7], [8]: 1) component substitution (CS) methods; 2) mul-
tiresolution analysis (MRA) approaches; 3) deep learning (DL)
methods; and 4) variational optimization (VO) techniques.

The CS methods separate the spatial information from
different components by projecting the LRMS image into a
transformed space. Subsequently, the spatial component of
the LRMS image is substituted by the PAN image. Typ-
ical methods include the Brovey transform (BT) [2], the
principal component analysis (PCA) [9], the intensity–hue–
saturation (IHS) [10], the Gram–Schmidt (GS) spectral sharp-
ening [11], the partial replacement adaptive CS (PRACS) [12],
the band-dependent spatial detail (BDSD) [13], and GS
adaptive (GSA) method [14]. In general, this class of meth-
ods tends to preserve spatial details but producing spectral
distortion [15], [16].

The MRA approaches focus on complementing the LRMS
image using spatial details of the PAN image, which are
obtained by the direct implementation of some decom-
positions, e.g., smoothing filter-based intensity modulation
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(SFIM) [17], decimated wavelet transform (DWT) [18], undec-
imated wavelet transform (UDWT) [19], “à-trous” wavelet
transform (ATWT) [20], generalized Laplacian pyramid
(GLP) [21], and the GLP with modulation transfer function
(MTF)-matched filter and its high-pass modulation version
(GLP-HPM) [3]. Unlike from CS methods, MRA approaches
show superiority in preserving spectral information. Neverthe-
less, this superiority is usually paid by an increase in the spatial
distortion [22].

In recent years, DL methods have become increasingly
popular [23], [24], [25], [26], [27]. Because of the powerful
feature extraction capability of convolutional neural networks,
DL methods have achieved excellent results in many tasks of
image processing [28], [29], [30], [31], [32], [33]. However,
most DL methods, e.g., [34], [35], [36], [37], [38], [39], rely
on a corpus of training data. The results may be affected
by the lack of training samples, and the interpretability is
often absent [40], [41], [42], [43]. Although unsupervised
learning is adopted to explore the intrinsic characteristics
without depending on the simulated datasets, the results of
these methods heavily rely on the loss function [4], [44], and
the performance is weakened compared with the supervised
learning approaches.

The VO techniques generate the fused image by designing
the optimization model between the HRMS image and the
two inputs, i.e., the LRMS and PAN data. These techniques
have shown superior ability in extracting spectral and spatial
features [5], [45], [46], [47]. Ballester et al. [48] proposed the
first variational model by assuming that the PAN image is
the linear combination of the different bands of the HRMS
image, which describes the global relationship between PAN
and HRMS images. Subsequently, Fu et al. [49] proposed a
variational pansharpening model with local spatial constraints.
In addition, some techniques, e.g., [50], use different norms
to constrain the spatial details. Various transformed domains,
e.g., [51], [52], [53], were also considered. These methods
were proposed by exploring effective fidelity terms, which
have demonstrated great potential for the pansharpening prob-
lem [54], [55], [56]. Hence, we claim that the critical problem
of VO techniques is how to build the appropriate fidelity terms.

Many existing works, e.g., [2], [57], [58], established the
spatial fidelity by treating the HRMS image as a Hadamard
product of the coefficients and the PAN image, i.e., X =

G ⊙ P , where X ∈ RH×W×S denotes the HRMS image,
G ∈ RH×W×S is the coefficient, ⊙ means the Hadamard
product, and P ∈ RH×W×S is the extended PAN image (the
fidelity is graphically shown in the first row of Fig. 1). Due to
the flexibility of the coefficients, this concept has shown great
potential in the pansharpening problem. However, these works
only focused on the relationship between the PAN and HRMS
images at pixel level, thus neglecting the latent properties of
the coefficients. For example, two classic methods, i.e., BT [2]
and GLP-HPM [3], respectively, explore the relationship by
G = Ỹ ⊘ IL and G = Ỹ ⊘ PL , where Ỹ is the upsampling
LRMS image, PL is the low-pass version of P , IL is the
weighted average of each band of Ỹ , and ⊘ denotes the
elementwise division. Obviously, G(i, j, k) of BT [2] and
GLP-HPM [3] are independently calculated by Ỹ(i, j, k) ⊘

Fig. 1. (First row) Relationship between PAN and HRMS images. The HRMS
image can be represented as the Hadamard product of the coefficients and the
extended PAN image. (Second row) Visual results (red, green, blue bands)
of BT [2], GLP-HPM [3], and the proposed method, respectively. (Third
row) Residual images of the coefficients obtained by the above approaches.
(a) BT [2]. (b) GLP-HPM [3]. (c) Proposed.

IL(i, j, k) and Ỹ(i, j, k)⊘PL(i, j, k), respectively. The infor-
mation of G at other positions [except (i, j, k)] is excluded.
Thus, the pixel-based coefficient estimation is not generally
aligned in some areas, especially along images’ edges [see
Fig. 1(a) and (b)]. Furthermore, Fig. 2 shows a toy example
exploring the underlying properties of the coefficients. We find
that the coefficients inherit the spatial characteristics from
the HRMS image. Since the local smoothness and nonlocal
similarity have been proven to be useful for retaining spatial
information, e.g., structure and texture information in many
image tasks [59], it motivates us to accurately estimate the
coefficients by fully exploring the above properties.

Bearing these concerns in mind, in this article, we propose
a new variational pansharpening model based on a novel
spatial fidelity with nonlocal regression (SFNLR). The SFNLR
combines the local smoothness and nonlocal self-similarity of
the coefficients to effectively describe the relationship between
the PAN and HRMS images. Fig. 1 shows the powerful ability
of the proposed fidelity to preserve spatial structure and texture
information. We can see that the SFNLR is able to retain
more spatial details than the pixel-based methods. Besides,
the proposed model also consists of a spectral fidelity term,
which can steadily obtain spectral information from the LRMS
image. Afterward, an algorithm that relies on the alternating
direction method of multiplier (ADMM) [60] framework is
used to solve the proposed model. A series of experimental
results show the performance of the proposed model compared
with several state-of-the-art methods.

The contributions of this article are summarized as follows.
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Fig. 2. We randomly chose a reduced resolution data, which includes
the PAN, LRMS, and HRMS images (source: GaoFen-2). (a)–(c) HRMS
image, the PAN image, and the coefficients, respectively. The coefficients
have been obtained by the elementwise division between the HRMS and
extended PAN images. It is clear that the coefficients are related to the spatial
structure of the HRMS and PAN images. Subsequently, we cut the coefficients
into overlapping patches. These patches are clustered into different groups
according to the spatial similarity. (d) Distribution of the coefficient values
into two of the above-mentioned groups. It can be observed that the values
of the coefficients in each group are quite approximated.

1) We propose a new variational model, which consists of
the SFNLR and a spectral fidelity term, to solve the
pansharpening problem. Furthermore, an ADMM-based
algorithm is designed to effectively solve the aforesaid
model.

2) The SFNLR is proposed to depict the relationship
between PAN and HRMS images based on the latent
properties of the coefficients. The SFNLR can simul-
taneously take advantage of the local smoothness and
nonlocal self-similarity of the coefficients to preserve
spatial details.

3) The experimental results on both the reduced and full
resolution datasets prove the superiority of the proposed
method compared with recent state-of-the-art pansharp-
ening approaches.

The remaining of this article is organized as follows.
Section II presents the proposed model. Section III describes
the algorithm to effectively solve the proposed model.
Section IV shows the experiments and the related discussion.
Finally, Section V draws concluding remarks.

II. PROPOSED MODEL

Before the presentation of the proposed model, the used
notations are summarized in Nomenclature.

A. Spectral Fidelity Term

The LRMS image has a relevant spectral content paying
it with a coarse spatial resolution. Many previous works,
e.g., [46], [61], modeled a spectral fidelity term at the scale of
the PAN image by upsampling the LRMS image. Specifically,
they assumed that the upsampled LRMS image is the blurred
version of the HRMS image by a blurring operator. Since
the upsampling operation inevitably affects the extraction of
the spectral information, Fu et al. [49] considered the LRMS
image as the HRMS image after a downsampling operator to
avoid the use of the upsampling operation, yet lacking the blur
operator. Combined with the above analysis, the LRMS image
can be treated as the degraded and decimated version of the
HRMS image [62], which can be denoted as follows:

X(3)BS = Y(3) + ξ1 (1)

where B ∈ RH W×H W is a blurring matrix, S ∈ RH W×hw rep-
resents a decimation operation, Y(3) is the mode-3 unfolding
of Y , and ξ1 indicates a Gaussian noise. Thus, the spectral
fidelity term can be written as

fspec = ∥τ(X ) − Y∥
2
F (2)

where τ denotes both the blurring and decimation operations,
i.e., BS in (1), and ∥·∥F is the Frobenius norm. This spectral
fidelity preserves the spectral information and also provides
a constraint for the spatial low-frequency component of the
HRMS image.

B. Proposed SFNLR

The PAN image contains many spatial information, and
strong structural similarities between PAN and HRMS images
can be found [49]. Hence, many methods were proposed for
building the relationship between the PAN and HRMS images
to extract the spatial features. A feasible scheme is to model
the above relationship by pixel-based coefficients [63], which
can be expressed as follows:

X = G ⊙ P + ξ2 (3)

where ξ2 denotes a zero-mean Gaussian noise, P represents
the extended PAN image, i.e., the PAN image after a histogram
matching procedure, and the size of the coefficient G is the
same as that of the HRMS image. The relationship can be
represented by the coefficient G. However, the HRMS image,
i.e., the fused product X in (3), is what we want to find. This
motivates us to search for the surrogate of the HRMS image.
“Invariance among scales” is widely used in several remote
sensing tasks. Exploiting this classical hypothesis, (3) can be
converted into the following lower spatial resolution form:

X(3)B = G(3) ⊙
(
P(3)B

)
+ ξ3 (4)

where P(3) and G(3) are the mode-3 unfolding of the extended
PAN image P and the coefficient G, respectively, and ξ3 is
a zero-mean Gaussian noise. In other words, (4) is built by
applying the same spatial blur operation to both the sides
of (3). According to (1), we can use an upsampling version of
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Fig. 3. Flowchart of the proposed model including two fidelity terms, i.e., the spectral fidelity term and the proposed SFNLR term. The SFNLR term is
based on the nonlocal regression, which involves the clustering of similar patches and the coefficient estimation on similar patches. More details can be found
in Section II.

the LRMS image to surrogate X(3)B in (4). Thus, the adaptive
coefficient G can be estimated as follows:

G = Ỹ ⊘ PL (5)

where Ỹ is the upsampling LRMS image by a polynomial
interpolator with 23 coefficients [64], and PL is the low-pass
version of the extended PAN image P by a Gaussian filter
matched with the MTF of the multispectral (MS) sensor [1].
Obviously, PL is the tensor form of P(3)B when the MTF is
the blur operation in (4). Both Ỹ and PL are the lower spatial
resolution versions of the HRMS image and the extended
PAN image, respectively. However, the direct pixel-based
computation by (5) is pixel-dependent, which only uses the
information of a single pixel, thus ignoring other properties
related to the coefficient G.

Based on the scheme (3), we found that the coefficient,
i.e., G, inherits the spatial properties, e.g., the local smoothness
and nonlocal self-similarity, of the HRMS image. To verify
it, we chose a reduced resolution dataset, which includes the
PAN and HRMS images, to simulate the coefficient. As shown
in Fig. 2, similar spatial structures with the HRMS image
exist in the coefficient. The local smoothness and nonlocal
self-similarity are two crucial properties of images for retain-
ing spatial information [65]. The local smoothness, i.e., the
local structure of images, is relatively stable, thus motivating
us to simultaneously estimate the coefficients at a small patch
(strongly reducing errors in the estimation procedure). Besides,
the nonlocal self-similarity property means that these patches
in the coefficient tend to redundantly repeat themselves many
times. Hence, the local smoothness and nonlocal self-similarity
suggest that the coefficient can be computed using similar
nonlocal patches.

Specifically, the extended PAN image is separated first
into overlapping patches. We cluster similar patches into n
groups. Since the extended PAN image contains the spatial

information of the HRMS image, we can learn the nonlocal
self-similarity from the extended PAN image. Thus, according
to the above clustering results on the extended PAN image,
the coefficient G is divided into the same groups, denoted
{R jG}

n
j=1, where R jG ∈ Rp×p×n j (p and n j are the patch

size and patch number, respectively). Similarly, Ỹ and PL

can be divided in the same way, denoted as R j Ỹ and R jPL ,
respectively. In addition, as shown in Fig. 2(d), we found that
the coefficient values in each group are approximately close.
Therefore, we assume the coefficient values in each location
of the group satisfy the following overdetermined equations:

R j Ỹ = R jG ⊙R jPL , j = 1, 2, . . . , n (6)

where the values of {R jG} are constant. Thus, we can calculate
R jG by the regression framework, i.e., exploiting the ordinary
least-squares method. The regression approach, which is com-
bined with the patch-based nonlocal strategy, can alleviate the
inaccuracy of the estimation to preserve spatial information.
The calculation formula of R jG is as follows:

R jG = Reg(R j Ỹ,R jPL) (7)

where Reg(A,B) denotes the robust regression of all the cor-
responding values in A and B [66], [67]. Then, the coefficient
G can be reconstructed by R jG, j = 1, 2, . . . , n, based on the
clustering information.

C. Final Model

Combining the above-mentioned terms, the final model can
be expressed as

min
X

∥τ(X ) − Y∥
2
F + λ1∥X − G ⊙ P∥

2
F (8)

where λ1 is the positive balance parameter. The flowchart of
the proposed model can be found in Fig. 3. It is worth to be
remarked that the influence of the fidelity terms is enough.
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In addition, the calculation of regularization terms, e.g., the
total variation (TV) regularization, is usually time-consuming
and introduces further parameters to tune. Thus, we only apply
fidelity terms to constrain the spectral and spatial information
of the HRMS image for conciseness of the model (considering
only one parameter in the final model). More discussions
about the regularization term can be found in Section IV-D2.
Although the final model is convex, the direct calculation will
lead to a high computational burden. Therefore, we designed
an algorithm based on the ADMM [60] framework to effec-
tively solve the final model. Section III will be about the
proposed ADMM-based algorithm.

III. PROPOSED ALGORITHM

In this section, we design an effective algorithm based on
the ADMM [60] framework to solve the final model (8). The
ADMM [60] is an algorithm that solves convex optimization
problems by breaking them into smaller pieces, each of
which are then easier to handle. ADMM can be viewed as
an attempt to blend the benefits of dual decomposition and
augmented Lagrangian methods for constrained optimization.
We introduce the auxiliary variables M by M = X(3)B. Thus,
the final model is converted into the following format:

min
M,X

∥∥MS − Y(3)

∥∥2
F + λ1∥X − G ⊙ P∥

2
F

s.t. M = X(3)B. (9)

From the above format, the augmented Langrangian function
is as follows:

L =
∥∥MS − Y(3)

∥∥2
F +

η1

2

∥∥∥∥X(3)B − M +
J(3)

η1

∥∥∥∥2

F

+λ1∥X − G ⊙ P∥
2
F + const (10)

where J(3) is the unfolding form of the Lagrange multipliers
J , η1 represents a penalty parameter, and const denotes a con-
stant, which is independent of the variables. Hence, the whole
model is transformed into the following three subproblems.

A. M Subproblem

According to (10), the M subproblem at the k+1th iteration
step is expressed as the following minimization problem:

min
M

∥∥MS − Y(3)

∥∥2
F +

η1

2

∥∥∥∥∥Xk
(3)B − M +

Jk
(3)

η1

∥∥∥∥∥
2

F

(11)

where Xk
(3) denotes X(3) at the kth iteration step. MSST can be

represented in the following elementwise multiplication form:

MSST
= M ⊙ DSST (12)

where ST represents the transpose of the matrix, S, and DSST is
a sparse matrix only containing zeros and ones. The graphical
representation of (12) is shown in Fig. 4. More details about
(12) are presented in [58]. Thus, we can obtain M by

Mk+1
=

2Y(3)ST
+ η1Xk

(3)B + Jk
(3)

2DSST + η11
(13)

where 1 is an all-ones matrix.

Fig. 4. Graphical representation of (12). The white cube indicates a zero
value. The first row shows the processing from M to MSST. The decimation
and zero-padded interpolation operations on M are equal to the elementwise
multiplication between M and DSST . The second row, i.e., the orange box,
is the tensor format of the first row when M ∈ R4×64. It is worth noting that
the tensor version of DSST is produced from sparse matrix (i.e., the purple
area), whose entries are 1 only in one position.

B. X(3) Subproblem

There are matrix and tensor forms of X in (10). For
simplicity, the subproblem in the tensor unfolding form is

min
X(3)

λ1
∥∥X(3) − G(3) ⊙ P(3)

∥∥2
F

+
η1

2

∥∥∥∥∥X(3)B − Mk+1
+

Jk
(3)

η1

∥∥∥∥∥
2

F

. (14)

The fast Fourier transform (FFT) algorithm is an effective
method to solve the above subproblem. Thus, we have

Xk+1
(3) = F−1

(
F
(
Hk+1

)
F
(
2λ1 + η1BBT

)) (15)

with

Hk+1
= 2λ1

(
G(3) ⊙ P(3)

)
+ η1Mk+1BT

− Jk
(3)B

T (16)

where F(·) and F−1(·) represent the FFT and its inverse
transformation, respectively.

C. Updating Multipliers

Finally, the multiplier J(3) is updated as follows:

Jk+1
(3) = Jk

(3) + η1
(
Xk+1

(3) B − Mk+1). (17)

The relative change (RelCha) and the number of iterations are
used as termination conditions of the algorithm. RelCha is
defined as

RelCha =
∥∥Xk+1

(3) − Xk
(3)

∥∥
F
/
∥∥Xk

(3)

∥∥
F
. (18)

The whole solving algorithm is summarized in Algorithm 1,
where kmit denotes the maximum iteration, r is the scale ratio
between the LRMS and PAN images, ε refers to a tolerance
value, and 9 indicates the bicubic interpolation.
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Fig. 5. Fusion results with close-ups for different approaches on a four-band image (source: GaoFen-2 satellite) at reduced resolution (size of the PAN image:
256 × 256). (a)–(l) Visual results in true colors of GSA [14], C-BDSD [68], BDSD-PC [66], GLP-HPM [3], GLP-Reg-FS [69], C-GLP [67], PNN [70],
TPNN [71], HQBP [72], CDIF [53], BAGDC [61], and the proposed method. (m)–(x) Corresponding residual images for the displayed red, green, and blue
bands. We added 0.35 to aid visual inspection.

Algorithm 1 ADMM-Based Solver for the Proposed Pan-
sharpening Model (8)
Input: The LRMS image Y , the extended PAN image P , the

adaptive coefficient G, λ1, η1, r , kmit , ε.
Initialization: X0

(3) = 9(Y, r), M0
= J0

(3) = 0, k = 0.
1: while k < kmit and RelCha > ε do
2: Update Mk+1 via (13).
3: Update Xk+1

(3) via (15).
4: Update Lagrange multiplier Jk+1

(3) via (17).
5: k = k + 1.
6: end while

Output: The fused HRMS image X(3).

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed method with some
state-of-the-art approaches to verify the superiority of the
proposed model. The experiments consist of qualitative and
quantitative assessments on datasets from different sensors,
i.e., GaoFen-2, QB, and the WorldView series. For fairness, all
the methods in the benchmark are run in MATLAB (R2020a)
on a computer of 32-Gb RAM, Intel1 Core2 i7-8700K CPU

1Registered trademark.
2Trademarked.

at 3.70 GHz and NVIDIA GeForce GTX 1650. Besides,
we fine-tune the parameters of all the approaches to achieve
better results. Afterward, more analyses about parameters, the
influence of the fidelity and regularization terms, the running
time of the different components of the final model, and the
nonlocal strategy are conducted. It is worth noting that we set
kmit, r , and ε to 100, 4, and 2 × 10−5, respectively, in our
experiments.

To evaluate the performance of all the methods, we apply
a variety of objective metrics for comprehensive assessment.
For reduced resolution data, the peak signal-to-noise ratio
(PSNR), the structural similarity index (SSIM) [73], the
spectral angle mapper (SAM) [74], the spatial correlation coef-
ficient (SCC) [75], the erreur relative globale adimensionnelle
de synthèse (ERGAS) [76], and the Q4 index [77] (or the
Q8 [78] metric for eight-band datasets) are used. For full
resolution data, we chose the hybrid quality with no reference
(HQNR) [15], which consists of a spectral quality index, Dλ,
and a spatial quality index, Ds .

A. Benchmark

To validate the effectiveness of the proposed model,
we compare it with the following representative methods
belonging to different pansharpening classes.

1) CS Methods:
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Fig. 6. Fusion results with close-ups for different approaches on a four-band image (source: QB satellite) at reduced resolution (size of the PAN image:
256 × 256). (a)–(l) Visual results in true colors of GSA [14], C-BDSD [68], BDSD-PC [66], GLP-HPM [3], GLP-Reg-FS [69], C-GLP [67], PNN [70],
TPNN [71], HQBP [72], CDIF [53], BAGDC [61], and the proposed method. (m)–(x) Corresponding residual images for the displayed red, green, and blue
bands. We added 0.35 to aid visual inspection.

a) GSA: Gram–Schmidt adaptive method [14].
b) C-BDSD: Context-adaptive band-dependent

spatial-detail method [68].
c) BDSD-PC: Robust band-dependent spatial-detail

method [66].
2) MRA Methods:

a) GLP-HPM: GLP with MTF-matched filter and
high-pass modulation injection method [3].

b) GLP-Reg-FS: GLP with a full-scale regression
method [69].

c) C-GLP: The context-based GLP [67].
3) DL Methods:

a) PNN: Pansharpening neural network [70].
b) TPNN: Target-adaptive pansharpening neural net-

work [71].
4) VO Methods:

a) HQBP: High-quality Bayesian pansharpening
method [72].

b) CDIF: Context-aware details injection fidelity [53].
c) BAGDC: Model based on band-adaptive gradient

and detail correction [61].

B. Reduced Resolution Validation

We compare the proposed method with other advanced
approaches on reduced resolution data from different sensors,
i.e., GaoFen-2, QB, and WorldView-3.

1) GaoFen-2 Dataset: The GaoFen-2 sensor captures the
PAN and LRMS images at a spatial resolution of 0.8 and
3.2 m, respectively. We compare the proposed method with
the methods in the benchmark on 82 test samples (size of the
PAN image: 256 × 256). As shown in Table I, the quantitative
comparison shows that the proposed method gets the best
results. For visual comparison, we randomly chose an image
from the above pairs, as shown in Fig. 5. We can note
that Fig. 5(l) is visually close to the ground truth (GT).
Fig. 5(k) shows spatial distortion. Instead, in Fig. 5(a)–(c),
spectral distortion is clear. Compared with the other methods,
the proposed approach better preserves spatial and spectral
information. Furthermore, residual images are used to clearly
show the differences with respect to the GT. The proposed
approach produces excellent outcomes, especially on the edges
of the houses in the scene.

2) QB Dataset: The QB satellite captures PAN and LRMS
images at 0.7- and 2.8-m resolution, respectively. We chose
48 test examples from the QB satellite (size of the PAN image:
256 × 256). The quantitative comparison among the different
approaches can be found in Table I. The proposed method
shows the best results compared with the other techniques.
About the visual appearance, the proposed method also obtains
the best performance, as shown in Fig. 6. More specifically,
Fig. 6(i) obtained from HQBP [72] ignores some spatial details

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on March 25,2024 at 02:21:19 UTC from IEEE Xplore.  Restrictions apply. 



5406115 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 7. Fusion results with close-ups for different approaches on an eight-band image from the Tripoli dataset (source: WorldView-3 satellite) at
reduced resolution (size of the PAN image: 256 × 256). (a)–(l) Visual results in true colors of GSA [14], C-BDSD [68], BDSD-PC [66], GLP-HPM [3],
GLP-Reg-FS [69], C-GLP [67], PNN [70], TPNN [71], HQBP [72], CDIF [53], BAGDC [61], and the proposed method. (m)–(x) Corresponding residual
images for the displayed red, green, and blue bands. We added 0.35 to aid visual inspection.

causing spatial distortion. Fig. 6(g), obtained from PNN [70],
is spectrally distorted. Instead, the proposed method can keep
both the spatial and spectral information. Finally, the residual
images also validate the high performance of the proposed
approach.

3) WorldView-3 Tripoli Dataset: The WorldView-3 sensor
captures PAN and LRMS images at a spatial resolution of
0.31 and 1.24 m, respectively. In Table I, we show the
quantitative results on the Tripoli dataset, which contains
42 images (size of the PAN image: 256 × 256). As shown
in Table I, the proposed method achieves the best results, thus
demonstrating the superiority and robustness of the proposed
method. We chose an image from the Tripoli dataset for the
visual analysis. As shown in Fig. 7, despite C-BDSD [68]
being a nonlocal method, it shows spectral distortion. As dis-
played in Fig. 7(d)–(f), these results produced by MRA
approaches cause more spatial distortion. The results from
the proposed method have a better visual appearance than the
others. The VO method can well preserve spectral and spatial
information. From Fig. 7(m)–(x), residual images indicate that
the sharpened product from the proposed method is closer to
the GT.

C. Full Resolution Assessment

This section focuses on the full resolution assessment.
The Stockholm dataset (size of the PAN image: 400 × 400,

source: WorldView-2) consists of eight image pairs. Instead,
16 image pairs are from the Alice dataset (size of the PAN
image: 256 × 256, source: WorldView-4). The WorldView-2
and WorldView-4 satellites obtain PAN and LRMS images
at a spatial resolution of (0.46, 1.84 m) and (0.31, 1.24 m),
respectively. As shown in Table II, it is clear that the proposed
method achieves the best accuracy for the overall quality
metric, HQNR. For the other evaluation indexes, the proposed
approach also gets good and balanced results. We visually
compare the results of the different methods in Fig. 8. The
images in Fig. 8(b) and (c) are affected by spatial distortion,
especially for vegetated areas. Fig. 8(g) instead shows spectral
distortion. On the other hand, our model gets good spatio-
spectral results. About the Alice dataset, Fig. 8(p) is affected
by severe spatial and spectral distortions for some pixels.
Fig. 8(n), (u), and (v) is spatially distorted, as shown in the
close-ups (red boxes), i.e., in the bottom-left corner of the
images. Our method instead preserves spatial details, as shown
in Fig. 8(x).

D. Discussion

1) Analysis of Parameters: In this section, we analyze the
sensitivity of the parameters on a QB test case (size of the
PAN image: 256 × 256). There are only two parameters, i.e.,
λ1 and η1, in the proposed algorithm. We show the curve
of a parameter by fixing the other parameter. For a better
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TABLE I
QUANTITATIVE RESULTS FOR 82 IMAGES FROM THE GAOFEN-2 (GF-2) SATELLITE, 48 IMAGES FROM QB SATELLITE, AND 42 IMAGES FROM

THE TRIPOLI DATASET (SOURCE: WORLDVIEW-3, WV-3), RESPECTIVELY. “VALUE1” DENOTES MEAN VALUES, AND “VALUE2” INDICATES
STANDARD DEVIATION VALUES OF THE METRICS IN THE FORM “VALUE1 ± VALUE2.” ALL THE METHODS ARE EXECUTED ON CPU

EXCEPT FOR TPNN [71] RUNNING ON GPU. (BOLD: BEST; UNDERLINE: SECOND BEST)

visualization, we consider the quality metrics SAM, ERGAS,
and Q4, standardized as [metric−Mean(metric)]/Std(metric),
where Mean(·) and Std(·) denote the average and the stan-
dard deviation operators, respectively. As shown in Fig. 9,
to balance the different terms of the proposed model, we set
λ1 = 0.00001 and η1 = 0.0001 in the experimental analysis.

2) Influence of Fidelity and Regularization Terms: The
conventional variational model usually consists of fidelity and
regularization terms. In this section, we analyze the influence
of fidelity and regularization terms. As an instance, we chose
the TV regularization, which is widely used in many pansharp-
ening models, e.g., [50], [53]. The TV regularization at pixel
(i, j, k) is defined as follows:

∥∇1X (i, j, k)∥1 = ∥X (i + 1, j, k) − X (i, j, k)∥1

∥∇2X (i, j, k)∥1 = ∥X (i, j + 1, k) − X (i, j, k)∥1

∥∇3X (i, j, k)∥1 = ∥X (i, j, k + 1) − X (i, j, k)∥1 (19)

where ∥·∥1 is the ℓ1 norm. We analyze the following four
submodels on a test case from the QB dataset (size of the
PAN image: 256 × 256).

Submodel-I: SFNLR + TV

min
X

λ1∥X − G ⊙ P∥
2
F + β1∥∇1X∥1 + β2∥∇2X∥1

+ β3∥∇3X∥1 (20)

where β1, β2, and β3 are weight coefficients.
Submodel-II: Spectral fidelity + TV

min
X

∥τ(X )∥2
F + β1∥∇1X∥1 + β2∥∇2X∥1 + β3∥∇3X∥1.

(21)

Submodel-III: Spectral fidelity + SFNLR

min
X

∥τ(X ) − Y∥
2
F + λ1∥X − G ⊙ P∥

2
F . (22)

Submodel-IV: Spectral fidelity + SFNLR + TV

min
X

∥τ(X ) − Y∥
2
F + λ1∥X − G ⊙ P∥

2
F + β1∥∇1X∥1

+ β2∥∇2X∥1 + β3∥∇3X∥1. (23)

As shown in Table III, the proposed SFNLR shows high
performance. The first three submodels perform well, and
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Fig. 8. Fusion results with close-ups for different approaches on the Stockholm dataset (size of the PAN image: 400 × 400, source: WorldView-2 satellite)
at full resolution. (a)–(l) Visual results in true colors of GSA [14], C-BDSD [68], BDSD-PC [66], GLP-HPM [3], GLP-Reg-FS [69], C-GLP [67], PNN [70],
TPNN [71], HQBP [72], CDIF [53], BAGDC [61], and the proposed method. (m)–(x) Fusion results with close-ups for the above-mentioned approaches on
the Alice dataset (size of the PAN image: 256 × 256, source: WorldView-4 satellite).

TABLE II
QUANTITATIVE RESULTS FOR ALL THE COMPARED METHODS IN THE BENCHMARK. (a) EIGHT IMAGES FROM THE FULL RESOLUTION STOCKHOLM

DATASET (SIZE OF THE PAN IMAGE: 400 × 400, SOURCE: WORLDVIEW-2, WV-2); (b) 64 IMAGES FROM THE FULL RESOLUTION ALICE DATASET
(SIZE OF THE PAN IMAGE: 256 × 256, SOURCE: WORLDVIEW-4, WV-4). “VALUE1” DENOTES MEAN VALUES, AND “VALUE2” DENOTES

STANDARD DEVIATION VALUES OF THE METRICS IN THE FORM “VALUE1 ± VALUE2.” ALL THE METHODS ARE EXECUTED ON
CPU EXCEPT FOR TPNN [71] RUNNING ON GPU. (BOLD: BEST; UNDERLINE: SECOND BEST)

Submodel-IV achieves the best results at the cost of an
increment in the computational burden of the algorithm and
the tuning of more parameters. It is clear that the results of the
proposed model, i.e., Submodel-III, are as good as the ones
of Submodel-IV, but requiring less computational resources.
Hence, we can apply the model without the regularization term
to reduce the number of parameters to tune and the running
times.

3) Analysis About the Nonlocal Strategy: In this arti-
cle, we adaptively estimate the coefficients with a nonlocal
regression, which can improve the accuracy of the esti-
mation of the coefficients by jointly exploring the local
smoothness and nonlocal self-similarity of spatial structures.
In Table IV, we compare three strategies (pixel-based, local,
and patch-based nonlocal) on a test case from the GaoFen-2
dataset (size of the PAN image: 256 × 256). It is clear to
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Fig. 9. Robustness analysis (using SAM, ERGAS, Q4 metrics) for the
parameters (a) λ1 and (b) η1 on a QB test case.

TABLE III
QUANTITATIVE RESULTS ABOUT THE INFLUENCE OF FIDELITY AND

REGULARIZATION TERMS USING REDUCED RESOLUTION DATA
(SOURCE: QB). (BOLD: BEST; UNDERLINE: SECOND BEST)

TABLE IV
QUANTITATIVE RESULTS ABOUT THREE WAYS TO ESTIMATE THE

ADAPTIVE COEFFICIENTS USING GAOFEN-2 DATA. (BOLD:
BEST; UNDERLINE: SECOND BEST)

Fig. 10. Computational analysis for each component of the proposed model.
(a)–(e) Running times of clustering, coefficient computation, M subproblem,
X(3) subproblem, and updating multiplier, respectively.

see that the patch-based nonlocal strategy shows the best
performance.

4) Running Times for Each Component: The final model
can be divided into five main parts, i.e., clustering, coefficient
computation, M subproblem, X(3) subproblem, and updat-
ing multiplier. Fig. 10 shows the time comparison for the
above-mentioned components on a GaoFen-2 test case (size of
the PAN image: 256 × 256). We find that the clustering takes
up the most time compared with the other components. Except
for clustering, the proposed model can iteratively update each
subproblem with a very reduced computational burden.

5) Discussion on Patch Size and the Number of Similar
Patches: The patch size and the number of similar patches
are defined before the nonlocal estimation [81]. In this section,
we discuss the patch size and the number of similar patches
for data acquired by different sensors (i.e., QB, GaoFen-2,
and WV-3). From Fig. 11, one can see that the PSNR value
tends to be stable when the patch size is bigger than 4 for the
WorldView-3 test case. However, the PSNR value decreases
when the patch size increases for the QB test case, and the
PSNR value increases when the patch size increases for the
GaoFen-2 test case. On other hand, the PSNR value reaches
the peak when the clustering number is 150 for the QB
test case. In addition, it is clear that the ERGAS value is
stable varying the patch size and the number of clusters.
The larger the patch size and the number of clusters, the
longer the computational time. To balance the running time
and performance among data acquired by different sensors,
we set the patch size and the number of clusters to 5 and 150,
respectively, in all our experiments.

6) Comparison With Advanced DL Approaches: In this
section, we compare the proposed method with three advanced
DL approaches, i.e., FusionNet [79], GTP-PNet [35], and
LAGConv [80], on the PanCollection dataset,3 which is an
open collection of pansharpening training–test datasets. All the
DL approaches are trained with WV-3 data and tested on WV-
3 and WV-2 data (size of the PAN image: 256 × 256). The
quantitative results are reported in Table V. We can observe
that DL approaches show their superiority for WV-3 data.
Since these DL approaches are trained on the WV-3 dataset,
their ability to extract features and fuse data from the WV-3
dataset is strong. However, this superiority is due to the huge
amount of training data from the same satellite. When these
approaches are executed on WV-2 data, their performance
is limited as shown in Table V. On the contrary, our VO
method removes the need for training data and shows a better
generalization ability with stable performance on testing data
from different satellites. Thus, compared with the state-of-the-
art DL approaches, our method is more practical and stable.

7) Analysis About Coefficient Estimation: The proposed
coefficient estimation method is based on the “Invariance
among scales,” whose effectiveness has been demonstrated in
several approaches, e.g., [53], [66]. According to the classi-
cal hypothesis, the coefficients are estimated using reduced
resolution information. As shown in Table VI, the estimated
coefficients can make the extended PAN image close to the
HRMS image. In this section, we analyze three ways to use
this reduced resolution information on the test data from
the GaoFen-2 dataset (size of the PAN image: 256 × 256).
A direct approach, named “Redirect,” is given by the upsam-
pling of the coefficients calculated at LRMS scale. In addition,
a VO model can be built as follows:

min
G

∥GS − N∥
2
F + α1∥∇1G∥1 + α2∥∇2G∥1+ α3∥∇3G∥1

(24)

where N ∈ RS×hw represents the coefficient estimated at
LRMS scale, and S ∈ RH W×hw models the decimation oper-

3https://liangjiandeng.github.io/PanCollection.html
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Fig. 11. Changes of the PSNR, the ERGAS, and the running time metrics varying (a)–(c) patch size and (d)–(f) clustering number, where QB, GF-2, and
WV-3 indicate QB, GaoFen-2, and WorldView-3, respectively (size of the PAN image: 256 × 256).

TABLE V
QUANTITATIVE RESULTS FOR 20 TEST IMAGES FROM THE WORLDVIEW-3 (WV-3) SATELLITE AND 20 TEST IMAGES FROM WORLDVIEW-2

(WV-2), RESPECTIVELY. THE SIZE OF THE PAN IMAGE IS 256 × 256. ALL THE DL METHODS ARE TRAINED WITH DATA FROM WV-3
SATELLITE. ALL THE METHODS ARE EXECUTED ON GPU EXCEPT FOR THE PROPOSED METHOD RUNNING

ON CPU. (BOLD: BEST; UNDERLINE: SECOND BEST)

TABLE VI
QUANTITATIVE RESULTS ABOUT THREE DIFFERENT WAYS OF APPLYING

THE “INVARIANCE AMONG SCALES” TO ESTIMATE THE ADAPTIVE
COEFFICIENTS USING GAOFEN-2 DATA. (BOLD:

BEST; UNDERLINE: SECOND BEST)

ator. This VO estimation method, denoted as “Re-VO,” uses
local smoothing prior to obtain the final coefficient. As demon-
strated in Table VI, compared with the other approaches, the
proposed estimation method can estimate the coefficient with
a higher accuracy.

V. CONCLUSION

In this article, we proposed a novel variational model for
the pansharpening problem. More specifically, the SFNLR has

been proposed to establish the relationship between the PAN
and HRMS images. The SFNLR is based on latent properties,
e.g., the local smoothness and the nonlocal self-similarity,
of the coefficients to preserve spatial information. We divided
first the extended PAN image into overlapping patches. After-
ward, we clustered the similar patches into n groups and the
coefficient G is separated into the same groups. Then, we cal-
culated the adaptive coefficients by estimating G in each group
using a nonlocal regression framework. Besides, we designed
an ADMM-based algorithm to effectively solve the proposed
model. The experiments demonstrated the effectiveness of
the proposed method. We achieved state-of-the-art results
on both the reduced and full resolution datasets. Moreover,
discussions on the proposed approach have been conducted
to analyze the parameters, the influence of the fidelity and
regularization terms, the nonlocal strategy, the running time
for each component of the model, the patch size and the
number of similar patches, comparison with advanced DL
approaches, and analysis about coefficient estimation methods.
Finally, the coefficient estimation is a topic that still deserves
future developments. Indeed, more properties, e.g., low-rank
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and sparse features, of the coefficients can be considered in
the formulated problem.
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