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Abstract

Pansharpening refers to the super resolution of a low-resolution multispectral (LR-MS) image in virtue
of an aligned panchromatic (PAN) image. Such an inverse problem mainly requires a proper use of the
spatial information from the auxiliary PAN image. In this paper, we suggest a nonconvex regularization
model for pansharpening via framelet sparse reconstruction, called NC-FSRM, which investigates the co-
efficient similarity among the underlying high-resolution MS (HR-MS) and PAN images on the framelet
domain, then characterizes the strong statistical sparsity of their error using `0 norm. Compared with pre-
vious methods, NC-FSRM can more precisely and concisely establish the relation between the underlying
HR-MS and PAN images. In particular, the piece-wise smoothness prior of the former can simultane-
ously be captured without adding additional regularizers. For solving the suggested nonconvex model,
we further develop an efficient proximal alternating minimization (PAM) based algorithm, which is the-
oretically proven to converge to the coordinatewise minimizers under some mild assumptions. Numeri-
cal experiments conducted on different datasets demonstrate the superiority of the suggested NC-FSRM
compared with other state-of-the-art pansharpening methods. The source code is publicly available at
https://github.com/zhongchengwu/code_ncFSRM.

Keywords Framelet Sparse Reconstruction Method (FSRM); `0 Norm; Super-resolution; Pansharpening.

1 Introduction
In image processing, super resolution (SR) reconstruction is a classic and widely studied topic, e.g., [49, 51,
61], and particularly, pansharpening can be considered as a special case of SR. Due to inherent limitations
on hardware systems, existing imaging devices, such as Pléiades, Gaofen-2 (GF-2), WorldView-4 (WV-
4), and WorldView-3 (WV-3), only measure a lower spatial-resolution multispectral (LR-MS) image, while
capturing the finer spatial information into a gray-scaled panchromatic (PAN) image alternatively. In general,
such a compromise solution imposes limitations on many subsequent applications relied on high-resolution
multispectral (HR-MS) images. To tackle this dilemma, pansharpening has emerged as an algorithmic tool for
increasing the spatial resolution of the LR-MS image (i.e., Y ∈ Rh×w×S) by referring to the corresponding
PAN image (i.e., P ∈ RH×W ), aiming to generate an underlying HR-MS image (i.e., X ∈ RH×W×S).
Especially, H = h× r, W = w × r holds, where the integer r ≥ 2 is the scale factor.

Recently, numerous pansharpening researches divided into different categories have been developed, e.g.,
the component substitution (CS) based methods [3,16,26,27,35,46,53], the multi-resolution analysis (MRA)
based methods [2,36,42,50,55], the deep learning based methods [29,31,39,60,62,65], and the regularization
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based methods [7, 9, 20, 25, 37, 56, 58]. Among them, the regularization category has garnered considerable
attention because of its capability to settle the ill-posed inverse problems, whose local or global minima corre-
spond to the pansharpened results. Moreover, a more solid mathematical foundation, suitable flexibility, and
higher model interpretability are demonstrated. In this paper, the proposed NC-FSRM is one such method.

As a general inverse imaging problem, the primary objective of the regularized pansharpening methods is
to model the image degradation from the underlying HR-MS image to the degraded LR-MS image. Similar
to the traditional SR issue [28,38], there also exists an acknowledged and widely-used degradation model for
pansharpening, which is given by matrix form as follows,

Y(3) = X(3)BS +N , (1.1)

whereX(3) ∈ RS×HW and Y(3) ∈ RS×hw are the mode-3 matricization (see Section 2.1) of the HR-MS and
the LR-MS images, respectively,B ∈ RHW×HW and S ∈ RHW×hw imply the blurring and down-sampling
matrices, respectively, and N ∈ RS×hw indicates an additive Gaussian white noise. Based on degradation
model (1.1), the constrained minimization model of pansharpening can typically be formulated by

min
X

J1(X ,P ) + λJ2(X ), s.t. Y(3) = X(3)BS +N , (1.2)

where P ∈ RH×W is the known PAN image, J1 is an energy function, J2 is a regularizer, and λ > 0 is a reg-
ularization parameter. Fortunately, pansharpening model (1.2) can also be regarded as a dual-objective fusion
problem, thus its ill-posedness degrades significantly. This indicates that function J1 instead of regularizer J2

actually plays a prominent role for model (1.2), and the latter only provides incremental improvements. Con-
sequently, most existing pansharpening methods, e.g., [37, 56], mainly aim to characterize a more accurate
relationship between the underlying HR-MS image and the PAN image, thereby constructing the correspond-
ing energy function J1 via some assumptions or statistical analysis, etc.

More specifically, Ballester et al. [9] propose a pioneering variational method for pansharpening, named
P+XS. This method mainly relies upon the assumption that the PAN image can be represented as a linear
combination of the underlying HR-MS image bands. Mathematically, function J1 of P+XS is given by∫

Ω

(X ×3 v − P )
2
dl, (1.3)

where l = (l1, l2) ∈ Ω is the related image domain, v ≥ 0 is a sum-to-one coefficient vector, and ×k
denotes the tensor k-mode multiplication [33] (see Section 2.1). Afterwards, some methods, e.g., [20], instead
relax the sum-to-one constraint and develop a data-dependent least-squares regression to adaptively estimate
the coefficient vector, aiming to facilitate its flexibility. However, because the linearization assumption is
essentially biased and even unrealistic [25, 52], such methods usually result in local distortion.

To improve the biases, subsequent methods, e.g., [7, 23, 56], further assume that the previous linear rela-
tionship can globally be established in the high-frequency domain. Accordingly, (1.3) is modified to∫

Ω

(
H(X )×3 v −H(P )

)2

dl, (1.4)

where H(·) is the high-pass operator. Under this framework, various instances of H, such as gradient [24]
and Laplacian [56] operators, generally distinguish different methods. Additionally, instead of using `2 norm
in (1.4), Jiang et al. [32] also characterize the relation H(X ) ×3 v −H(P ) via `1/2 norm, aiming to satisfy
the statistical hyper-Laplacian distribution [34]. Nonetheless, H(X ) ×3 v −H(P ) is actually equivalent to
H(X ×3 v − P ), and thus, these so-called methods still cannot evade the linearization assumption, leading
to inflexibility and limited improvements on different local image patches.

To tackle the issues, many more flexible methods have recently been developed, e.g., [24, 25, 40, 58, 59].
Most of them can be uniformly summarized into band-independent modeling, i.e.,∫

Ω

S∑
i=1

ωi

(
Hi(X[i])− κiHi(P ) +C[i]

)2

dl, (1.5)
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Fig. 1.1: Illustration of sparse coefficient characteristics on the reduced-resolution (a) Pléiades-2 dataset
(sensor: Pléiades), (b) Guangzhou dataset (sensor: GF-2), (c) Alice dataset (sensor: WV-4), and (d) Tripoli
dataset (sensor: WV-3). Variables Eα and Eβ represent the framelet coefficients of the simulated HR-MS
image and the histogram-matched PAN image, respectively.

where {ωi}Si=1 and {κi}Si=1 are the regularization parameters and scale coefficients, respectively, {Hi}Si=1

are the projection operations, {X[i]}Si=1 are the frontal slices of X , and {C[i]}Si=1 are the constant intercepts.
Generally, {ωi}Si=1 are assumed to be ones, and {C[i]}Si=1 are supposed to be zeros since Hi(X[i]) and
Hi(P ) have similar data characteristics. Moreover, {Hi}Si=1 can be a common transformation, such as
gradient [25,59] one and wavelet [24,40] one. Comparatively to (1.4), determining {κi}Si=1 is another crucial
issue for (1.5) that yields a variety of contributing strategies. For instance, Aly et al. [7] utilize the spectral
responsivity to compute {κi}Si=1 in advance; Fu et al. [25] adopt a patch-based strategy to update {κi}Si=1

iteratively; Wu et al. [58] design a pixel-based criterion to obtain {κi}Si=1 dynamically; and Xiao et al. [59]
consider adaptively estimating {κi}Si=1 from nonlocal self-similarity perspective.

However, there are still three limitations to most paradigm (1.5) based methods. Firstly, more complex de-
signs for computing {κi}Si=1 only achieve minor performance gains, but instead causing more regularization
parameters and even optimization variables, e.g., [7], leading to higher model complexity and ill-posedness.
Secondly, the previous methods only independently establish J1 and J2 of (1.2), while ignoring that appropri-
ate {Hi}Si=1 and {C[i]}Si=1 can also realize J2 when modeling J1, e.g., [24], resulting in an increased model
redundancy. Thirdly, the high-pass operator is an irreversible transformation, which inevitably causes the un-
derutilization of the PAN image, thus leading to sub-optimal solutions. Therefore, we propose the nonconvex
framelet sparse reconstruction method, abbreviated NC-FSRM, aiming to overcome these drawbacks.

As is well known, matter distribution in nature is locally continuous, thus the underlying HR-MS images
usually show the piece-wise smoothness property. To characterize it, total variation (TV) regularization has
recently been introduced into the pansharpening field see, e.g., [30, 59]. Nevertheless, since the theoreti-
cal sparsity-based assumption significantly deviates from reality [43], TV regularizer unavoidably generates

3



staircase artifacts [21, 41], obscuring the intricacies and geometric features of the recovered images. In con-
trast, the framelet [13, 19, 45] is an orthogonal basis generation that relaxes the orthogonality and linear
independence criteria. Because of the redundancy, it can well-preserve geometric characteristics and de-
tails [12, 14, 15, 17]. Given a framelet transformH, the piece-wise smoothness can be reflected by the sparse
coefficient Eα, see Fig. 1.1. Afterwards, the piece-wise prior can be formulated by a framelet-based sparse
reconstruction, i.e.,

min
X ,Eα

‖Eα‖0, s.t.H(X ) = Eα, (1.6)

where Eα is the framelet coefficients of the underlying HR-MS image, ‖ · ‖0 is the so-called `0 pseudonorm,
which counts the number of nonzero elements of its argument. Certainly, model (1.6) is only formed as the
regularizer J2, and we will deduce the corresponding J1 from J2 detailedly. Assume that H(P) = Eβ , in
which P ∈ RH×W×S implies the histogram-matched version of P with respect to the LR-MS image, then
Fig. 1.1 reveals that Eα and Eβ share a similar distribution over the same framelet transform. Also, Eα − Eβ
exhibits a more sparse structure. Let E = Eα − Eβ , we then impose the sparsity condition of E into (1.6) as
follows,

min
X ,Eα,E

‖Eα‖0 + λ‖E‖0, s.t. Eα − Eβ = E ,H(X ) = Eα, (1.7)

where λ is a regularization parameter. Since Eα = E + Eβ with Eβ being a sparse constant, a sparser E forces
a sparser Eα. That is, ‖Eα‖0 can be incorporated into ‖E‖0. Thus, (1.7) can be simplified as

min
X ,E
‖E‖0, s.t.H(X )− Eβ = E . (1.8)

Finally, based on the regularized representation of model (1.8), we can formulate the J1 function of the
proposed NC-FSRM as ∫

Ω

(
H(X )−H(P)− E

)2

dl+ λ‖E‖0. (1.9)

Compared with the previous methods, (1.9) mainly includes three advantages. Specifically, (i) the scale
coefficients {κi}Si=1 that need to be estimated are omitted and removed, reducing the number of parame-
ters; (ii) By constraining the sparsity of variable E , both the utilization of the PAN image, i.e., J1, and the
piece-wise smoothness prior of the underlying HR-MS image, i.e., J2, can simultaneously be implemented
without imposing additional regularizers, leading to a simpler form in modeling; (iii) The framelet transform
is reversible, which more fully utilizes the information of the PAN image, not just its high frequencies.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce the preliminaries. In
Section 3, we formulate the final regularization model, i.e., NC-FSRM. In Section 4, we develop a proximal
alternating minimization (PAM) based algorithm and prove its convergence theoretically. In Section 5, we
perform the numerical experiments to evaluate the performance. Finally, conclusions are drawn in Section 6.

2 Preliminaries

2.1 Notation
In general, scalars, vectors, matrices, and tensors are denoted by lowercase letters, e.g., x, lowercase bold
letters, e.g., x, uppercase bold letters, e.g.,X , and calligraphic letters, e.g., X , respectively. For anN th-order
tensor X ∈ RI1×I2×···×IN , its (i1, i2, · · · , iN )-th element is expressed by X (i1, i2, · · · , iN ) or, more com-
pactly, xi1i2···iN . The inner product between tensors X ∈ RI1×I2×···×IN and Y ∈ RI1×I2×···×IN is defined
as 〈X ,Y〉 :=

∑
i1,i2,··· ,iN xi1i2···iN yi1i2···iN . The Frobenius norm of X is defined as ‖X‖F :=

√
〈X ,X〉.

The `0 pseudonorm of X is defined as ‖X‖0 :=
∑
i1,i2,··· ,iN 1xi1i2···iN 6=0, where 1xi1i2···iN 6=0 denotes a con-

dition function, i.e., 1xi1i2···iN 6=0 = 1 if xi1i2···iN 6= 0, and 1xi1i2···iN 6=0 = 0 otherwise. The mode-k matri-
cization of X is defined as X(k) ∈ RIk×

∏
j 6=k Ij , whose elements satisfy X(k)(ik, i1 · · · ik−1ik+1 · · · iN ) =

X (i1, i2, · · · , iN ) with index i1 · · · ik−1ik+1 · · · iN = 1 +
∑N
n=1,n6=k(in − 1)

∏n−1
j=1,j 6=k Ij . Given a row
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vector v ∈ R1×Ik , then the k-mode multiplication between X and the vector v yields a tensor X ×k v ∈
RI1×···×Ik−1×1×Ik+1×···×IN , which is computed by vX(k). Especially, when N = 3, we denote the i3-th
frontal slice of tensor X ∈ RI1×I2×I3 byX[i3] ∈ RI1×I2 , which requiresX[i3](i1, i2) = X (i1, i2, i3).

2.2 Framelet
A countable function subset X ⊂ L2(R) is called a tight frame of L2(R), if

f =
∑
h∈X

〈f, h〉h, ∀f ∈ L2(R),

which is equivalent to
‖f‖2 =

∑
h∈X

|〈f, h〉|2, ∀f ∈ L2(R),

where 〈·, ·〉 denotes the inner product for function variables of L2(R), and ‖ · ‖ = 〈·, ·〉1/2. Given a finite set
Ψ := {ψ1, ψ2, · · · , ψr} ⊂ L2(R), the collection of its dilations and shifts is defined as an affine (or wavelet)
system X(Ψ), i.e.,

X(Ψ) := {ψl,t,k : 1 ≤ l ≤ r; l, t, k ∈ Z} with ψl,t,k := 2t/2ψl(2
t · −k).

When X(Ψ) forms a tight frame, it is called a tight wavelet frame, and {ψl}rl=1 are termed (tight) framelets.
Starting from a compactly supported refinable function φ ∈ L2(R) with a refinement mask (low-pass fil-

ter) ζφ ∈ L2(Z) satisfying φ =
∑
j ζφ(j)φ(2·−j), a compactly supported framelet system can be constructed

by designing an appropriate set of framelets Ψ := {ψ1, ψ2, · · · , ψr} ⊂ L2(R) or, more essentially, framelet
masks (high-pass filters) {ζψ1

, ζψ2
, · · · , ζψr} ⊂ L2(Z), because ψl :=

∑
j ζψl(j)φ(2 · −j), l = 1, 2, · · · , r.

According to the unitary extension principle (UEP) [48], the wavelet system X(Ψ) can form a tight frame in
L2(R), if the masks ζφ and {ζψ1

, ζψ2
, · · · , ζψr} for almost all ω ∈ R satisfy

ξφ(ω)ξφ(ω + γπ) +

r∑
l=1

ξψl(ω)ξψl(ω + γπ) = δ(γ), γ = 0, 1,

where ξφ(ω) =
∑
j ζφ(j)e−ijω, ξψl(ω) =

∑
j ζψl(j)e

−ijω, l = 1, 2, · · · , r, and δ(γ) is a delta function. In
our numerical experiments, we adopt the piece-wise linear B-spline framelet [48], in which the piece-wise
linear B-spline function is used as φ. Under this case, the refinement mask ζφ(ω) = cos2(ω/2) and two
deduced framelet masks ζψ1(ω) = −(

√
2isin(ω))/2, ζψ2 = sin2(ω/2) correspond to the filters as follows,

ζφ =
[1

4
,

1

2
,

1

4

]
, ζψ1 =

[√2

4
, 0,−

√
2

4

]
, ζψ2 =

[
− 1

4
,

1

2
,−1

4

]
.

For a given discrete image f ∈ RN , a framelet system H in RN can be regarded as the transform (de-
composition) operator to obtain the coefficients of the finite-dimensional vector. The numerical computation
can directly be realized by an analysis matrixH ∈ RK×N (K ≥ N), whose row vectors form the system H .
Remarkably, such a matrix has orthogonal columns, i.e.,H>H = I , whileHH> 6= I in general.

In what follows, we constructH from the filters related to the multi-level tight frame system, which cor-
responds to the commonly-used tight framelet decomposition without down-sampling. Let ζ = {ζ(j)}Jj=−J
be a filter, the convolution operator T (ζ) with filter ζ under the Neumann (symmetric) boundary condition is
a Toeplitz-plus-Hankel matrix [13, 48], i.e.,

T (ζ) =



ζ(0) · · · ζ(−J) · · · 0
...

. . . . . . . . .
...

ζ(J)
. . . . . . . . . ζ(−J)

...
. . . . . . . . .

...
0 · · · ζ(J) · · · ζ(0)


+



ζ(1) ζ(2) · · · ζ(J) 0

ζ(2)
. . . . . . . . . ζ(−J)

...
. . . . . . . . .

...

ζ(J)
. . . . . . . . . ζ(−2)

0 ζ(−J) · · · ζ(−2) ζ(−1)


.
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Particularly, the filters ζ(l) at level l corresponding to the decomposition without down-sampling is

ζ(l) = {ζ(−J), 0, · · · , 0︸ ︷︷ ︸
2l−1−1

, ζ(−J + 1), 0, · · · , · · · , 0, ζ(0), 0, · · · , · · · , 0, ζ(J − 1), 0, · · · , 0︸ ︷︷ ︸
2l−1−1

, ζ(J)}.

Recalling the low-pass filter ζφ and high-pass filters {ζψ1 , ζψ2 , · · · , ζψr}, also denoting Z(l)
φ ≡ T (ζ

(l)
φ ) and

Z
(l)
ψi
≡ T (ζ

(l)
ψi

) for i = 1, 2, · · · , r, then the multi-level decomposition matrixH with level L is given by

H =



∏L−1
l=0 Z

(L−l)
φ

Z
(L)
ψ1

∏L−1
l=1 Z

(L−l)
φ

...
Z

(L)
ψr

∏L−1
l=1 Z

(L−l)
φ

...
Z

(1)
ψ1

...
Z

(1)
ψr


.

Afterwards, the framelet decomposition for a third-order imageX ∈ RH×W×S can concisely be achieved
byHX>(3). Conversely, the framelet reconstructionH> allowsX>(3) = H>HX>(3) because ofH>H = I .
In our implementations, the decomposition level is set as 1, i.e., L = 1, which can experimentally achieve
satisfactory numerical performance while preserving a reduced computational burden.

3 The proposed model
According to Section 2.2, we firstly modify model (1.9) as follows,∫

Ω

(
HX>(3) −HP

>
(3) −E

)2

dl+ λ‖E‖0. (3.10)

Following (1.2) with (3.10), the final constrained model, i.e., NC-FSRM, can formally be formulated by

min
X(3),E

∫
Ω

(
HX>(3) −HP

>
(3) −E

)2

dl+ λ‖E‖0, s.t. Y(3) = X(3)BS +N . (3.11)

To eliminate the Gaussian noiseN , (3.11) can also be transformed into an unconstrained model, i.e.,

min
X(3),E

1

2

∫
Ω

(
X(3)BS − Y(3)

)2
dl+ λ1

∫
Ω

(
HX>(3) −HP

>
(3) −E

)2

dl+ λ2 ‖E‖0 , (3.12)

where λi > 0, i = 1, 2, are two regularization parameters. Regarding the nonconvex `0 norm, there are many
available optimization algorithms, e.g., the mean doubly augmented Lagrangian (MDAL) algorithm [22], the
proximal iterative hard-thresholding (PIHT) algorithm [66], and the Moreau envelope augmented Lagrangian
(MEAL) algorithm [64]. Interestingly, we develop a proximal alternating minimization (PAM) [11] based
solving algorithm, then prove its convergence theoretically.

4 The proposed algorithm
This section consists in applying the PAM framework [11] to the proposed nonsmooth and nonconvex model.
Before that, model (3.12) is firstly rewritten as follows,

min
X(3),E

Φ(X(3),E) := h(X(3),E) + f(X(3)) + g(E), (4.13)
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where h(X(3),E) = λ1‖HX>(3) − HP
>
(3) − E‖

2
F , f(X(3)) = 1/2‖X(3)BS − Y(3)‖2F , and g(E) =

λ2‖E‖0. Definitely, h, f ∈ C1 are two continuous functions with locally Lipschitz continuous gradient in the
feasible domain, and g can be verified to be proper lower semi-continuous, thus Φ : RS×HW ×R3H3W×S →
R∪ {+∞} in (4.13) is a proper lower semi-continuous function. Under the PAM framework, variablesX(3)

and E can be alternately iterated as follows,
Xk+1

(3) ∈ arg min
X(3)

{
h(X(3),E

k) + f(X(3)) +
ρ

2
‖X(3) −Xk

(3)‖
2
F

}
,

Ek+1 ∈ arg min
E

{
h(Xk+1

(3) ,E) + g(E) +
σ

2
‖E −Ek‖2F

}
,

(4.14)

where ρ, σ > 0 are two proximal parameters.

4.1 The solution of X(3)-subproblem
Relying upon (4.13) and (4.14), we obtain concretely the minimization form of theX(3)-subproblem, i.e.,

min
X(3)

1

2
‖X(3)BS − Y(3)‖2F + λ1‖HX>(3) −HP

>
(3) −E

k‖2F +
ρ

2
‖X(3) −Xk

(3)‖
2
F . (4.15)

Although the objection function in (4.15) is theoretically differentiable, forcing its derivative to be zero will
cause an ensuing difficulty resulting from the coupling of blurring and down-sampling matrices. Here, we
further introduce an ADMM-based algorithm. By making variable substitution, we have the equivalent con-
strained problem as follows,

min
X(3),U ,V

1

2
‖US − Y(3)‖2F + λ1‖HV −HP>(3) −E

k‖2F +
ρ

2
‖X(3) −Xk

(3)‖
2
F

s.t. U = X(3)B, V = X>(3).

(4.16)

The augmented Lagrangian function of the constrained model (4.16) is formulated by

L(X(3),U ,V ,Λ,Θ) =
1

2
‖US − Y(3)‖2F + λ1‖HV −HP>(3) −E

k‖2F +
ρ

2
‖X(3) −Xk

(3)‖
2
F

+ 〈Λ,X(3)B −U〉+
η1

2
‖X(3)B −U‖2F + 〈Θ,X>(3) − V 〉+

η2

2
‖X>(3) − V ‖

2
F ,

(4.17)

where Λ, Θ are two Lagrange multipliers, and ηi > 0, i = 1, 2, are the penalty parameters. Afterwards,
(4.17) can be solved alternatively and iteratively via the following procedure,

Xk+1,p+1
(3) ∈ arg min

X(3)

L(X(3),U
p,V p,Λp,Θp)

= arg min
X(3)

{ρ
2
‖X(3) −Xk

(3)‖
2
F +

η1

2
‖X(3)B −Up +

Λp

η1
‖2F +

η2

2
‖X>(3) − V

p +
Θp

η2
‖2F
}
,

Up+1 ∈ arg min
U

L(Xk+1,p+1
(3) ,U ,V p,Λp,Θp)

= arg min
U

{1

2
‖US − Y(3)‖2F +

η1

2
‖Xk+1,p+1

(3) B −U +
Λp

η1
‖2F
}
,

V p+1 ∈ arg min
V

L(Xk+1,p+1
(3) ,Up+1,V ,Λp,Θp)

= arg min
V

{
λ1‖HV −HP>(3) −E

k‖2F +
η2

2
‖(Xk+1,p+1

(3) )> − V +
Θp

η2
‖2F
}
,

Λp+1 = Λp + η1(Xk+1,p+1
(3) B −Up+1), Θp+1 = Θp + η2

(
(Xk+1,p+1

(3) )> − V p+1
)
.

(4.18)

7



Algorithm 1 The inner ADMM-based algorithm.
Input: LR-MS image Y , PAN image P , Ek,Xk

(3), λ1, ρ, η1, η2, and pmax.
Initialization: U0 ← Uk, V 0 ← V k, Λ0 ← Λk, and Θ0 ← Θk.

1: for p = 0 to pmax do
2: UpdateXk+1,p+1

(3) by (4.19);
3: Update Up+1 by (4.21);
4: Update V p+1 by (4.23);
5: Λp+1 = Λp + η1(Xk+1,p+1

(3) B −Up+1);

6: Θp+1 = Θp + η2

(
(Xk+1,p+1

(3) )> − V p+1
)

.
7: end for

Output: The (k + 1)-th values Xk+1
(3) ← Xk+1,pmax+1

(3) , Uk+1 ← Uk+1,pmax+1, V k+1 ← V k+1,pmax+1,
Λk+1 ← Λk+1,pmax+1, and Θk+1 ← Θk+1,pmax+1.

Updating X(3): This deconvolution problem has a closed-form solution, which can be given by the fast
Fourier transform (FFT) based on the condition of a periodic boundary, as follows,

Xk+1,p+1
(3) = F−1

(
ρF(Xk

(3)) + (η1F(Up)−F(Λp)) ◦ F(B)‡ + η2F((V p)>)−F((Θp)>)

η1F(B) ◦ F(B)‡ + (ρ+ η2)1

)
,

(4.19)
where F and F−1 indicate the FFT and its inverse operators, respectively, ‡ denotes the complex conjugate,
◦ is the Hadamard product, and component-wise division is performed. According to [58], a unique blurring
matrix can be generated for the i-th frontal slice X[i], i = 1, 2, · · · , S, by the Gaussian-shaped kernel hi ∈
R41×41 with a corresponding standard deviation, whose estimated value is directly advisable, see [53, 54].

Updating U : Forcing the derivative of L(Xk+1,p+1
(3) ,U ,V p,Λp,Θp) with respect to U to be zero, we

easily have
USS> + η1U = Y(3)S

> + η1X
k+1,p+1
(3) B + Λp, (4.20)

where SS> ∈ RHW×HW is a diagonal matrix whose entries are ones at sampled positions. Consequently,

Up+1 =
Y(3)S

> + η1X
k+1,p+1
(3) B + Λp

SS> + η1I
. (4.21)

Updating V : Similarly, we can obtain the sub-gradient equation as follows,

2λ1H
>HV + η2V = 2λ1H

>HP>(3) + 2λ1H
>Ek + η2(Xk+1,p+1

(3) )> + Θp, (4.22)

whose solution is given by

V p+1 =
2λ1(P>(3) +H>Ek) + η2(Xk+1,p+1

(3) )> + Θp

2λ1 + η2
. (4.23)

The numerical procedure of the whole ADMM-based algorithm is detailed in Algorithm 1. Especially,
a warm-start strategy is adopted, i.e., all the intermediate variables in the ADMM algorithm are reused as
initial values in the next iteration, aiming to accelerate the algorithm convergence.

4.2 The solution of E-subproblem
Following (4.13) and (4.14), the minimization problem of E-subproblem can be presented as follows,

min
E

λ1‖H(Xk+1
(3) )> −HP>(3) −E‖

2
F + λ2‖E‖0 +

σ

2
‖E −Ek‖2F . (4.24)
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Algorithm 2 The PAM-based solver for the proposed NC-FSRM.
Input: LR-MS image Y , PAN image P , λ1, λ2, η1, η2, ρ, σ, r, ε, kmax, pmax.
Initialization: k = 0,X0

(3) ← 0, E0 ← 0,U0 ← 0,V 0 ← 0,Λ0 ← 0,Θ0 ← 0.
1: while not converged and k < kmax do
2: UpdateXk+1

(3) via Algorithm 1;
3: Update Ek+1 via (4.26);
4: Check the convergence criterion: ‖Xk+1

(3) −X
k
(3)‖F /‖X

k+1
(3) ‖F < ε;

5: k ← k + 1.
6: end while

Output: The pansharpened HR-MS imageX(3).

The above problem is a sparse coding problem, which can be concisely rewritten as

min
E

∥∥∥∥∥2λ1H(Xk+1
(3) − P(3))

> + σEk

2λ1 + σ
−E

∥∥∥∥∥
2

F

+ ε2‖E‖0 with ε2 =
2λ2

2λ1 + σ
. (4.25)

The closed-form solution of (4.25) can be obtained by

Ek+1 = Hard

(
2λ1H(Xk+1

(3) − P(3))
> + σEk

2λ1 + σ
, ε

)
, (4.26)

where Hard(·, ·) implies a hard thresholding operator defined by (Hard(E, ϑ))(i1, i2) := ei1i21|ei1i2 |>ϑ.
The proposed PAM-based algorithm for solving model (3.12) is summarized in Algorithm 2.

4.3 The Convergence Analysis
Before performing the proof of theoretical convergence, we firstly provide some basic definitions of the semi-
algebraic function and Kurdyka–Łojasiewicz (KŁ) property. For a proper and lower semicontinuous function
Ψ : Rn → R ∪ {+∞}, the domain of Ψ is defined as

dom(Ψ) :=
{
u ∈ Rn : Ψ(u) < +∞

}
.

For any subset S ⊂ Rn and any point u ∈ Rn, the distance from u to S is given by

dist(u, S) := inf {‖v − u‖ : v ∈ S} .

Definition 4.1 (Semi-algebraic sets and functions [10,44]). (a) A subset S of Rn is a real semi-algebraic set
if there exists a finite number of real polynomial functions fij , hij : Rn → R such that

S =

p⋃
j=1

q⋂
i=1

{
u ∈ Rn : fij(u) = 0 and hij(u) < 0

}
.

(b) A function g : Rn → R ∪ {+∞} is called semi-algebraic if its graph{
(u, z) ∈ Rn+1 : g(u) = z

}
is a semi-algebraic subset of Rn+1.

Definition 4.2 (KŁ property [8]). Let function Ψ : Rn → R ∪ {+∞} be proper and lower semicontinuous.
(a) This function is provided with the KŁ property at u∗ ∈ dom(∂Ψ) if there exists η ∈ (0,+∞], a neighbor-
hood U of u∗ and a continuous concave function ϕ : [0, η)→ R+ such that

9



i) ϕ(0) = 0;
ii) ϕ is C1 on (0, η);
iii) for all s ∈ (0, η), ϕ′(s) > 0;
iv) for all u ∈ U ∩ {u : Ψ(u∗) < Ψ(u) < Ψ(u∗) + η}, the following KŁ inequality holds

ϕ′
(
Ψ(u)−Ψ(u∗)

)
dist
(
0, ∂Ψ(u)

)
≥ 1.

(b) When Ψ satisfies the KŁ inequality at each point of dom(∂Ψ), it is called KŁ function.

Lemma 1. The objective function Φ in (4.13) is a KŁ function.

Proof. Following [8, 10], since h is a polynomial function of two coupling variations, it is a real analytic
function. Also, f is obviously a real-analytic polynomial function. Moreover, `0 norm, i.e., ‖ · ‖0, is semi-
algebraic. Thus, Φ, as a finite sum of real-valued analytic and semi-algebraic functions, is a KŁ function.

Lemma 2 (Sufficient decrease condition). Let {Zk}k∈N be the sequence generated by the proposed Algo-
rithm 2, where Zk := (Xk

(3),E
k). Then, the sequence {Φ(Zk)}k∈N satisfies the nonincreasing inequality,

Φ(Zk)− Φ(Zk+1) ≥ min
(ρ

2
,
σ

2

)
‖Zk+1 −Zk‖2F ,

where ρ, σ > 0 are two proximal parameters.

Proof. The sequence {Xk
(3)}k∈N is generated by Algorithm 1, which provides an iteration-based solution of

the minimization problem (4.15). When Algorithm 1 converges globally and sufficiently, then Xk+1
(3) can be

a minimizer in the (k + 1)-th iteration, thus leading to inequality as follows,

h(Xk+1
(3) ,Ek) + f(Xk+1

(3) ) +
ρ

2
‖Xk+1

(3) −X
k
(3)‖

2
F ≤ h(Xk

(3),E
k) + f(Xk

(3)). (4.27)

Likewisely, the sequence {Ek}k∈N generated by (4.26) is also formed by minimizers, thus Ek+1 can satisfy

h(Xk+1
(3) ,Ek+1) + g(Ek+1) +

σ

2
‖Ek+1 −Ek‖2F ≤ h(Xk+1

(3) ,Ek) + g(Ek). (4.28)

By combining inequalities (4.27)-(4.28), we easily deduce

Φ(Zk)− Φ(Zk+1) = h(Xk
(3),E

k) + f(Xk
(3)) + g(Ek)− h(Xk+1

(3) ,Ek+1)− f(Xk+1
(3) )− g(Ek+1)

≥ ρ

2
‖Xk+1

(3) −X
k
(3)‖

2
F +

σ

2
‖Ek+1 −Ek‖2F

≥ min
(ρ

2
,
σ

2

)
(‖Xk+1

(3) −X
k
(3)‖

2
F + ‖Ek+1 −Ek‖2F )

= min
(ρ

2
,
σ

2

)
‖Zk+1 −Zk‖2F .

The proof is completed.

Lemma 3 (Relative error condition). Let {Zk}k∈N be the sequence generated by the proposed Algorithm 2,
where Zk := (Xk

(3),E
k). Then, there exists for each k ∈ N,

‖∂Φ(Zk+1)‖F ≤ (Lh + σ + ρ) ‖Zk+1 −Zk‖F ,

where Lh is the Lipschitz constant of the partial derivative ∂X(3)
h.
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Proof. According to the solving procedure in (4.14), when Algorithm 1 converges globally and sufficiently,
variables Xk+1

(3) and Ek+1 are the minimum solutions. Suppose that the sub-gradients of the objective func-
tions exist, then two minimum solutions must satisfy the first-order optimal condition, i.e., for all k ∈ N,{

0 ∈ ∂X(3)
h(Xk+1

(3) ,Ek) + ∂f(Xk+1
(3) ) + ρ(Xk+1

(3) −X
k
(3)),

0 ∈ ∂Eh(Xk+1
(3) ,Ek+1) + ∂g(Ek+1) + σ(Ek+1 −Ek).

(4.29)

Based on the sub-differentiability property, i.e.,

∂Φ(Zk+1) =
(
∂X(3)

h(Xk+1
(3) ,Ek+1) + ∂f(Xk+1

(3) ), ∂Eh(Xk+1
(3) ,Ek+1) + ∂g(Ek+1)

)
,

then we have the triangle inequality as follows,

‖∂Φ(Zk+1)‖F ≤ ‖∂X(3)
h(Xk+1

(3) ,Ek+1) + ∂f(Xk+1
(3) )‖F + ‖∂Eh(Xk+1

(3) ,Ek+1) + ∂g(Ek+1)‖F .

Substituting into the first-order optimal condition (4.29), we have

‖∂Φ(Zk+1)‖F ≤ ‖∂X(3)
h(Xk+1

(3) ,Ek+1)− ∂X(3)
h(Xk+1

(3) ,Ek)− ρ(Xk+1
(3) −X

k
(3))‖F

+ σ‖Ek+1 −Ek‖F
≤ ‖∂X(3)

h(Xk+1
(3) ,Ek+1)− ∂X(3)

h(Xk+1
(3) ,Ek)‖F + ρ‖Xk+1

(3) −X
k
(3)‖F

+ σ‖Ek+1 −Ek‖F .

(4.30)

Following the Lipschitz continuity, h ∈ C1 is a continuously differentiable function with ∂X(3)
h assumed to

be Lh-Lipschitz continuous. Then, we easily have

‖∂X(3)
h(Xk+1

(3) ,Ek+1)− ∂X(3)
h(Xk+1

(3) ,Ek)‖F ≤ Lh‖Ek+1 −Ek‖F . (4.31)

Resultantly, a backsubstitution from (4.31) into (4.30) yields for all k ≥ 0,

‖∂Φ(Zk+1)‖F ≤ Lh‖Ek+1 −Ek‖F + ρ‖Xk+1
(3) −X

k
(3)‖F + σ‖Ek+1 −Ek‖F

≤ (Lh + σ)‖Zk+1 −Zk‖F + ρ‖Xk+1
(3) −X

k
(3)‖F

≤ (Lh + σ + ρ) ‖Zk+1 −Zk‖F .

The relative error condition is proved.

Lemma 4. Let {Zk}k∈N be the sequence generated by the proposed Algorithm 2, where Zk := (Xk
(3),E

k).
Then, {Zk}k∈N is bounded.

Proof. According to Algorithm 2, the initial variables X0
(3) and E0 are bounded, hence Φ(Z0) is bounded.

Relying upon Lemma 2, i.e., the sequence {Φ(Zk)}k∈N decreases sufficiently, we then have 0 ≤ Φ(Zk) ≤
Φ(Z0) for ∀k ∈ N. That is, 0 ≤ h(Zk) + f(Xk

(3)) + g(Ek) ≤ Φ(Z0) with h, f , g ≥ 0 for all the discrete
points. Thus, sequences {h(Zk)}k∈N, {f(Xk

(3))}k∈N, and {g(Ek)}k∈N are bounded.
Firstly, since f is proper and coercive, there exists ‖Xk

(3)‖F → ∞ if and only if f(Xk
(3)) → ∞. Obvi-

ously, f(Xk
(3)) 6→ ∞ for ∀k ∈ N, thus ‖Xk

(3)‖F 6→ ∞, i.e., the sequence {Xk
(3)}t∈N is bounded. Addition-

ally, the triangle inequality gives

‖Ek‖F − ‖H(Xk
(3))
> −HP>(3)‖F ≤

∥∥∥Ek −
(
H(Xk

(3))
> −HP>(3)

)∥∥∥
F
, ∀k ∈ N,
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which is equivalent to

‖Ek‖F ≤
∥∥∥Ek −

(
H(Xk

(3))
> −HP>(3)

)∥∥∥
F

+ ‖H(Xk
(3))
> −HP>(3)‖F

≤ ‖H(Xk
(3))
> −HP>(3) −E

k‖F + ‖H(Xk
(3))
>‖F + ‖HP>(3)‖F

=
λ1‖H(Xk

(3))
> −HP>(3) −E

k‖F
λ1

+

√
Trace

(
Xk

(3)(X
k
(3))
>
)

+

√
Trace

(
P(3)P

>
(3)

)
=

√
h(Zk)

λ1
+ ‖(Xk

(3))
>‖F + ‖P>(3)‖F 6→ ∞, ∀λ1 > 0, ∀k ∈ N.

(4.32)

Namely, the sequence {Ek}k∈N is bounded. Consequently, the sequence {(Xk
(3),E

k)}k∈N, i.e., {Zk}k∈N,
is certainly bounded. This completes the proof.

Equipped with Lemmas 1-4, Theorem 1 theoretically establishes the convergence proof of Algorithm 2.

Theorem 1. Let {Zk}k∈N be a sequence generated by the proposed Algorithm 2, where Zk := (Xk
(3),E

k).
Then, {Zk}k∈N converges to a critical point Z∗ := (X∗(3),E

∗) of Φ.

Proof. According to Lemma 4, the sequence {Zk}k∈N is bounded. Hence, there exists a convergence sub-
sequence {Zkd}d∈N such that lim

d→∞
Zkd = Z̄, where Z̄ is a limit point of {Zk}k∈N. Since h, f ∈ C1 are

continuous functions, and g is lower semi-continuous, i.e., lim inf
k→∞

g(Ek) ≥ g(Ē), we can obtain

lim
k→∞

Φ(Zk) = Φ(Z̄). (4.33)

(i) If there exists an integer k̄ ∈ N for which Φ(Z k̄) = Φ(Z̄), then Lemma 2 can guarantee that Φ(Z k̄) =
Φ(Z k̄+1) = · · · = Φ(Zk→∞) = Φ(Z̄), leading to Z k̄ = Z k̄+1 = · · · = Zk→∞ = Z̄. Thus, the sequence
{Zk}k∈N is stationary, and Theorem 1 obviously holds with Z k̄ being the critical point of Φ.
(ii) For another case, the integer k̄ is nonexistent. Reiterating Lemma 2, the nonincreasing property of Φ
implies

Φ(Zk) > Φ(Z̄), ∀k > 0. (4.34)

Relying upon (4.33), for any δ > 0, there exists k1 ∈ N+ such that

Φ(Zk) < Φ(Z̄) + δ, ∀k > k1. (4.35)

Denote ϑ(Z0) as the limit point set of the sequence {Zk}k∈N, then an elementary consequence is followed
as lim

k→∞
dist

(
Zk, ϑ(Z0)

)
= 0. That is, for any γ > 0, there exists k2 ∈ N+ such that

dist
(
Zk, ϑ(Z0)

)
< γ, ∀k > k2. (4.36)

Let τ = max(k1, k2), summarizing inequalities (4.34)-(4.36) yields

Zk ∈
{
Z : dist

(
Z, ϑ(Z0)

)
< γ

}
∩
{
Z : Φ(Z̄) < Φ(Z) < Φ(Z̄) + δ

}
, ∀k > τ.

From Lemma 1, the objective function Φ in (4.13) is a KŁ function. Thus, for any k > τ , the KŁ inequality
of Definition 4.2 holds, i.e.,

ϕ′
(
Φ(Zk)− Φ(Z̄)

)
dist

(
0, ∂Φ(Zk)

)
≥ 1. (4.37)

Moreover, the concavity of function ϕ gives

ϕ
(
Φ(Zk+1)− Φ(Z̄)

)
− ϕ

(
Φ(Zk)− Φ(Z̄)

)
≤ ϕ′

(
Φ(Zk)− Φ(Z̄)

) (
Φ(Zk+1)− Φ(Zk)

)
. (4.38)
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Ground-truth

EXP [1] PRACS [18] BDSD-PC [53] AWLP [42] GLP-CBD [2] MF-HG [47] GLP-FS [55]
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Fig. 4.2: The visual results on the reduced-resolution Pléiades2 dataset (sensor: Pléiades). The size of the
ground-truth image is 256× 256× 4. The top two rows: the close-ups of images recovered by all compared
methods, also the proposed NC-FSRM. The bottom two rows: the corresponding residual maps.

For all b, d ∈ N, and Z̄, we firstly define

Γb,d := ϕ
(
Φ(Zb)− Φ(Z̄)

)
− ϕ

(
Φ(Zd)− Φ(Z̄)

)
, and C :=

ρ+ σ + Lh

min
(
ρ
2 ,

σ
2

) ∈ (0,+∞). (4.39)

Considering formulas (4.37)-(4.38) and Lemmas 2-3, we then obtain for any k > τ ,

‖Zk+1 −Zk‖2F ≤
Γk,k+1

min
(
ρ
2 ,

σ
2

) 1

ϕ′
(
Φ(Zk)− Φ(Z̄)

) ≤ Γk,k+1

min
(
ρ
2 ,

σ
2

)dist
(
0, ∂Φ(Zk)

)
≤ CΓk,k+1‖Zk −Zk−1‖F .

Based on the inequality of arithmetic and geometric means, i.e., 2
√
αβ ≤ α+β, ∀α, β ≥ 0, we further have

2‖Zk+1 −Zk‖F ≤ 2
√
CΓk,k+1‖Zk −Zk−1‖F ≤ CΓk,k+1 + ‖Zk −Zk−1‖F , ∀k > τ. (4.40)

Summing up (4.40) for all i = τ + 1, · · · , k yields

2

k∑
i=τ+1

‖Zi+1 −Zi‖F ≤
k∑

i=τ+1

‖Zi −Zi−1‖F + C

k∑
i=τ+1

Γi,i+1

≤
k∑

i=τ+1

‖Zi+1 −Zi‖F + ‖Zτ+1 −Zτ‖F + C

k∑
i=τ+1

Γi,i+1

=

k∑
i=τ+1

‖Zi+1 −Zi‖F + ‖Zτ+1 −Zτ‖F + CΓτ+1,k+1,

which is equivalent to

k∑
i=τ+1

‖Zi+1 −Zi‖F ≤ ‖Zτ+1 −Zτ‖F + CΓτ+1,k+1. (4.41)
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Following (4.33), (4.39), and (4.41), the sequence {Zk}k∈N easily has the finite length property as follows,

∞∑
i=0

‖Zi+1 −Zi‖F =

τ∑
i=0

‖Zi+1 −Zi‖F +

∞∑
i=τ+1

‖Zi+1 −Zi‖F

≤
τ∑
i=0

‖Zi+1 −Zi‖F + ‖Zτ+1 −Zτ‖F + CΓτ+1,∞

=

τ∑
i=0

‖Zi+1 −Zi‖F + ‖Zτ+1 −Zτ‖F + Cϕ
(
Φ(Zτ+1)− Φ(Z̄)

)
< +∞,

which implies that for any r > 0, there exists an integer k3 > τ such that

‖Zb −Zd‖F =

∥∥∥∥∥
b−1∑
i=d

(Zi+1 −Zi)

∥∥∥∥∥
F

≤
b−1∑
i=d

‖Zi+1 −Zi‖F < r, ∀b > d > k3.

This follows that {Zk}k∈N is a Cauchy sequence. With the domain space of Z is completeness, the Cauchy
sequence {Zk}k∈N can certainly converge to a critical point (X∗(3),E

∗) of Φ. The proof is completed.

5 Experimental Results
This section is devoted to the comparison between the proposed NC-FSRM and other state-of-the-art meth-
ods, i.e., EXP [1], PRACS [18], BDSD-PC [53], AWLP [42], GLP-CBD [2], MF-HG [47], GLP-FS [55],
C-GLP-R [54], HQB-P [56], LGC-P [25], WTVGlp [20], and CDIF [59], whose source codes are available at
either of the website1 or the authors’ homepages. For fairness, all hyper-parameters involved in these meth-
ods are fine-tuned within a specific range suggested by their authors, aiming to achieve the best performance.
To adequately verify the superiority of the proposed method, four commonly-used datasets2 are employed,
including the Pléiades2 dataset (sensor: Pléiades), the Guangzhou dataset (sensor: GF-2), the Alice dataset
(sensor: WV-4), and the Tripoli dataset (sensor: WV-3). Notably, all experimental data are pre-normalized
into [0, 1]. All numerical experiments are implemented in MATLAB (R2016a) on a computer of 16Gb RAM
and an Intel(R) Core(TM) i7-5960X CPU: @3.00 GHz.

Regarding evaluation metrics, two types of experiments are distinguished. Specifically, when evaluated at
reduced-resolution (i.e., simulated) images, six widely-used metrics are adopted, i.e., the peak signal-to-noise
ratio (PSNR), the structural similarity index (SSIM) [57], the spectral angle mapper (SAM) [63], the spatial
correlation coefficient (SCC) [42], the erreur relative globale adimensionnelle de synthèse (ERGAS) [6],
and the Q2n [5]. Instead, when evaluated at full-resolution (i.e., real) images, the quality with no reference
(QNR) [4] comprised of a spectral distortion index Dλ and a spatial distortion index Ds is specified.

5.1 Parameters Setting
As illustrated in Algorithm 2, ten parameters are involved, i.e., λ1, λ2, η1, η2, ρ, σ, r, ε, kmax, and pmax. For
pansharpening, the hardware characteristics of both MS and PAN images fix the scale factor, i.e., r = 4, in
all experiments. Furthermore, ε = 2 × 10−5 and kmax = 200 can be determined empirically. Significantly,
the warm-start strategy is utilized in Algorithm 1 to accelerate convergence, thus pmax can be set as a smaller
value, e.g., pmax = 2 in this paper. Moreover, we forcibly assign ρ = σ, aiming at reducing the parameter
burden. Therefore, only five parameters, i.e., λ1, λ2, η1, η2, and ρ, need to be further adjusted manually.
For reduced-resolution experiments, λ1, λ2, η1, η2, and ρ can be numerically selected from the candidate sets

1http://openremotesensing.net/kb/codes/pansharpening/
2http://www.digitalglobe.com/samples?search=Imagery
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EXP [1] PRACS [18] BDSD-PC [53] AWLP [42] GLP-CBD [2] MF-HG [47] GLP-FS [55]

C-GLP-R [54] HQB-P [56] LGC-P [25] WTVGlp [20] CDIF [59] NC-FSRM Ground-truth

Fig. 5.3: The visual results on the reduced-resolution Guangzhou dataset (sensor: GF-2). The size of the
ground-truth image is 256× 256× 4. The top two rows: the close-ups of images recovered by all compared
methods, also the proposed NC-FSRM. The bottom two rows: the corresponding residual maps.

Ground-truth

EXP [1] PRACS [18] BDSD-PC [53] AWLP [42] GLP-CBD [2] MF-HG [47] GLP-FS [55]

C-GLP-R [54] HQB-P [56] LGC-P [25] WTVGlp [20] CDIF [59] NC-FSRM Ground-truth
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EXP [1] PRACS [18] BDSD-PC [53] AWLP [42] GLP-CBD [2] MF-HG [47] GLP-FS [55]

C-GLP-R [54] HQB-P [56] LGC-P [25] WTVGlp [20] CDIF [59] NC-FSRM Ground-truth

Fig. 5.4: The visual results on the reduced-resolution Alice dataset (sensor: WV-4). The size of the ground-
truth image is 256×256×4. The top two rows: the close-ups of images recovered by all compared methods,
also the proposed NC-FSRM. The bottom two rows: the corresponding residual maps.

{4.5×10−4, 5.7×10−4}, {1.5×10−7, 3×10−7, 4.5×10−7, 6×10−7, 7.5×10−7}, {2×10−2, 4×10−2, 8×
10−2, 1.6×10−1, 3.2×10−1}, {1.4×10−5, 2.8×10−5, 4.2×10−5}, {1.5×10−3, 1.5×10−2, 1.5×10−1, 1.5×
100}, respectively. For full-resolution experiments, λ1, λ2, η1, η2, and ρ are recommended to select from the
candidate sets {3.5× 10−4, 3.5× 10−3, 3.5× 10−2}, {1× 10−7, 5× 10−7, 1× 10−6, 5× 10−6, 1× 10−5},
{3× 10−4, 6× 10−4, 1.2× 10−3}, {3.5× 10−5, 3.5× 10−4, 3.5× 10−3}, {1.5× 10−3, 1.5× 10−2, 1.5×
10−1, 1.5× 100}, respectively. More specifically, Table 5.1 provides the hyper-parameter configurations for
all the performed experiments.
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Fig. 5.5: The visual results on the reduced-resolution Tripoli dataset (sensor: WV-3). The size of the ground-
truth image is 256×256×8. The top two rows: the close-ups of images recovered by all compared methods,
also the proposed NC-FSRM. The bottom two rows: the corresponding residual maps.

Table 5.1: The hyper-parameter configurations of the proposed NC-FSRM model for different experiments.
(R: Reduced resolution; F: Full resolution)

Dataset Sensor Case λ1 λ2 η1 η2 ρ

Pléiades2 Pléiades R 5.7× 10−4 1.7× 10−7 3.0× 10−1 4.1× 10−5 5.8× 10−2

Guangzhou GF-2
R 5.7× 10−4 7.3× 10−7 3.8× 10−2 4.0× 10−5 1.9× 10−1

F 3.7× 10−4 4.3× 10−7 1.0× 10−3 4.0× 10−5 1.9× 10−1

Alice WV-4 R 4.5× 10−4 1.0× 10−5 2.2× 10−2 2.2× 10−5 1.3× 10−1

Tripoli WV-3
R 4.1× 10−4 9.0× 10−7 2.2× 10−2 1.4× 10−5 1.2× 10−1

F 2.2× 10−3 1.3× 10−6 6.0× 10−4 3.0× 10−5 1.4× 10−1

5.2 The Reduced-Resolution Experiments
The simulated ground-truth, LR-MS, and PAN images are generated by the real LR-MS, blurred and then
down-sampled LR-MS, and blurred and then down-sampled PAN images, respectively. Similar to the settings
in (4.19), the Gaussian-shaped kernels {hi ∈ R41×41}Si=1 with the known standard deviations are utilized.

The qualitative comparison. As aforementioned, we here provide the comparative results on four
reduced-resolution datasets, visualized in Figs. 4.2-5.5. Inspecting Fig. 4.2, only the results recovered by
CDIF and NC-FSRM can inherently generate similar structures with the ground-truth image without signif-
icant spectral distortion, whereas other compared methods inevitably cause spectral and spatial distortion,
leading to some artifacts and fading. From the corresponding residual maps, we further observe that the
proposed NC-FSRM realizes the minimal error using the ground-truth image as a reference, confirming its
superiority.

The performances in Figs. 5.3-5.5 are similar to that of Fig. 4.2. Among the different experiments, the
proposed NC-FSRM consistently achieves promising results compared with all the other methods. Particu-
larly, although CDIF obtains high performance, such a method creates rasterization in smooth image areas,
especially for Figs. 5.3-5.4, resulting from its non-local coefficient estimating strategy. Different from CDIF,
the proposed framelet-based sparse modeling simultaneously takes the piece-wise smoothness property into
account, thus experimentally exhibiting better capability for prior characterization.

The quantitative comparison. To better illustrate the above analysis, we further provide quantitative

16



Table 5.2: Quality metrics of all the compared methods on the reduced-resolution (a) Pléiades2 dataset (sen-
sor: Pléiades); (b) Guangzhou dataset (sensor: GF-2); (c) Alice dataset (sensor: WV-4); and (d) Tripoli
dataset (sensor: WV-3). (Bold: best; Underline: second best)

Methods
(a) Pléiades2 dataset (sensor: Pléiades) (b) Guangzhou dataset (sensor: GF-2)

PSNR↑ SSIM↑ SAM↓ SCC↑ ERGAS↓ Q4↑ PSNR↑ SSIM↑ SAM↓ SCC↑ ERGAS↓ Q4↑

EXP [1] 27.8770 0.7064 4.6437 0.8517 5.7290 0.7680 29.1360 0.8120 1.5222 0.9424 2.5521 0.8545
PRACS [18] 33.4027 0.9265 4.1063 0.9682 3.1673 0.9398 33.2858 0.9198 1.5457 0.9774 1.6267 0.9280
BDSD-PC [53] 36.1990 0.9606 3.2758 0.9749 2.4078 0.9710 34.0490 0.9274 1.5596 0.9835 1.4451 0.9399
AWLP [42] 34.2092 0.9469 3.4829 0.9653 2.8765 0.9543 32.7305 0.8945 2.1090 0.9730 1.7032 0.9154
GLP-CBD [2] 35.2919 0.9557 3.1223 0.9712 2.5706 0.9674 33.4882 0.9154 1.4558 0.9785 1.5120 0.9299
MF-HG [47] 33.4754 0.9404 3.3617 0.9580 3.0378 0.9495 32.2083 0.9141 1.5318 0.9733 1.8052 0.9250
GLP-FS [55] 35.0074 0.9544 3.3868 0.9706 2.5543 0.9647 33.6165 0.9177 1.5367 0.9806 1.4574 0.9328
C-GLP-R [54] 34.8654 0.9494 3.7962 0.9682 2.6971 0.9638 34.3090 0.9354 1.3721 0.9826 1.4004 0.9503
HQB-P [56] 33.9065 0.9246 3.7898 0.9692 2.9611 0.9502 34.5815 0.9426 1.1511 0.9858 1.3234 0.9555
LGC-P [25] 31.7598 0.9030 3.8345 0.9539 3.7047 0.9116 32.3290 0.9162 1.4591 0.9743 1.7842 0.9203
WTVGlp [20] 33.7182 0.9210 5.1323 0.9696 2.9433 0.9520 34.8210 0.9402 1.4189 0.9843 1.3146 0.9495
CDIF [59] 37.5372 0.9650 2.8498 0.9817 1.9872 0.9791 36.1829 0.9479 1.1259 0.9891 1.0810 0.9670
NC-FSRM 38.2551 0.9695 2.6682 0.9837 1.8345 0.9815 36.7373 0.9485 1.1992 0.9902 1.0213 0.9653

(c) Alice dataset (sensor: WV-4) (d) Tripoli dataset (sensor: WV-3)
PSNR↑ SSIM↑ SAM↓ SCC↑ ERGAS↓ Q4↑ PSNR↑ SSIM↑ SAM↓ SCC↑ ERGAS↓ Q8↑

EXP [1] 24.6865 0.6526 3.9590 0.9169 5.1208 0.8050 27.3924 0.6992 4.2012 0.9159 4.9479 0.8097
PRACS [18] 29.1953 0.8725 4.4999 0.9693 3.1708 0.9302 30.9542 0.8785 4.3733 0.9634 3.2777 0.9209
BDSD-PC [53] 29.2411 0.8859 4.1863 0.9699 3.0916 0.9397 30.6140 0.8781 4.3452 0.9614 3.4689 0.9271
AWLP [42] 28.9846 0.8815 4.1295 0.9664 3.2228 0.9346 30.6673 0.8723 4.5644 0.9591 3.5129 0.9190
GLP-CBD [2] 28.6345 0.8780 4.0134 0.9637 3.3036 0.9327 30.1131 0.8629 4.4360 0.9516 3.7448 0.9057
MF-HG [47] 28.3126 0.8772 4.2105 0.9623 3.4386 0.9306 30.6589 0.8789 4.0756 0.9601 3.4463 0.9223
GLP-FS [55] 28.7045 0.8781 4.2601 0.9677 3.1359 0.9361 31.2984 0.8829 4.0283 0.9656 3.1557 0.9303
C-GLP-R [54] 28.9803 0.8795 4.1250 0.9667 3.2061 0.9360 31.0477 0.8809 4.2333 0.9635 3.2895 0.9307
HQB-P [56] 28.9437 0.8733 3.7650 0.9694 3.1313 0.9328 30.4370 0.8450 4.0849 0.9602 3.4685 0.9126
LGC-P [25] 27.5171 0.8268 4.1854 0.9570 3.8286 0.8919 30.4761 0.8592 4.1018 0.9608 3.5141 0.9053
WTVGlp [20] 29.3398 0.8791 4.3992 0.9705 3.0680 0.9379 30.0676 0.8540 4.6679 0.9586 3.5634 0.9065
CDIF [59] 30.2709 0.8967 3.3572 0.9760 2.7081 0.9532 32.0088 0.8955 3.7222 0.9715 2.9275 0.9457
NC-FSRM 30.7283 0.9038 3.4779 0.9778 2.5998 0.9556 32.6974 0.9049 3.4775 0.9751 2.6747 0.9509

comparisons of all methods on the four reduced-resolution experiments. The statistical values of six metrics,
i.e., PSNR, SSIM, SAM, SCC, ERGAS, and Q2n, are recorded in Table 5.2. From Table 5.2, we observe that
the proposed NC-FSRM invariably achieves competitive results, indicating the effectiveness of NC-FSRM.

5.3 The Full-Resolution Experiments
The qualitative comparison. To avoid a potential bias privileging the methods applying a parallel hypothesis
for synthesizing the LR-MS and PAN images, we further test the proposed NC-FSRM on full-resolution
experiments, whose confirmation is more objective and convincing. For full-resolution experiments, the
full-resolution Guangzhou dataset (sensor: GF-2) and Tripoli dataset (sensor: WV-3) are utilized. Under this
case, the ground-truth images are unavailable, and thus, visual comparisons require the PAN images as spatial
reference, while the upsampled/interpolated LR-MS images, e.g., EXP [1], as spectral reference.

17



EXP [1] PAN PRACS [18] BDSD-PC [53] AWLP [42] GLP-CBD [2] MF-HG [47]

GLP-FS [55] C-GLP-R [54] HQB-P [56] LGC-P [25] WTVGlp [20] CDIF [59] NC-FSRM

Fig. 5.6: The visual results on the full-resolution Guangzhou dataset (sensor: GF-2). The size of the PAN
image is 400× 400. Close-ups are depicted in corners, zooming in to see the details.

EXP [1] PAN PRACS [18] BDSD-PC [53] AWLP [42] GLP-CBD [2] MF-HG [47]

GLP-FS [55] C-GLP-R [54] HQB-P [56] LGC-P [25] WTVGlp [20] CDIF [59] NC-FSRM

Fig. 5.7: The visual results on the full-resolution Tripoli dataset (sensor: WV-3). The size of the PAN image
is 400× 400. Close-ups are depicted in corners, zooming in to see the details.

Subsequently, all visual inspections are displayed in Figs. 5.6-5.7. Compared with the EXP method, all
the other methods significantly contribute to a visual improvement in terms of spatial resolution, showing a
relatively unambiguous and distinct sharpening. More specifically, the AWLP, MF-HG, GLP-FS, C-GLP-R,
and WTVGlp algorithms exhibit varying levels of spectral distortion, which are reflected in the white striped
area in the lower-right corner of Fig. 5.6. From the close-ups of Figs. 5.6-5.7, we can also observe that
the HQB-P, LGC-P, and CDIF methods suffer from visible aliasing effects and blurring. Also, the PRACS,
BDSD-PC, and especially GLP-CBD methods generate indistinguishable or nonexistent objects and struc-
tures. Conversely, the proposed NC-FSRM performs the details closest to the PAN image regarded as a spatial
reference, yet prevents apparent spectral aberration, directly confirmed by the visual inspections.

The quantitative comparison. To numerically validate the superiority of the proposed NC-FSRM, the
quantitative comparisons of all methods on the two full-resolution experiments are also conducted. The
statistical values of three metrics, i.e., Dλ, Ds, and QNR, are provided in Table 5.2. From Table 5.2, we
observe that the proposed NC-FSRM favorably outperforms the other methods regarding the QNR values,
while also making an excellent trade-off between the mitigation of spectral and spatial distortions, showing
the stability of NC-FSRM.
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Table 5.3: Quantitative results for all the compared methods on the full-resolution (a) Guangzhou dataset
(sensor: GF-2); and (b) Tripoli dataset (sensor: WV-3). (Bold: best; Underline: second best)

Methods
(a) Guangzhou dataset (sensor: GF-2) (b) Tripoli dataset (sensor: WV-3)
Dλ ↓ Ds ↓ QNR↑ Dλ ↓ Ds ↓ QNR↑

EXP [1] 0.0029 0.1255 0.8720 0.0024 0.0514 0.9463
PRACS [18] 0.0478 0.0549 0.8999 0.0195 0.0503 0.9311
BDSD-PC [53] 0.0726 0.0731 0.8596 0.0123 0.0491 0.9392
AWLP [42] 0.0396 0.0696 0.8935 0.0289 0.0432 0.9291
GLP-CBD [2] 0.0588 0.0356 0.9077 0.0261 0.0311 0.9436
MF-HG [47] 0.0710 0.0661 0.8676 0.0433 0.0282 0.9297
GLP-FS [55] 0.0748 0.0618 0.8680 0.0312 0.0342 0.9357
C-GLP-R [54] 0.0629 0.0497 0.8905 0.0165 0.0236 0.9603
HQB-P [56] 0.0445 0.0162 0.9401 0.0111 0.0270 0.9622
LGC-P [25] 0.0053 0.0551 0.9398 0.0054 0.0339 0.9609
WTVGlp [20] 0.1018 0.0824 0.8242 0.0478 0.0682 0.8873
CDIF [59] 0.0294 0.0220 0.9493 0.0227 0.0258 0.9521
NC-FSRM 0.0132 0.0237 0.9634 0.0102 0.0092 0.9807

6 Conclusions
In this paper, we proposed a framelet sparse reconstruction method for pansharpening, i.e., NC-FSRM, which
investigates the coefficient similarity among the underlying HR-MS image and the PAN image on the framelet
domain, then characterizes the strong statistical sparsity of their error using `0 norm. The proposed NC-
FSRM not only more precisely and concisely established the relationship between the underlying HR-MS
image and the PAN image, but also simultaneously characterized the piece-wise smoothness prior of the for-
mer without adding additional regularizers, showing superior properties. Furthermore, we developed an effi-
cient PAM-based solving algorithm for the proposed nonconvex regularization model. Also, we theoretically
prove that the algorithm can globally converge to a critical point under some mild assumptions. Substan-
tial experiments on reducted-resolution and full-resolution datasets confirmed that the proposed NC-FSRM
markedly outperforms other state-of-the-art pansharpening methods, both qualitatively and quantitatively.
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