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GuidedNet: A General CNN Fusion Framework via High-
resolution Guidance for Hyperspectral Image Super-resolution

Ran Ran, Liang-Jian Deng, Member, IEEE, Tai-Xiang Jiang, Member, IEEE, Jin-Fan Hu,
Jocelyn Chanussot, Fellow, IEEE, and Gemine Vivone, Senior Member, IEEE

Hyperspectral image super-resolution (HISR) is about fusing
a low-resolution hyperspectral image (LR-HSI) and a high-
resolution multispectral image (HR-MSI) to generate a high-
resolution hyperspectral image (HR-HSI). Recently, convolutional
neural network (CNN)-based techniques have been extensively
investigated for HISR yielding competitive outcomes. However,
existing CNN-based methods often require a huge amount of
network parameters leading to a heavy computational burden,
thus limiting the generalization ability. In this paper, we fully
consider the characteristic of the HISR, proposing a general CNN
fusion framework with high-resolution guidance, called Guided-
Net. This framework consists of two branches, including 1) the
high-resolution guidance branch (HGB) that can decompose the
high-resolution guidance image into several scales; 2) the feature
reconstruction branch (FRB) that takes the low-resolution image
and the multi-scaled high-resolution guidance images from the
HGB to reconstruct the high-resolution fused image. GuidedNet
can effectively predict the high-resolution residual details that are
added to the upsampled HSI to simultaneously improve spatial
quality and preserve spectral information. The proposed frame-
work is implemented using recursive and progressive strategies,
which can promote high performance with a significant network
parameter reduction, even ensuring network stability by super-
vising several intermediate outputs. Additionally, the proposed
approach is also suitable for other resolution enhancement tasks,
such as remote sensing pansharpening and single image super-
resolution (SISR). Extensive experiments on simulated and real
datasets demonstrate that the proposed framework generates
state-of-the-art outcomes for several applications (i.e., HISR,
pansharpening, and SISR). Finally, an ablation study and more
discussions assessing, e.g., the network generalization, the low
computational cost, and the fewer network parameters are
provided to the readers.

Index Terms—Convolutional neural network (CNN), High-
resolution guidance, Image fusion, Hyperspectral image super-
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(a) LTMR [5] (b) MHF-net [6] (c) GuidedNet

Fig. 1. First row: the schematic diagram of HISR. The image on the right
is the HR-HSI X (i.e., the ground-truth). Second row: the visual results (8×
scale) of (a) the subspace-based low tensor multi-rank regularization approach
(LTMR) [5] (PSNR = 41.88dB), (b) the MS/HS fusion net (MHF-net) [6]
(PSNR = 43.36dB), and (c) the proposed GuidedNet (PSNR = 44.75dB).
Note that all the images are displayed with a pseudo-color RGB format using
R = 17th band, G = 30th band and B = 27th band. Third row: the related
error maps. From a visual point of view, our GuidedNet result is the closest
to the ground-truth.

resolution, Pansharpening, Single image super-resolution.

I. INTRODUCTION

Recently, hyperspectral image super-resolution (HISR), as
shown in Fig. 1, has become a fundamental issue in computer
vision since it can significantly improve the spatial resolution
of LR-HSI and the spectral information of HR-MSI to finally
yield a fused hyperspectral image with both high spatial and
spectral resolutions. Many applications can benefit from the
fused HISR image, e.g., several remote sensing data analysis
[1], environment detection [2], classification [3], and recogni-
tion [4].

In general, HISR approaches could be roughly classified
into two categories. Namely, variational optimization (VO)



2

approaches and deep learning (DL) approaches. The approach
proposed in this work falls within the latter class.

VO-based methods are mainly about formulating an opti-
mization model by considering proper regularizers and fidelity
terms to solve computer vision problems [7]–[15], thus accu-
rately representing the main properties of the HISR issue at
hand [5], [16]–[22]. Afterward, some practical algorithms are
designed for efficiently solving the given model, estimating
the final super-resolved images. Although these VO-based
methods produced satisfactory SR results, they need prior
information before reconstructing the high-resolution HSI.
This information is usually scene-dependent, requiring a fine
adjustment to be adapted to different real scenarios. Moreover,
the computational burden for this class is usually heavy.

In the last decade, DL-based algorithms have been consid-
ered to solve several image processing tasks such as super-
resolution [23]–[26], image classification [27], and visual
question answering [28]. Mainly, convolutional neural network
(CNN), as core technique of DL-based approaches, has been
applied to HISR [29]–[37], getting promising results. These
deep learning methods can learn the relationship between the
hyperspectral image and the ground-truth. They showed satis-
factory performance in the HISR task. However, these methods
still have some drawbacks. Firstly, some methods have a com-
plex network structure and a considerable amount of network
parameters to severely consume computing resources taking a
long time for training and execution. Secondly, previous meth-
ods generally utilize the entire MSI without extracting multi-
scale spatial features. The HR-HSI’s features significantly
differ from LR-HSI’s features leading to obstructions in fusion
and reconstruction on a large scale. Thirdly, some DL-based
methods cannot easily extend to other image SR problems
(e.g., pansharpening, or SISR) with satisfying results. Hence,
the above-mentioned issues motivate us to further improve DL-
based HISR approaches.

In this paper, we propose the so-called GuidedNet intro-
ducing two crucial branches (mainly for the application to
HISR). The first one is the high-resolution guidance branch
(HGB) decomposing an image into several scales that are
fully exploited into the subsequent fusion branch. The other is
the feature reconstruction branch (FRB), which can fuse the
LR input and the multi-scale information from the HGB to
produce the final HR output. Besides, recursive blocks are also
integrated into the proposed network architecture, leading to
fewer network parameters and less computational time while
maintaining high-quality outcomes.

In summary, the main contributions are as follows:
1) A general CNN fusion framework is proposed in this

paper. We successfully applied it to multiple image
resolution enhancement problems, such as HISR, pan-
sharpening, and SISR, in the meanwhile obtaining state-
of-the-art (SOTA) performance for each task.

2) Two novel network branches, i.e., the FRB and the HGB,
are designed to utilize multi-scale information of high-
resolution guidance images and reconstruct the fused
high-resolution output. In particular, the two developed
branches have the following characteristics, i.e., multi-
scale information fusion, progressive feature injection,

and gradual feature reconstruction. Rich structural in-
formation can be captured more accurately by using a
receptive field from wide to fine in a multi-scale frame-
work. Compared with direct upsampling, which leads
to difficulties in learning mapping functions and blur
effects for large scaling factors, a progressive structure
can better address the problem by adapting it to large-
scale super-resolution. Moreover, intermediate results
predicted by GuidedNet are supervised, aiding network
stability. Thanks to these characteristics, GuidedNet
can easily obtain promising outcomes for resolution
enhancement.

3) GuidedNet has several advantages with respect to previ-
ously developed approaches: SOTA performance thanks
to the designed network architecture, fewer network
parameters thanks to the usage of recursive blocks, a
remarkable ability to upsample to several scales, and
good adaptability to other image resolution enhancement
tasks (verified in the experimental section).

The organization of this paper is as follows. Sect. II will
briefly introduce the related works. In Sect. III, we will
describe the proposed network architecture, including the two
designed network branches, the recursive blocks, and the
training details. In Sect. IV, we conduct extensive experiments
to assess the effectiveness of the proposed network for HISR.
Finally, conclusions are drawn in Sect. V.

II. RELATED WORKS

A. Related Works

In general, the relationship between the HR-HSI, the LR-
HSI, and the HR-MSI can be expressed by the following linear
models [38]:

Y =XBS + NY,

Z =RX + NZ,
(1)

where Z ∈ RHW×s, Y ∈ Rhw×S , and X ∈ RHW×S

represent the input HR-MSI, LR-HSI and the target HR-HSI,
respectively. H and W are the height and width of the target
resolution, i.e., the height and width of HR-MSI and HR-HSI,
and h, w are the height and width of the input LR-HSI. S is
the number of the spectral bands of the hyperspectral image,
and s is the number of the spectral bands of the LR-MSI.
B ∈ RHW×HW represents the circular convolution operator,
S ∈ RHW×hw represents the downsampling operator, and
R ∈ Rs×S is the spectral response matrix of the HR-MSI.
NY and NZ are the noises related to the LR-HSI and the
HR-MSI, respectively.

Based on the above models, many studies have been pro-
posed with effective solutions for the HSI super-resolution
problem, see e.g., [5], [17]–[19], [39]. For instance, in [17],
spectral unmixing and sparse coding ideas have been studied
to enhance the resolution of HSIs. Yokoya et al. developed
in [18] a coupled nonnegative matrix factorization (CNMF)
unmixing algorithm using a linear spectral mixture model,
which can effectively and efficiently obtain competitive HISR
results. Dian et al. in [19] clustered the HR-MSI and the HR-
HSI, respectively, applying a low tensor-train rank (LTTR)
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Fig. 2. The architecture of the proposed GuidedNet. LR-HSI, Y , and HR-MSI, Zn, are the inputs, X̃1, X̃2 denote the intermediate scale outputs, and X̃n is
the final output. Note that Zn is equal to the aforementioned Z . This framework consists of two branches: the high-resolution guidance branch (HGB) that
can generate several scales guidances, and the feature reconstruction branch (FRB) that fuses the low-resolution image and the multi-scaled high-resolution
guidance images to reconstruct the high-resolution output. Note that the shown architecture includes n detail fusion modules (DFMs) to perform n scale HISR
tasks, and all the parameters in the DFM of each layer are shared. Details can be found in Sect. III-D.

constraint to transform the HISR into an optimization problem,
thus achieving excellent outcomes. Dian et al. [21] exploited
a CNN denoiser to regularize the fusion procedure, achieving
excellent fusion performance without needing additional HSIs
and MSIs for the pre-training stage.

However, since it is generally necessary to assume some
subjective priors, traditional methods are sensitive to the
change of scenario showing difficulties when applied to differ-
ent scenes. Recently, deep learning methods based on convo-
lutional neural networks (CNNs) have been widely exploited
for various low-level vision tasks [23], [40]–[42]. For example,
Lim et al. designed EDSR [40] using residual networks and
achieved competitive single image super-resolution outcomes.
Zeng et al. in [41] learned the intrinsic representations of
LR and HR image blocks via a proposed coupled deep au-
toencoder (CDA) holding outstanding performance for single
image super-resolution. CNN-based methods e.g. [6], [29],
[30], [37] can solve the HISR problem without relying upon
subjective priors. Dian et al. [29] proposed a novel deep
CNN-based HSI and MSI fusion method, which considers the
imaging model of the HSI and MSI and achieves superior
fusion performance. In [30], Palsson et al. proposed a 3-D
CNN network using a principal component analysis to fuse
HR-MSI and LR-HSI. This method significantly reduces the
computational cost and has stronger robustness to noise. Zhu
et al. in [33] proposed a lightweight progressive zero-centric
residual network. Xie et al. designed a HISR model according
to (1) in [31], then constructed the solving algorithm using
the approximate gradient method. After that, a new fusion
network, called MHF-net [6], is designed by expanding this
solving algorithm. Benefiting from excellent preservation of
the spectral and spatial details, the MHF-net outperforms other
DL-based approaches, currently representing a state-of-the-art
HISR method.

HISR is closely related to the multispectral image pansharp-
ening task. In this work, we also extend our method to the
pansharpening task. The pansharpening problem reconstructs
the HR-MSI by fusing an LR-MSI and an HR panchromatic
image. Traditional pansharpening approaches are represented
by both component substitution (CS) and multi-resolution
analysis (MRA) based methods. CS-based methods, such as
the band dependent on spatial detail (BDSD) [43] and the
BDSD with physical constraints (BDSD-PC) [44], can produce
acceptable spatial fidelity outcomes but introducing spectral
distortion. The class of MRA-based methods contains the
generalized Laplacian pyramid (GLP) [45] and the GLP at
full resolution for regression-based (GLP-Reg) [46].

Many deep learning-based methods have been designed for
the pansharpening problem yielding competitive performance,
see e.g., [47]–[53]. In [48], Masi et al. adapted a simple three-
layer convolution network for pansharpening. In [47], Yang et
al. proposed a deep network structure (PanNet) that focuses
on spectral and spatial preservation by training the network in
the high-pass domain through a high-pass filter. In [52], Deng
et al. combined the traditional CS and MRA fusion schemes
developing a deep network (FusionNet) that extracts high-
quality details, achieving competitive performance. However,
pansharpening reaching high spatial resolutions can generate
significant spectral distortion. The introduction and the full use
of progressive and multi-scale architectures in pansharpening
can alleviate this issue.

In what follows, we will present the proposed general fusion
framework in more detail.

III. THE PROPOSED GUIDEDNET

In this section, we present the motivation under the devel-
oping of the proposed method, the designed network, includ-
ing the network architecture consisting of the two proposed
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Fig. 3. The detailed network architecture of the proposed GuidedNet. (a) Illustration of the pixel shuffle (PS) with an upsampling scale factor of 2. (b)
Architecture of the GuidedNet. Y and Zn are the two inputs, and X̃1, . . . , X̃n are the outputs. F0, . . . ,Fn and XU

1 , . . . ,XU
n denote image features and

upsampled images by the PS for several resolutions. X̃1, . . . , X̃n are high-resolution outputs of progressive generation. Note that the part enclosed by dotted
lines is the DFM for the first layer in Fig. 2, and X̃0 = Y . Other DFM modules are similar as the first one.

branches, the recursive mechanism for parameter reduction,
the loss function for multi-scale training, and some network
training details.

A. Motivation

Some above-mentioned issues, such as progressive feature
injection, gradual feature reconstruction, and parameter shar-
ing, have motivated us to develop a general CNN fusion
framework, which can fully consider, in a simple manner, a
progressive multi-scale structure (PMS) for the HISR problem.
Besides, we also expect to achieve promising outcomes with
a significant network parameters reduction. Meanwhile, we
hope that the proposed architecture can easily be extended to
multiple image fusion tasks promoting the design of a general
fusion framework. Thus, we need to design two branches
for the two inputs of the fusion task, guaranteeing sufficient
information exchange and communication from the different
inputs. In addition, spatial information is fused into the feature
domain. Therefore, in the reconstruction branch, the network
has a dual data stream (DDS) coming from the feature and
the image domains, which are connected through a residual
learning module.

B. Overall Network Architecture

This work aims to formulate a general fusion framework
for image fusion tasks while fully exploiting multi-scale
information, progressive feature injection, and gradual fea-
ture reconstruction. To reach this goal, we design a gen-
eral CNN fusion framework via high-resolution guidance for
image fusion, i.e., the proposed GuidedNet. The overall and
detailed architectures are shown in Fig. 2 and Fig. 3(b),
respectively. In the following, we will introduce first the two

branches of the GuidedNet. To illustrate the given network
architecture, we refer to the HISR as an application. Note that
the architecture can easily be extended to other image fusion
tasks, e.g., pansharpening and SISR.

1) High-resolution Guidance Branch
Since there is a high-resolution input in the fusion tasks,

fully utilizing this high-resolution input and injecting the
image details into the low-resolution input is crucial. Be-
sides, the high-resolution input on lower scales still holds
high-frequency information, which can be integrated into the
low-resolution input. Motivated by the two above-mentioned
points, we designed a high-resolution guidance branch (HGB)
to inject the high-resolution details from different scales into
the low-resolution input branch, see the top side in Fig. 2.
The proposed GuidedNet introduces a two-branches strategy to
regard spatial details as a guided term to drive the injection of
high-resolution information into the feature domain. Compared
with previously developed networks based on the two-branches
strategy, such as the efficient bidirectional pyramid network
(BDPN) for the pansharpening in [54] and the deep multi-
scale guidance network (MSGNet) for the depth map super-
resolution in [55], GuidedNet shows several differences in the
fusion mode exploiting a gradual feature reconstruction, see
Sect. III-B3 for details.

The generation of the multi-scale high-resolution guidance
image can be expressed as follows:

Zk = Downsample(Zk+1,Θd), (2)

where Downsample represents the downsampling network
consisting of 2D convolutions, Θd indicates the network
parameters to be trained, Zk is the guidance image of size
2kh × 2kw × s at the k-th stage of the HGB with k =
1, 2, · · · , n− 1, and n is the total number of layers.
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Fig. 4. (a) Structure of the conventional ResNet with the residual block (RB).
(b) Structure of the ResNet with the efficient residual block (ResNet-ERB),
which is used in the GuidedNet.

2) Feature Reconstruction Branch
The feature reconstruction branch (FRB) is about progres-

sively injecting the high-frequency details from the high-
resolution input (i.e., the HR-MSI) on different scales into
the LR-HSI, see the bottom side in Fig. 2.

2.1) FRB Flow
The LR-HSI feature F0 is extracted first through a convo-

lutional layer Conv1 with parameters indicated as Θ1:

F0 = Conv1(Y,Θ1), (3)

then the extracted LR-HSI feature is considered by the de-
signed detail fusion module (DFM) to complete the spatial
feature reconstruction by incorporating the high-resolution
input on the smallest scale (i.e., Z1). The reconstructed HR-
HSI comes from the previous level1. The details about DFM
can be found in Sect. III-B2. When the fusion procedure by
the recursive DFM is ended, we obtain two outputs, i.e., the
reconstructed HR-HSI feature F1 and the HR-HSI image X̃1

at a finer scale. Afterwards, the two obtained outputs and the
high-resolution input at a finer scale, are considered in the next
DFM. This structure of two data in parallel is called dual data
stream (DDS), and after repeating this process several times,
the final HR-HSI is yielded by the FRB.

2.2) Detail Fusion Module (DFM)
This section is devoted to presenting the detail fusion

module (DFM). This module incorporates three inputs (i.e.,
the high-resolution input from the HGB, the reconstructed HR-
HSI feature, and the HR-HSI image from the previous step)
into a designed convolutional module for gradually injecting
high-frequency information into the hyperspectral image. This
module considers first a feature upsampling consisting of a
convolution operation and a deconvolution strategy to increase
the feature size at a finer scale (corresponding to the scale
of the high-resolution input provided by the HGB). Then,
the upsampled HSI feature is concatenated with the high-
resolution guidance from the HGB, seen as a new feature

1Note that the reconstructed HR-HSI for the starting (first) level is the
LR-HSI, i.e., Y .

Feature F1 Feature F2 Feature F3

Fig. 5. Visual comparison of F1, F2, and F3 extracted from the 1st DFM,
the 2nd DFM, and the 3rd DFM, respectively. Note that the images are scaled
to the same size for a better visualization.

with detailed information. The number of channels of the new
feature is restored by a simple convolutional layer:

F̂k = Convf (Upsample(Fk−1),Zk,Θf ), (4)

where F̂k represents a feature with size 2kh×2kw×C, F̂k−1
is another feature with size 2k−1h × 2k−1w × C, Zk is the
high-resolution guidance from the HGB, and Θf indicates the
parameters to be trained.

A unique ResNet accounting for efficient residual blocks
(ERBs), called ResNet-ERB, is designed to fuse details and re-
construct high-resolution HSI features. Generally, the ResNet
consists of two convolution layers and an activation function
in the middle, as shown in Fig. 4(a). However, as the depth of
the ResNet increases, the gradient information tends to vanish
when it reaches the end because of a significant amount of
redundancy in the deep ResNet [56]. Too many convolutions
with limited benefits can increase the computational burden,
thus suggesting the simplification of the network by removing
the superfluous layers. For image spatial enhancement tasks,
feature propagation can be strengthened by creating short
paths from early to later layers. Therefore, the proposed DFM
utilizes a ResNet, including an efficient residual block (ERB).
In the proposed ERB, just a LeakyReLU activation function
and a convolutional layer are adopted to simplify the network
structure, improving efficiency. The structure is shown in Fig.
4(b); several blocks are connected in a row to form the final
ResNet-ERB module. Thus, the network reduces the number
of parameters thanks to the more straightforward structure
of the block. Furthermore, this block structure can extract
features more effectively, reducing the difficulty of the network
in the learning phase (preventing gradient exploding). ResNet-
ERB is represented in our network as:

Fk = ResNetERB(F̂k,Θe), (5)

where ResNetERB is the ResNet-ERB function, Fk is the
output feature, and Θe is the set of parameters to be learned.

Through this design, the spatial details of the guidances are
gradually injected into the HSI features in the DFM related
to the different layers. Fig. 5 shows a visual comparison of
the features Fk (k ∈ {1, 2, 3}) of the DFM for the different
layers. Specifically, in the chart and stuffed toy test case from
the CAVE dataset, we selected the 31st, the 54th, and the 15th
bands of the feature maps as R, G, and B, respectively, and the
images are sampled to reach the same size for visualization
purposes. The figure shows that the spatial detail information
in the three features increases.
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After generating the reconstructed high-resolution features
as output of the ResNet-ERB, the residual image is predicted
by a residual reconstruction module consisting of a convolu-
tional layer to adjust channels. In the other stream, the LR-HSI
is upsampled with a factor of 2 by an upsampling block, i.e.,
the pixel shuffle (called sub-pixel convolution)2. The operation
is shown in Fig. 3(a). Finally, the upsampled image is added
to the residual image to reconstruct the final HR-HSI. Thus,
we have:

XU
k = PS(X̃k−1,Θp), (6)

where PS is the pixel shuffle function providing the upsam-
pling of the input data, XU

k is the upsampled image at the k-th
level, Θp indicates the set of the parameters to be trained,

X̃k = resRecon(Fk,Θr) + XU
k , (7)

resRecon(·) represents the residual reconstruction module to
predict a residual image from Fk, and Θr indicates the set of
the parameters. It is worth to be remarked that if k = 1, X̃k−1
is equal to Y .

2.3) Recursive Mechanism for DFMs
After determining the DFM, the GuidedNet approach re-

peats the DFM several times to reach the desired resolution
of the HSI. Since the DFMs for different scales hold the same
network structure, we can use the recursive mechanism for
each DFM to significantly reduce the network parameters. Be-
sides, thanks to the repetitive usage of the DFM, the proposed
network can theoretically get fusion outcomes with any scaling
factor power of 2. For example, we tested the performance of
our GuidedNet considering the HISR application with scaling
factors of 4, 8, 16, and 32, see Sect. III-B2.

3) Comparison with Previous Works
The GuidedNet is related to previous works, such as the

BDPN [54] and the MSGNet [55], which use different res-
olutions for bidirectional multi-scale feature enhancement.
Compared with the BDPN, the GuidedNet strongly focuses
on fusing features into two branches to extract details, while
BDPN just uses a simple addition operator to solve this
problem. The guidance images must be mapped into the
feature space when fusing the low-resolution image. Hence, we
attach importance in the GuidedNet to the mapping learning
among image features. Comparing with the MSGNet, the
GuidedNet generates intermediate results many times and
adopts multi-scale loss training to ensure spectral preservation
and stability. In addition, the fusion step for the MSGNet
approach is just based on a simple convolution, reducing the
task’s efficiency. Finally, the GuidedNet achieves multi-scale
fusion and reconstruction into the feature domain, and thanks
to its sharing strategy, it can significantly reduce the network
parameters.

C. Loss Function

In the GuidedNet, several intermediate outputs, i.e., X̃i, i =
1, 2, · · · , L, are generated by the recursive DFMs. These

2The pixel shuffle approach expands, by a convolutional layer, the LR-HSI
with size h×w×S to reach the size of rh× rw×S, where r is the scaling
factor.
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Fig. 6. Training and validation errors of our GuidedNet.

outputs can progressively generate the final HR output with
the desired scale through the specially designed network archi-
tecture. For a better supervision of the network learning, it is
better to enforce a mean square error (MSE) loss between the
output of a given scale and the corresponding downsampled
ground-truth (GT) image. Thus, the final loss function is a
multiple-loss one, which is defined as follows:

L(Y,Zn,Xn;Θ) =
∑
k∈K

αkLk(Y,Zk,Xk;Θ),

Lk(Y,Zk,Xk;Θ) =
∥∥∥X̃k −Xk

∥∥∥2
F
,

(8)

where k represents the layer number of the reconstructed HSI,
Θ involves all the related network parameters to be learned,
Y and Zn are the LR-HSI and the maximum resolution
guidance image in input, respectively, Xk represents the HR-
HSI at the k-th layer, K indicates all the layer numbers (with
K = {1, 2, . . . , n}), and αk is the weight of each sub-loss
function at the k-th layer.

The weights can be set in several ways. An attempt is to
set them considering the approximation degree to the final
result, i.e., the weight gradually becomes more significant as
the scale increases. For instance, if the SR ratio is 8, we
set K = {1, 2, 3}, and α1, α2, and α3 are set to 1, 2,
and 4, respectively. However, the network’s stability could
be reduced, and the prediction results could appear highly
distorted under this setting. This is because the intermediate
results are not significantly supervised. Another possibility is
to increase the weights of the intermediate results to solve
this problem. Thus, α1, α2, and α3 can be set to 4, 2, and
1, respectively, to improve stability and accuracy. Indeed, the
network architecture is trained progressively. Thus, if we take
larger weights for the initial and intermediate loss functions
(i.e., layers 1 and 2), we can have a better final HR image
reconstruction, even if we use a smaller weight for the final
layer (i.e., layer 3), see also the ablation study in Sect. IV-C.

D. Network Training Details

Network details: This section is devoted to showing more
network details. More specifically, the number of channels C
for all the features is set to 64, the sizes of all the convolutional
kernels are 3×3, the sizes of all the downsampling convolution
and deconvolution kernels are 6× 6, and the padding type of
all the convolutions is set as “SAME”. Additionally, all the
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GT/LR-HSI CNMF [18] FUSE [57] GLP-HS [58] LTTR [19] LTMR [5] IR-TenSR [59] MHF-net [6] HSRnet [37] GuidedNet

Fig. 7. The first column: the ground-truths and the corresponding LR-HSI images (in pseudo-colors) for the chart and stuffed toy (R-16, G-15, B-21) (1st-2nd
rows) and the fake and real tomatoes (R-31, G-15, B-16) (3rd-4th rows) test cases from the CAVE dataset. The 2nd-8th columns: the visual results and the
related error maps for all the compared approaches. A zoomed area has been added to aid the visual inspection.

related activation functions use the LeakyReLU with a slope
of 0.2 when x < 0. In particular, the number of ERBs for
a scale in the ResNet-ERB is 10, and the ERB structure is
shown in Fig. 4(b).

Training data: We use the CAVE dataset [60] to train and
test all the compared methods. This dataset consists of 32
hyperspectral images (HSIs) with a size of 512 × 512 × 31
and corresponding RGB images with a size of 512× 512× 3
(viewed as multispectral images, MSIs), which are generated
by a general spectral response function R to simulate the
Nikon D700 camera. This dataset has also been used in [5],
[19], [31]. We selected 21 HSIs as the training set and 11
HSIs as the testing set. To reduce the storage cost, we crop
the original HSIs (HR-HSIs) and MSIs (HR-MSIs) into sizes
of 80×80×31 and 80×80×3, respectively. Then, we simulate
LR-HSIs (10 × 10 × 31, scale = 8) by adopting a Gaussian
blur with a kernel of 3 × 3 and a standard deviation of 0.5
to HR-HSIs and taking 8× bicubic downsampling. Moreover,
the involved intermediate ground-truth HSIs (GT-HSIs), X̃ ,
are also obtained by bicubic downsampling. Note that all the
simulated LR-HSIs, HR-MSIs, HR-HSIs, and GT-HSIs from
the 21 samples are divided into two parts: training set (90%)
and validation set (10%).

Similar to the CAVE dataset, the Harvard dataset [61]
consists of 77 hyperspectral images in indoor and outdoor
scenes with a spatial resolution of 1024×1392 and 31 spectral
bands with a size of 1024×1392×31. We selected 20 images
as training set. Moreover, we randomly selected 10 HSIs from
the Harvard dataset cutting the upper left 1000 × 1000 side
of the image as testing set. The data simulation process is the
same as that of the CAVE dataset.

Training details: For fairness, all the DL-based approaches
are implemented and trained in Tensorflow 1.8 framework on
an NVIDIA GeForce GTX 2080Ti (11G RAM) and 2.90GHz
Intel i5-9400F (32G Memory). The Adam Optimizer [62]

trained our GuidedNet with a learning rate of 0.00001. Fur-
thermore, the training epochs are set to 150, and the mini-batch
size is 32. Fig. 6 plots the errors of the proposed GuidedNet
on the training and validation datasets at each epoch separately,
demonstrating its good convergence. For the other compared
DL methods (e.g., the MHF-net and HSRnet), we consider
the available source codes for both training and testing, thus
ensuring a fair comparison.

IV. EXPERIMENTS

This section analyzes first the qualitative and quantitative
performance of HISR. Then, extensive discussions on the
super-resolution ability of the proposed GuidedNet are pro-
vided to the readers. After that, we extend the given method to
a remote sensing fusion task, i.e., the multispectral pansharp-
ening. Finally, we show that the proposed network architecture
can be viewed as a general framework that can enhance
spatial resolution only if there is a high-resolution branch
as guidance. Thus, the given framework is also extended to
another super-resolution problem, i.e., the single image super-
resolution (SISR), adding HR guidance.

More in detail, we assess the performance of the proposed
network by exploiting several state-of-the-art HISR methods,
such as the fusion using coupled nonnegative matrix factoriza-
tion unmixing (CNMF) [18], the fast fusion based on Sylvester
equation (FUSE) approach [57], the generalized Laplacian
pyramid (GLP) approach for hypersharpening (GLP-HS) [58],
the low tensor-train rank (LTTR) based approach [19], the
subspace-based low tensor multi-rank regularization (LTMR)
approach [5], the iterative regularization based on tensor
subspace representation (IR-TenSR) [59], the MS/HS fusion
network (MHF-net) [6], and the HSRnet [37], on the CAVE
dataset [60] and the Harvard dataset [61]. Four widely used
quality indexes (QIs) for HISR are utilized to evaluate the
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performance quantitatively, i.e., the peak signal-to-noise ratio
(PSNR), the spectral angle mapper (SAM [63]), and the erreur
relative globale adimensionnelle de synthèse (ERGAS [64]),
and the structure similarity (SSIM [65]). The higher the values
of the PSNR and the SSIM, the better the performance. Con-
versely, the smaller the values of the SAM and the ERGAS, the
better the performance. For a fair comparison, all the compared
methods are tested on the same GPU or CPU (see the training
details in Sect.III-D).

TABLE I
AVERAGE QUALITY INDICES WITH RELATED STANDARD DEVIATIONS OF

THE RESULTS PROVIDED BY ALL THE COMPARED METHODS ON 11
TESTING IMAGES FROM THE CAVE DATASET. THE BEST RESULTS ARE

HIGHLIGHTED.

Method PSNR SAM ERGAS SSIM
CNMF [18] 32.97±2.6 10.98±3.8 4.27±2.9 0.909±0.04
FUSE [57] 29.21±2.4 23.04±10.2 6.04±4.5 0.791±0.08
GLP-HS [58] 32.25±2.2 10.15±3.6 3.99±2.2 0.916±0.03
LTTR [19] 37.56±2.8 5.35±1.9 2.21±1.0 0.970±0.02
LTMR [5] 37.56±2.7 5.36±1.8 2.15±1.0 0.970±0.02
IR-TenSR [59] 37.58±2.7 7.44±2.7 2.12±0.9 0.959±0.02
MHF-net [6] 45.00±3.1 4.88±1.9 0.99±0.7 0.989±0.01
HSRnet [37] 44.88±3.5 3.74±1.4 0.98±0.6 0.991±0.00
GuidedNet 45.41±3.6 4.03±1.4 0.97±0.7 0.991±0.00

A. Experiments on CAVE Dataset

We conduct simulated experiments on the CAVE image
dataset to verify the effectiveness of the proposed GuidedNet.
We generate the HR-MSI by combining all the GT-HSI bands
according to the spectral response function, R. Then, we
simulate the LR-HSI by downsampling the GT-HSI with a
factor of 8. This process is described in Sect. IV-B. The testing
dataset is formed by 11 hyperspectral images from the CAVE
dataset with a size of 512× 512× 31.
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Fig. 8. Spectral vectors analysis of the ground-truth (GT) and coming from
the outcomes of the compared approaches for the chart and stuffed toy located
at (251,255) and the fake and real tomatoes located at (230, 241).

The average quality indexes and the corresponding standard
deviations, calculated on all the testing data, are shown in
Tab. I. Tab. II reports the quality indexes for some specific
test cases, i.e., the chart and stuffed toy and the fake and real
tomatoes, and the average running times on all the testing data.
These tables clearly show that the GuidedNet outperforms the
other methods, even requiring less computational burden. In
Fig. 7, to show the visual comparison, we draw some pseudo-
color images of the HSI super-resolution results and the corre-
sponding error maps on the chart and stuffed toy and the fake

and real tomatoes test cases, from the CAVE dataset. It can
be observed from the error maps that CNMF, FUSE, GLP-HS,
LTTR, LTMR, and IR-TenSR introduce artifacts. Conversely,
the MHF-net and HSRnet, belonging to the DL class, perform
better than the above-mentioned traditional methods but still
performing unsatisfactorily on the reproduction of details.
Instead, the residual map between our method and the GT
image contains fewer errors for the compared approaches, thus
showing a better spatial detail reconstruction. Another analysis
is about spectral fidelity. In Fig. 8, to better compare the effects
of spectral preservation, we plot the spectral vectors for all
the compared approaches on the two mentioned test cases by
fixing a pixel to provide this analysis. The spectral vectors
generated by the proposed GuidedNet and the ground-truth
are very similar, demonstrating the ability of GuidedNet to
reduce spectral distortion.

TABLE II
QUALITY INDEXES VALUES AND THE AVERAGE RUNNING TIMES FOR THE
COMPARED METHODS ON TWO TEST CASES FROM THE CAVE DATASET. G

MEANS THAT THE METHOD EXPLOITS THE GPU, INSTEAD, C MEANS
THAT IT EXPLOITS THE CPU. THE BEST RESULTS ARE HIGHLIGHTED.

Method chart and stuffed toy fake and real tomatoes Time
PSNR SAM ERGAS SSIM PSNR SAM ERGAS SSIM s

CNMF 30.35 9.23 2.80 0.936 41.54 6.38 12.68 0.964 14.5(C)
FUSE 29.14 12.53 3.33 0.890 38.65 7.80 8.41 0.967 4.1(C)
GLP-HS 29.52 8.33 3.02 0.930 38.32 6.33 8.21 0.974 5.2(C)
LTTR 35.45 6.03 1.62 0.964 42.50 5.53 3.69 0.987 1543.6(C)
LTMR 35.78 6.47 3.08 0.965 42.33 5.51 6.96 0.987 812.6(C)
IR-TenSR 35.80 6.22 2.94 0.964 42.55 5.60 4.64 0.987 211.9(C)
MHF-net 43.02 5.17 0.72 0.991 48.73 6.79 1.69 0.991 0.75(G)
HSRnet 43.13 4.95 0.74 0.992 48.65 5.07 1.66 0.994 0.31(G)
GuidedNet 44.15 4.19 0.59 0.993 49.70 5.01 1.48 0.995 0.26(G)

B. Experiments on Harvard Dataset
Tab. III reports the quality indexes and the corresponding

standard deviations for all the compared methods on the Har-
vard testing data. We observe that the GuidedNet outperforms
all the compared approaches considering the PSNR, SAM, and
SSIM as metrics. For the ERGAS metric, GuidedNet ranks
second. Again, we show the visual comparison displaying
pseudo-color images and the related error maps on two specific
test cases, see Fig. 9. The GuidedNet yields better visual
results in agreement with the quantitative analysis.

C. Ablation Study
This section is about several ablation studies to assess

the effectiveness of the GuidedNet, mainly concerning pixel
shuffle, DFM, and loss function.

1) Pixel Shuffle
The GuidedNet employs pixel shuffle to upsample the LR-

HSI to a larger image size. To verify the effectiveness of
pixel shuffle compared with traditional methods, we change
the upsampling of the recursive DFMs to deconvolution while
keeping the remaining network structure to conduct compara-
tive experiments on both CAVE and Harvard training datasets.
The average quality indexes, shown in Tab. IV, demonstrate
that the current setting is the best choice for the HISR task.
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GT/LR-HSI CNMF [18] FUSE [57] GLP-HS [58] LTTR [19] LTMR [5] IR-TenSR [59] MHF-net [6] HSRnet [37] GuidedNet

Fig. 9. The first column: the ground-truths and the corresponding LR-HSI images (in pseudo-colors) for the house (R-23, G-18, B-14) (1st-2nd rows) and
the fence (R-20, G-21, B-13) (3rd-4th rows) test cases from the Harvard dataset. The 2nd-8th columns: the visual results and the related error maps for all
the compared approaches. A zoomed area has been added to aid the visual inspection.

TABLE III
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE RESULTS PROVIDED BY ALL THE COMPARED METHODS ON 10
TESTING IMAGES FROM THE HARVARD DATASET. THE BEST RESULTS ARE

HIGHLIGHTED.

Method PSNR SAM ERGAS SSIM
CNMF [18] 39.54±5.0 3.33±1.0 1.71±0.9 0.974±0.02
FUSE [57] 38.04±5.2 4.11±1.5 1.69±0.8 0.969±0.02
GLP-HS [58] 38.97±4.4 3.96±1.3 2.14±0.8 0.960±0.02
LTTR [19] 38.38±5.0 3.81±1.4 2.06±0.8 0.966±0.02
LTMR [5] 39.56±4.4 3.54±1.3 1.66±1.1 0.970±0.02
IR-TenSR [59] 38.84±4.9 3.97±1.5 1.87±0.7 0.966±0.02
MHF-net [6] 41.60±5.9 3.51±1.2 1.29±0.6 0.977±0.02
HSRnet [37] 41.52±6.1 2.96±1.0 1.18±0.4 0.980±0.02
GuidedNet 41.64±6.3 2.85±1.0 1.20±0.5 0.981±0.02

TABLE IV
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE RESULTS PROVIDED BY THE GUIDEDNET APPROACH USING
DECONVOLUTION OR PIXEL SHUFFLE (PS) FOR LR-HSI UPSAMPLING.

CAVE
Method PSNR SAM ERGAS SSIM
Deconv 44.87±3.6 4.17±1.4 1.01±0.7 0.991±0.01
PS 45.41±3.6 4.03±1.4 0.97±0.7 0.991±0.00

Harvard
Method PSNR SAM ERGAS SSIM
Deconv 36.43±7.5 6.03±3.8 3.86±2.9 0.945±0.06
PS 37.96±6.8 4.48±2.0 3.52±2.5 0.961±0.03

2) Efficient Residual Block
This section compares the proposed GuidedNet with the

same network using a general residual block. We only replace
the ERB structure with the general residual block, re-training
it on the same training dataset and with the same settings. Tab.
V shows the average running times and quality indexes on 11

TABLE V
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE RESULTS ON CAVE AND HARVARD DATASET BY OUR METHOD
USING THE TRADITIONAL RESBLOCK (RB) AND THE PROPOSED

EFFICIENT RESIDUAL BLOCK (ERB).

CAVE
Method PSNR SAM ERGAS SSIM Time(s)
RB 45.05±3.6 3.93±1.3 0.980±0.7 0.992±0.00 0.37
ERB 45.41±3.6 4.03±1.3 0.969±0.7 0.991±0.00 0.26

Harvard
Method PSNR SAM ERGAS SSIM Time(s)
RB 37.45±7.4 5.04±2.7 12.7±28.8 0.953±0.05 0.72
ERB 37.96±6.8 4.48±2.0 3.52±2.5 0.961±0.03 0.50

testing CAVE images and 10 Harvard testing images. It is
clear that the ERB can significantly reduce the computational
burden and improve the performance.

3) Multi-scale Loss
In this section, we investigate the role of the weights, αk, in

the loss function. We set some weights for the loss function,
then re-training the network and obtaining the results on the
CAVE dataset. A set of weights is tested on the same training
set. We will use the following notation: (w1, w2, w3), where
we have three layers with three different weights, i.e., w1,
w2, and w3. w1 is related to the first (initial) layer, w2 is
about the second (intermediate) layer, and w3 refers to the final
layer. For instance, if the {αk}k=1,...,3 are set to (0, 0, 1), no
initial and intermediate multi-scale losses are considered in the
loss function. The average quality indexes are in Tab. VI. We
can note that when we have that {αk}k=1,...,3 = (4, 2, 1), the
proposed method produces the best results avoiding instability
caused by too low or too high weights.

4) PMS and DDS
We modify the network to verify the validity of the FRB’s

progressive multi-scale structure (PMS) and the dual data
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stream (DDS). More specifically, the network uses only one
DFM with a scaling factor of 8 and does not downsample
multi-scale MSIs to obtain a network without PMS (w/o
PMS). Note that the GuidedNet (w/o PMS) requires an 8x
upsampling, and we expanded the final convolution kernel
size to 7 to avoid significant degradation in performance. The
DDS in the FRB is set to a single data stream by modifying
the DFM to make the input and output only having one
HSI. The experimental results using the same hyperparameters
are shown in Tab. VII. The results in the table indicate
that the performance significantly drops when we remove
the PMS. Moreover, removing the DDS structure results in
a performance reduction. The complete GuidedNet, holding
both the structures, yields the best outcome demonstrating the
importance of the PMS and the DDS structure in the proposed
GuidedNet.

TABLE VI
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE RESULTS ON THE CAVE DATASET USING DIFFERENT WEIGHTS
CONFIGURATIONS. THE BEST RESULTS ARE HIGHLIGHTED.

{αk}k=1,...,3 PSNR SAM ERGAS SSIM
(0, 0, 1) 44.55±8.9 3.97±1.2 1.06±0.8 0.991±0.00
(1, 2, 4) 43.55±4.5 3.96±1.1 1.25±1.2 0.990±0.01
(1, 1, 1) 45.09±3.7 3.82±1.2 0.984±0.7 0.991±0.00
(16, 4, 1) 44.93±3.5 4.31±1.5 1.01±0.7 0.990±0.00
(4, 2, 1) 45.41±3.6 4.03±1.3 0.969±0.7 0.991±0.00

TABLE VII
THE EFFECTS OF THE PMS AND THE DDS IN THE PROPOSED GUIDEDNET

ON THE CAVE DATASET. THE BEST RESULTS ARE HIGHLIGHTED.

Method PSNR SAM ERGAS SSIM

w/o PMS 43.57±4.9 4.43±1.3 1.38±1.2 0.989±0.01
w/o DDS 44.38±3.9 4.26±1.5 1.22±0.9 0.990±0.00

GuidedNet 45.41±3.6 4.03±1.3 0.97±0.7 0.991±0.00

D. Comparison with DL-based methods

In this section, the two DL-based HISR methods are com-
pared in more detail giving information about some aspects,
such as network generalization and complexity.

1) Network Generalization
Network generalization is crucial to demonstrate the effec-

tiveness of data-driven approaches. Thus, this section investi-
gates the network generalization ability of the MHF-net, the
HSRnet, and the GuidedNet. All the approaches are trained
on the CAVE training set and then tested on the Harvard
testing set. Tab. VIII reports the average quality indexes and
standard deviations. The proposed method outperforms the
other methods considering the PSNR and SSIM metrics, while
HSRnet shows advantages referring to the SAM and ERGAS
metrics.

2) Network Complexity
Tab. IX shows the network parameters number, the floating

point operations (FLOPs), and the training times of the three

TABLE VIII
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE PROPOSED GUIDENET AND THE MHF-NET TRAINED ON THE
CAVE TRAINING SET AND TESTED ON 10 TESTING IMAGES FROM THE

HARVARD DATASET. THE BEST RESULTS ARE HIGHLIGHTED.

Method PSNR SAM ERGAS SSIM
MHF-net [6] 37.24±7.5 6.21±3.9 17.27±39.84 0.943±0.06
HSRnet [37] 37.85±7.2 4.35±1.7 3.48±1.5 0.958±0.05
GuidedNet 37.96±6.8 4.48±2.0 3.52±2.5 0.961±0.03

compared approaches. It is easily remarked that the Guid-
edNet has fewer parameters and computations with respect
to the MHF-net and HSRnet. Furthermore, the GuidedNet
takes less training time, and, as discussed earlier, the average
testing times of the GuidedNet on both the CAVE and the
Harvard datasets are shorter. Moreover, we also compare the
hardware consumption and training times of the GuidedNet
without PMS and DDS. From Tab. IX, it can be seen that
PMS and DDS can improve performance without significantly
increasing hardware consumption.

TABLE IX
PARAMETER AMOUNT AND FLOATING-POINT OPERATIONS PER SECOND

(FLOPS) OF THE GUIDEDNET, THE MHF-NET AND THE HSRNET.

Method # Params. FLOPs Training time
MHF-net [6] 2.03M 53.27G 14.9× 104s
HSRnet [37] 1.98M 45.33G 2.6× 104s
GuidedNet (w/o PMS) 0.81M 34.68G 2.2× 104s
GuidedNet (w/o DDS) 0.69M 32.79G 2.1× 104s
GuidedNet 0.70M 35.31G 2.1× 104s

TABLE X
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE RESULTS PROVIDED BY THE ALL METHODS ON 11 TESTING
IMAGES FROM THE CAVE DATASET WITH A SCALING FACTOR OF 4×. THE

BEST RESULTS ARE HIGHLIGHTED.

Method PSNR SAM ERGAS SSIM
CNMF [18] 41.59±2.9 8.10±3.4 3.99±3.2 0.972±0.02
FUSE [57] 39.71±3.5 5.83±2.0 4.19±3.1 0.975±0.02
GLP-HS [58] 37.81±3.1 5.36±1.8 4.66±2.7 0.972±0.01
LTTR [19] 36.76±2.8 6.60±2.5 5.65±2.8 0.957±0.03
LTMR [5] 36.19±2.7 7.66±2.8 5.70±2.7 0.949±0.03
IR-TenSR [59] 36.38±2.6 8.7±3.0 5.52±2.6 0.948±0.03
MHF-net [6] 46.27±2.7 4.33±1.8 1.74±1.2 0.992±0.00
HSRnet [37] 47.71±2.7 2.95±1.0 1.39±0.8 0.994±0.00
GuidedNet 47.64±3.2 3.29±1.2 1.47±1.0 0.994±0.00

3) Results on Different Scaling Factors
By changing the number of the recursive DFMs, the pro-

posed GuidedNet can easily reach any super-resolution scaling
factor power of 2. In the previous experiments, we tested the
performance of HISR on a scaling factor equal to 8. This
section investigates fusion performance varying the scaling
factors (e.g., 4, 8, 16, and 32). Concerning the data simulation,
we only need to change the scaling factor of the downsampling
while keeping the other network settings unchanged. In Tab. X,
we compare the performance of the used benchmark exploiting
a scaling factor of 4 and measuring an average and the
corresponding standard deviations for all the quality indexes.
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GT/LR-HSI CNMF [18] FUSE [57] GLP-HS [58] LTTR [19] LTMR [5] IR-TenSR [59] MHF-net [6] HSRnet [37] GuidedNet

Fig. 10. HISR with a scaling factor 4×. The first column: the ground-truths and the corresponding LR-HSI images (in pseudo-colors) for the chart and
stuffed toy (R-2, G-11, B-5) (1st-2nd rows) and the flowers (R-27, G-21, B-26) (3rd-4th rows) test cases from the CAVE dataset. The 2nd-8th columns: the
visual results and the related error maps for all the compared approaches. A zoomed area has been added to aid the visual inspection.

This table shows that the HSRnet obtains the best results on
PSNR, SAM, and ERGAS, and our GuidedNet gets the best
SSIM. All the traditional approaches show a significant gap
comparing them with the two DL-based methods (i.e., the
MHF-net and the HSRnet) and the GuidedNet.

TABLE XI
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE RESULTS PROVIDED BY THE MHF-NET, THE HSRNET, AND THE
GUIDEDNET FOR 11 TESTING IMAGES ON THE CAVE DATASET

CONSIDERING AS SCALING FACTORS 16× AND 32×.

16×
Method PSNR SAM ERGAS SSIM
MHF-net [6] 43.33±3.5 5.58±1.9 0.627±0.45 0.987±0.01
HSRnet [37] 42.82±3.8 5.05±1.8 0.691±0.44 0.984±0.01
GuidedNet 43.39±3.9 4.70±1.5 0.605±0.47 0.989±0.01

32×
Method PSNR SAM ERGAS SSIM
MHF-net [6] 41.91±4.0 6.23±2.1 0.371±0.30 0.985±0.01
HSRnet [37] 39.64±2.8 6.85±2.4 0.507±0.34 0.969±0.02
GuidedNet 41.98±3.5 6.66±2.3 0.336±0.21 0.984±0.01

Moreover, we also depicted the corresponding pseudo-color
images of the HISR outputs in Fig.10. We can see that the
proposed GuidedNet obtains fewer residuals than the other
approaches demonstrating its effectiveness. Finally, Tab. XI
also reports the quantitative outcomes of the three DL-based
methods on larger scaling factors, i.e., 16 and 32. Some
other traditional methods cannot achieve the task of 32×,
or codes are not runnable on larger scale factors. Thus, we
here only add a comparison with MHF-net and HSRnet since
they can be run on larger scale factors and are also DL-based
methods. From Tab. XI, it is clear that the GuidedNet approach
shows competitive performance in these other configurations
demonstrating a good adaptation for addressing diverse scale

fusion problems. Compared to the scale factor of 4, the
performance of HSRnet decreases significantly as the scale
factor increases because of the used upsampling strategy.

TABLE XII
AVERAGE QUALITY INDEXES WITH THE RELATED STANDARD DEVIATIONS

OF THE PANSHARPENING RESULTS PROVIDED BY DIFFERENT METHODS
FOR 1258 TESTING IMAGES ON THE WORLDVIEW-3 DATASET. THE BEST

VALUES ARE HIGHLIGHTED IN BOLDFACE.

Method SAM ERGAS SCC Q8
PNN [48] 4.00±1.3 2.72±1.0 0.962±0.05 0.908±0.11
PanNet [47] 4.09±1.3 2.95±1.0 0.949±0.05 0.894±0.11
DMDnet [49] 3.97±1.2 2.86±1.0 0.953±0.04 0.900±0.11
FusionNet [52] 3.74±1.2 2.57±0.9 0.958±0.05 0.914±0.11
GuidedNet 3.50±1.2 2.39±0.9 0.963±0.04 0.922±0.10

E. Extension to Other Applications

As mentioned before, the GuidedNet is a general fusion
framework that can effectively fuse an LR input with HR
guidance to reach a higher resolution. Thanks to the proposed
general paradigm, we can extend the GuidedNet to other
resolution enhancement tasks when there is a HR guidance.
In what follows, we apply GuidedNet to two image resolution
enhancement problems, i.e., remote sensing pansharpening and
single image super-resolution (SISR).

1) Pansharpening
Pansharpening is about fusing a low-resolution multispectral

image (LR-MSI) and a panchromatic (PAN) image with high
spatial resolution, aiming to obtain an HR-MSI with the
exact spatial resolution as the PAN image. More details about
pansharpening can be found in a recent review literature
[66]. The pansharpening task shares some similarities with
the MSI/HSI fusion task. Therefore, following the MSI/HSI
fusion framework of the GuidedNet, we only need to replace
the HR-MSI in Fig. 2 with the PAN image and substitute the
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Fig. 11. Visual comparison of pansharpening products on the Rio datasets acquired by the WorldView-3 sensor. Two zoomed areas have been added to aid
the visual inspection.
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Fig. 12. The extended architecture of the GuidedNet for the 4× SISR task.
EDSR has been pre-trained and its results are directly used as input.
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Fig. 13. Results provided by the benchmark with a scaling factor of 4 for
the baby and the butterfly test cases from the Set5 dataset. A zoomed area
has been added to aid the visual inspection.

LR-HSI in Fig. 2 with the LR-MSI. It is worth noting that
the scaling factor for pansharpening is often 4 (at least for the
primary adopted sensors). Thus, we reduced the number of
recursive DFMs to 2. We employed an 8-band multispectral
dataset acquired by the WorldView-3 (WV-3) sensor for the
training. The process of building training and testing data is
described in [52]. Thus, we have 8806 PAN (64×64), LR-MSI
(16×16×8), and HR-MSI (64×64×8) image patch pairs as
training set. For the sake of brevity, we do not introduce details
about the data used. Readers can refer to [52] and [67] for
more information. Moreover, the quality of the fusion results
is evaluated using the spectral angle mapper (SAM) [63], the

TABLE XIII
QUALITY INDEXES OF THE RESULTS PROVIDED BY THE BENCHMARK ON

THE SET5 DATASET FOR SISR WITH SCALING FACTOR OF 4×.

Set5
Method bicubic

PSNR/SSIM
EDSR [40]

PSNR/SSIM
GuidedNet

PSNR/SSIM
baby 31.83/0.858 32.54/0.869 33.64/0.892
bird 30.05/0.870 31.34/0.898 34.00/0.934

butterfly 22.15/0.734 23.54/0.801 27.30/0.901
head 32.67/0.754 32.70/0.764 32.91/0.794

woman 26.44/0.831 27.56/0.861 30.02/0.907
average 28.43/0.810 29.54/0.839 31.57/0.886

erreur relative globale adimensionnelle de synthèse (ERGAS)
[64], the spatial correlation coefficient (SCC) [68], and the
universal image quality index for eight-band images (Q8) [69].

For this application, we compare our approach with four
state-of-the-art DL-based pansharpening methods, i.e., PNN
[48], PanNet [47], DMDnet [49], and FusionNet [52]. Tab.
XII reports the outcomes for all the compared approaches on
1258 randomly selected training samples. From the average
QIs and the related standard deviations shown in Tab. XII,
it is clear that the GuidedNet yields the best quantitative
performance on all the indicators, i.e., SAM, ERGAS, SCC,
and Q8. Besides, for qualitative comparison, we augment
the benchmark even including a CS-based approach, i.e., the
BDSD-PC, and an MRA-based method, i.e., the GLP-Reg.
Fig. 11 depicts the results on WV-3, indicating that the image
reconstructed by the proposed method is more precise than
the comparison methods. The GuidedNet’s satisfactory results
on pansharpening demonstrate its ability to address different
tasks.

2) Single Image Super-Resolution
The GuidedNet fusion framework can also be extended to

the single image super-resolution (SISR) problem. However,
the proposed fusion framework requires high-resolution guid-
ance to enhance the resolution. Instead, the SISR has a unique
input, the LR image. Therefore, we need to introduce high-
resolution guidance into the framework. Here, we use the
outcome of a competitive SISR method, i.e., the DL-based
SISR approach EDSR [40], to replace the HR-MSI in the
HGB in Fig. 2. Fig. 12 depicts the GuidedNet structure for the
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4× SISR task modified by the addition of EDSR. EDSR has
been pre-trained using the DIV2K dataset by Adam optimizer,
and we only utilize its testing outcomes as input in the HGB
branch of our GudedNet. It is not necessary to re-train the
EDSR again in GuidedNet. The training parameters are the
default ones in [40], i.e., the batch size is set to 16, and the
learning rate is initialized to 0.0001 halved at every 1 × 106

batch updates. The scaling factor is 4. Thus, the GuidedNet for
SISR requires two recursive DFMs. The proposed approach is
again trained using the DIV2K dataset [70].

After ending the training of the GuidedNet, the trained
network is evaluated on the Set5 testing dataset. Tab. XIII
reports the average PSNR and SSIM values of the bicubic
interpolation, the state-of-the-art EDSR, and the GuidedNet.
The proposed method can significantly improve the results of
EDSR, even outperforming the classical bicubic interpolator.
By looking at the visual comparison shown in Fig. 13, the
GuidedNet approach holds sharper details, especially compar-
ing them with the ones of the baseline method, EDSR. In this
case, we consider the outcome of the EDSR method into the
HGB (viewed as a plug-in module). However, we can take
any baseline SISR method into our GuidedNet framework to
enhance the SR performance.

V. CONCLUSIONS

This paper proposed a general CNN fusion framework,
GuidedNet, to deal with the HISR problem thanks to high-
resolution guidance. Motivated by the specific problem (i.e.,
the HISR), this framework has been formulated using two
branches: the HGB and the FRB. Besides, by considering
some strategies, such as the recursive mechanism and the pro-
gressive technique, the proposed GuidedNet can significantly
reduce the network parameters getting high-quality outcomes.
Extensive experiments on several hyperspectral image datasets
demonstrate the superiority of the proposed GuidedNet, com-
paring it with recent state-of-the-art approaches. Furthermore,
discussions about several aspects, such as network generaliza-
tion, network complexity, robustness with respect to variations
of scaling factors, and time comparison, have been provided
to the readers. Finally, the proposed fusion framework has
been easily extended to other resolution enhancement tasks,
i.e., remote sensing pansharpening and SISR.
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