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ABSTRACT
In image fusion tasks, images obtained from different sources ex-
hibit distinct properties. Consequently, treating them uniformly
with a single-branch network can lead to inadequate feature extrac-
tion. Additionally, numerous works have demonstrated that multi-
scaled networks capture information more sufficiently than single-
scaled models in pixel-level computer vision problems. Consider-
ing these factors, we propose U2Net, a spatial-spectral-integrated
double U-shape network for image fusion.TheU2Net utilizes a spa-
tial U-Net and a spectral U-Net to extract spatial details and spec-
tral characteristics, which allows for the discriminative and hierar-
chical learning of features from diverse images. In contrast to most
previous works that merely employ concatenation to merge spa-
tial and spectral information, this paper introduces a novel spatial-
spectral integration structure called S2Block, which combines fea-
ture maps from different sources in a logical and effective way. We
conduct a series of experiments on two image fusion tasks, includ-
ing remote sensing pansharpening and hyperspectral image super-
resolution (HISR). The U2Net outperforms representative state-of-
the-art (SOTA) approaches in both quantitative and qualitative eval-
uations, demonstrating the superiority of our method. The code is
available at https://github.com/PSRben/U2Net.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
image fusion, pansharpening, hyperspectral image super-resolution,
deep learning, U-Net

∗Equal contribution.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10…$15.00
https://doi.org/10.1145/3581783.3612084

LRMS

PAN HRMS

Pansharpening

LRHS

RGB HRHS

HISR

( )a

( )b

FusionNet Ours

( )c

OursFusFormer

( )d

In
te
n
si
ty

A
EM

Figure 1: (a) The schematic diagram of pansharpening. (b)
The schematic diagram of HISR. (c) The pansharpened im-
ages and their absolute error maps (AEMs) of FusionNet [3]
and U2Net. (d) The acquired HRHS images and correspond-
ingAEMs of Fusformer [11] andU2Net. It is obvious that our
method yields the darker AEMs on both image fusion tasks,
indicating its superiority over other competitors.
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1 INTRODUCTION
Due to hardware limitations, sensors can only acquire high reso-
lution images with sparse spectral information and low resolution
images with copious spectral data. Image fusion aims to combine
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these two kinds of images to produce high resolution results with
a wealth of spectral information. Over recent years, image fusion
algorithms have been widely used in fields such as remote sens-
ing [22], medical imaging [12], and computer vision [39], proving
high application values. This work mainly investigates two image
fusion tasks: remote sensing pansharpening and hyperspectral im-
age super-resolution (HISR). As illustrated in Fig. 1, pansharpening
involves merging a panchromatic (PAN) image with a low resolu-
tion multispectral (LRMS) image to create a high resolution mul-
tispectral (HRMS) outcome, while HISR aims at generating a high
resolution hyperspectral (HRHS) result from an RGB image and a
low resolution hyperspectral (LRHS) image.

The traditional pansharpening works can be roughly divided
into three categories [3], i.e., the component substitution (CS) ap-
proaches, the multi-resolution analysis (MRA) methods, and the
variational optimization-based (VO) techniques. The CS-based ap-
proaches [2, 21] project the LRMS image into a transformed do-
main, where the spatial information can be viewed as a component.
By replacing this component with the PAN image, a desired HRMS
result is generated. Although the CS-based approaches offer sim-
ple operation, low computational burden, and high spatial fidelity,
they often suffer from significant spectral distortions. The MRA-
based methods [24, 25] utilize a multi-resolution analysis frame-
work to inject spatial details from the PAN image into the LRMS
image, resulting in an HRMS output. While these methods main-
tain spectral characteristics effectively, they may encounter spatial
distortion. The VO-based techniques [10, 18, 33, 38] exploit differ-
ent optimization algorithms to solve the pansharpening issue and
generally outperform CS-based and MRA-based approaches. Nev-
ertheless, these techniques have problems such as high computa-
tional burden and complex parameterization, which restrict their
practical implementation. As for the HISR task, conventional ap-
proaches focus on exploring the inherent relationship between the
RGB and LRHS images and mainly establish models based on opti-
mization to obtain the HRHS image.

Over the past few years, deep learning (DL) has emerged as
a popular solution for image fusion problems. Thanks to the ex-
ceptional feature learning capacity of neural networks, numerous
DL-based methods have yielded impressive outcomes. The classic
DL-based approaches [9, 11, 13, 34] apply concatenation to com-
bine images from different sources. The cascaded output is then
fed into a single-branch, single-scale network to generate a desired
outcome. However, this strategy suffers from several significant
defects. Firstly, the concatenation operation fails to consider the
distinctions between two types of images, causing insufficient in-
formation integration. Secondly, the single-branch design leads to
inefficient feature extraction as it treats spatial and spectral char-
acteristics equally. Thirdly, some deep-level information may be
ignored due to single-scale image processing.

To address the abovementioned concerns, we propose a spatial-
spectral-integrated double U-shape network called U2Net for im-
age fusion. The U2Net utilizes a spatial U-Net to capture spatial de-
tails from the PAN/RGB image and employs a spectral U-Net to ex-
tract spectral characteristics from the LRMS/LRHS image. This en-
ables our method to learn diverse features in a discriminative and
hierarchical manner. Besides, a novel structure named S2Block is
introduced to integrate the two kinds of information. In the S2Block,

(a)

C

PAN

LRMS

HRMS

(b)

C

PAN

LRMS

HRMS

S2Block

Spectral U-Net

S2Block S2Block S2Block S2Block

Spatial U-NetPAN

LRMS

HRMS

(c)

C ConcatenationDelivery Forward PropagationSkip Connection Addition

Information Interaction Flow

Figure 2: The structural comparison between existing DL-
based image fusion works and U2Net (demonstrated with
the pansharpening task). (a) The overall architecture of
single-branch, single-scale methods, such as PanNet [34]
and Fusformer [11]. These methods extract features at one
specific scale, thus ignoring some deep-level information.
(b) The overall architecture of single-branch, multi-scale ap-
proaches, including DCFNet [30] and MUCNN [27]. (c) The
overall structure of the double-branch, multi-scale U2Net.

we first generate two sets of square matrices, namely spatial self-
correlation matrices and spectral self-correlation matrices, to better
describe the spatial and spectral information. Subsequently, a se-
ries of operators are applied to combine the squarematrices, spatial
feature maps, and spectral feature maps, producing a high-quality
fusion result. The contributions of this work are as follows:

• A double U-shape network architecture consisting of a spa-
tial U-Net and a spectral U-Net is created for image fusion
tasks. This framework enables the effective learning of spa-
tial details and spectral characteristics in a discriminative
and hierarchical manner.

• Anovel spatial-spectral integration structure called S2Block
is designed to sufficiently merge feature maps from diverse
images in a logical and comprehensive way.

• The spatial U-Net and spectral U-Net are connected through
S2Blocks, composing our U2Net. The proposed method is
tested on different image fusion tasks and achieves SOTA
performance in quantitative and qualitative assessments.

2 RELATEDWORK
DL-basedMethods. In recent years, a number of DL-based image
fusion methods have been proposed. These methods outperform
traditional works due to the superior capabilities of DL in feature
extraction and nonlinear fitting. For pansharpening, the pioneer-
ing work is the PNN [8] which utilizes three convolutional layers
to achieve the best performance at that time. Since then, impres-
sive methods such as PanNet [34], DiCNN [9], and FusionNet [3]
have successively emerged, further validating the potential of DL
in the field of pansharpening. There are also many exceptional DL-
based works in the field of HISR, including ResTFNet [17], SSRNet
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Figure 3: The overall structure of the proposed method. The U2Net employs a spatial U-Net and a spectral U-Net to extract
spatial details and spectral characteristics, respectively. Besides, feature maps from different sources are integrated through
the well-designed S2Blocks. The notations in this figure are explained in Section 3.1.

[36], and Fusformer [11]. However, due to unreasonable structural
design, most DL-based image fusion approaches suffer from draw-
backs such as spectral distortion and poor generalization ability.
U-Net. The U-shape network is put forward by [19] for the pixel-
wise segmentation problem. It utilizes a series of symmetric down-
sampling and up-sampling layers to capture information hierarchi-
cally.The U-shape network boasts a strong feature extraction capa-
bility, as evidenced by its extensive application in many pixel-level
computer vision tasks. Recently, U-Net has also been introduced
into image fusion tasks, and the representatives include DCFNet
[30] and MUCNN [27]. It is worth noting that these methods only
employ concatenation tomerge images fromdifferent sources.Then,
the cascaded output is fed into a single-branch U-shape network
for feature extraction.This structural design can lead to insufficient
information fusion and inefficient feature learning, thus requiring
numerous parameters to attain satisfactory outcomes.
Motivation. Images obtained fromdifferent sensors possess unique
properties, e.g., PAN/RGB images exhibit rich spatial details, whereas
LRMS/LRHS images contain awealth of spectral information.There-
fore, it is imperative to consider their differences when perform-
ing image fusion, which aims to produce a fused outcome from
the two types of inputs. However, the majority of previous studies
employ a single-branch network to uniformly extract spatial and
spectral characteristics, as illustrated in Fig. 2. Furthermore, these
approaches merely apply concatenation to combine the two kinds
of images. Consequently, they suffer from significant issues, such
as inefficient feature learning, poor generalization ability, and in-
sufficient information integration. The above situation motivates
us to propose U2Net, which captures spatial and spectral features
discriminately and hierarchically using two U-shape networks. Be-
sides, the well-designed S2Block enables the effective integration
of feature maps from different sources.

3 THE PROPOSED METHOD
3.1 Notations
The PAN/RGB image is represented as A ∈ R𝐻×𝑊 ×𝑐 , where 𝐻 ,
𝑊 , and 𝑐 denote height, width, and input channel, respectively.
B ∈ Rℎ×𝑤×𝐶 represents the LRMS/LRHS image, in which ℎ = 𝐻

4
and𝑤 = 𝑊

4 . Besides,𝐶 denotes the spectral band. The up-sampled
LRMS/LRHS image, desiredHRMS/HRHS image, and ground-truth
(GT) image are represented as B𝑈 ∈ R𝐻×𝑊 ×𝐶 , O ∈ R𝐻×𝑊 ×𝐶 , and
X ∈ R𝐻×𝑊 ×𝐶 , respectively.

3.2 U2Net
To learn features from diverse images in a discriminative and hier-
archical manner, we develop a double U-shape network architec-
ture consisting of a spatial U-Net and a spectral U-Net, as shown in
Fig. 3. The spatial U-Net focuses on extracting spatial details from
A, while the spectral U-Net is designed to collect the spectral data
in B. In order to capture sufficient deep-level information under
limited network parameters, we process features maps at three dis-
tinct scales, i.e., 𝐻 ×𝑊 ×𝑆 (𝑆 denotes the channel number of input
feature maps), 𝐻2 × 𝑊

2 × 2𝑆 , and 𝐻
4 × 𝑊

4 × 4𝑆 . Thus, the learning
process of our U-Net consists of five stages. Each stage employs
a neural network to extract information from the feature map of
a particular size. According to the structural symmetry of the U-
shape network, feature maps of sizes 𝐻 ×𝑊 × 𝑆 , 𝐻2 × 𝑊

2 × 2𝑆 , and
𝐻
4 ×

𝑊
4 ×4𝑆 are processed in stages one and five, stages two and four,

and stage three, respectively. Between each pair of adjacent stages,
there exists a step that involves operations for down-sampling/up-
sampling and dimension transformation. In the initial two steps,
we utilize 2 × 2 convolution kernels with a stride of 2 for down-
sampling and apply depth-wise convolutional layers to augment
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Figure 4: The structure of S2Block. To enhance the description of spatial details and spectral characteristics, we begin by
producing the spatial self-correlationmatrices C𝑠𝑝𝑎 and spectral self-correlationmatrices C𝑠𝑝𝑒 . After that, a series of operators
are employed to integrate spatial and spectral information. The notations in this figure are explained in Section 3.3.

the channel numbers of feature maps. For the final two steps, we
use transposed convolutional layers with 2×2 kernels and a stride
of 2 to achieve both up-sampling and channel reduction. In addi-
tion, the outputs of stages one and two are summedwith the inputs
of stages five and four, respectively.

This paragraph describes how the spatial U-Net captures spatial
details. Firstly, a convolutional layer with 3×3 kernels is employed
to increase the dimension of A, generating the input for the spa-
tial U-Net. Then, in the initial four stages of the spatial U-shape
network, we utilize ResNet blocks (ResBlock) to extract spatial in-
formation. Each ResBlock comprises two convolutional layerswith
3× 3 kernels and a layer of leaky rectified linear units (LReLU). To
avoid gradient disappearance, a skip connection is established be-
tween the input and output.

This paragraph explains how the spectral U-Net is utilized to
construct O. Firstly, we up-sample B to obtain B𝑈 with high spa-
tial resolution. Next, we employ 3 × 3 convolution kernels to aug-
ment the channel number of B𝑈 , producing the input for the spec-
tral U-Net. At each stage of the spectral U-shape network, the spec-
tral feature map is combined with the spatial one using S2Block,
resulting in a fused outcome. Then, we apply the multi-layer per-
ception (MLP) to acquire spectral characteristics from the fused
outcome while preserving spatial information. The MLP primarily
consists of two fully connected layers and an LReLU layer. Similar
to ResBlock, the input is linked to the output. Upon obtaining the
output of the final stage, we utilize a convolutional layer with 3×3
kernels to reconstruct it into a feature map of the size 𝐻 ×𝑊 ×𝐶 .
The feature map is then added to B𝑈 , generating the desired O.

3.3 S2Block
Most existing image fusion approaches apply concatenation to in-
tegrate spatial and spectral information. However, this operation

disregards the distinctions between the two types of images, re-
sulting in unsatisfactory fusion outcomes. To overcome this limi-
tation, we develop a novel structure called S2Block, as illustrated in
Fig. 4, for effective spatial-spectral integration. Next, we will take
the S2Block in the first stage of the spectral U-Net as an example
to explain this structure.

The spatial and spectral feature maps input to the S2Block are
denoted as F 𝑠𝑝𝑎 ∈ R𝐻×𝑊 ×𝑆 and F 𝑠𝑝𝑒 ∈ R𝐻×𝑊 ×𝑆 . For F 𝑠𝑝𝑎 ,
we first reshape it into a matrix denoted M𝑠𝑝𝑎 ∈ R𝐻𝑊 ×𝑆 , with
each row representing the feature vector of a particular spatial lo-
cation. Then, the M𝑠𝑝𝑎 is simultaneously processed by two par-
allel fully connected layers, producing two matrices of the same
size. To better utilize the information on feature vectors, we divide
each matrix evenly into several smaller parts by column. Tech-
nically, the matrices are reshaped into two tensors, denoted as
T𝑎 ∈ R𝐻𝑊 ×𝑆′×𝑁 and T𝑏 ∈ R𝐻𝑊 ×𝑆′×𝑁 , where𝑁 is the number of
small parts and 𝑆 ′ = 𝑆

𝑁 . For F 𝑠𝑝𝑒 , we first reshape it into a matrix
denotedM𝑠𝑝𝑒 ∈ R𝐻𝑊 ×𝑆 . Similarly, theM𝑠𝑝𝑒 is transformed into
two tensors, denoted as T 𝑐 ∈ R𝐻𝑊 ×𝑆′×𝑁 and T𝑑 ∈ R𝐻𝑊 ×𝑆′×𝑁 .

This paragraph explains the spatial-spectral integration opera-
tion (SSIO), which is the core of S2Block. In SSIO, we first produce
two sets of square matrices, namely spatial self-correlation matri-
ces and spectral self-correlation matrices, to accurately depict spa-
tial details and spectral characteristics. Next, a series of operators
are utilized to merge the square matrices with the spatial and spec-
tral data, resulting in a fusion outcome. Specifically, we represent
the set of spatial self-correlation matrices as C𝑠𝑝𝑎 ∈ R𝐻𝑊 ×𝐻𝑊 ×𝑁 ,
and the production of its 𝑖𝑡ℎ square matrix is expressed as:

C𝑠𝑝𝑎 (·, ·, 𝑖) = Softmax
(T𝑎 (·, ·, 𝑖){T𝑏 (·, ·, 𝑖)}𝑇

√
𝑆 ′

)
, (1)

where C𝑠𝑝𝑎 (·, ·, 𝑖) ∈ R𝐻𝑊 ×𝐻𝑊 denotes the 𝑖𝑡ℎ matrix of C𝑠𝑝𝑎 .
T𝑎 (·, ·, 𝑖) ∈ R𝐻𝑊 ×𝑆′ and T𝑏 (·, ·, 𝑖) ∈ R𝐻𝑊 ×𝑆′ represent the 𝑖𝑡ℎ
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Table 1:Quantitative results on 20 reduced-resolution and 20 full-resolution samples of WV3. (Red: best; Blue: second best).

Method
Reduced-Resolution Full-Resolution

PSNR(±std) Q8(±std) SAM(±std) ERGAS(±std) D𝜆 (±std) Ds(±std) QNR(±std)

BT-H [1] 33.080±2.880 0.832±0.094 4.920±1.425 4.580±1.496 0.0574±0.0232 0.0810±0.0374 0.8670±0.0540
TV [18] 32.381±2.328 0.795±0.120 5.692±1.808 4.855±1.434 0.0234±0.0061 0.0393±0.0227 0.9383±0.0269

MTF-GLP-HPM [25] 33.095±2.800 0.835±0.092 5.333±1.761 4.616±1.503 0.0206±0.0082 0.0630±0.0284 0.9180±0.0346
MTF-GLP-FS [24] 32.963±2.753 0.833±0.092 5.315±1.765 4.700±1.597 0.0197±0.0078 0.0630±0.0289 0.9187±0.0347
BDSD-PC [21] 32.970±2.784 0.829±0.097 5.428±1.822 4.697±1.617 0.0625±0.0235 0.0730±0.0356 0.8698±0.0531

PNN [8] 37.313±2.646 0.893±0.092 3.677±0.762 2.681±0.647 0.0213±0.0080 0.0428±0.0147 0.9369±0.0212
PanNet [34] 37.346±2.688 0.891±0.093 3.613±0.766 2.664±0.688 0.0165±0.0074 0.0470±0.0210 0.9374±0.0271

MSDCNN [29] 37.068±2.686 0.890±0.090 3.777±0.803 2.760±0.689 0.0230±0.0091 0.0467±0.0199 0.9316±0.0271
DiCNN [9] 37.390±2.761 0.900±0.087 3.592±0.762 2.672±0.662 0.0362±0.0111 0.0462±0.0175 0.9195±0.0258
BDPN [37] 36.191±2.702 0.871±0.100 4.201±0.857 3.046±0.732 0.0364±0.0142 0.0459±0.0192 0.9196±0.0308

FusionNet [3] 38.047±2.589 0.904±0.090 3.324±0.698 2.465±0.644 0.0239±0.0090 0.0364±0.0137 0.9406±0.0197
MUCNN [27] 38.262±2.703 0.911±0.089 3.206±0.681 2.400±0.617 0.0258±0.0111 0.0327±0.0140 0.9424±0.0205
LAGNet [14] 38.592±2.778 0.910±0.091 3.103±0.558 2.292±0.607 0.0368±0.0148 0.0418±0.0152 0.9230±0.0247
PMACNet [16] 38.595±2.882 0.912±0.092 3.073±0.623 2.293±0.532 0.0540±0.0232 0.0336±0.0115 0.9143±0.0281

U2Net 39.117±3.009 0.920±0.085 2.888±0.581 2.149±0.525 0.0178±0.0072 0.0313±0.0075 0.9514±0.0115

Ideal value +∞ 1 0 0 0 0 1

matrices in T𝑎 and T𝑏 , respectively. Besides, 𝑇 defines the trans-
pose operation and Softmax(·) stands for the Softmax function.
The spatial self-correlation matrices offer a concrete and intuitive
representation of spatial information, as each value of C𝑠𝑝𝑎 (·, ·, 𝑖)
signifies the similarity between two spatial locations in A. The
set of spectral self-correlation matrices is represented as C𝑠𝑝𝑒 ∈
R𝑆

′×𝑆′×𝑁 , and we express its 𝑖𝑡ℎ matrix as:

C𝑠𝑝𝑒 (·, ·, 𝑖) = Softmax
( {T 𝑐 (·, ·, 𝑖)}𝑇T𝑑 (·, ·, 𝑖)

√
(𝑆′)3
𝐻𝑊

)
, (2)

where C𝑠𝑝𝑒 (·, ·, 𝑖) ∈ R𝑆′×𝑆′ denotes the 𝑖𝑡ℎ square matrix of C𝑠𝑝𝑒 .
T 𝑐 (·, ·, 𝑖) ∈ R𝐻𝑊 ×𝑆′ and T𝑑 (·, ·, 𝑖) ∈ R𝐻𝑊 ×𝑆′ stand for the 𝑖𝑡ℎ ma-
trices in T 𝑐 and T𝑑 . Since each value of C𝑠𝑝𝑒 (·, ·, 𝑖) represents the
similarity between two channels of B, the spectral self-correlation
matrices provide a tangible and intuitive description of spectral
characteristics. Upon obtaining the C𝑠𝑝𝑎 (·, ·, 𝑖) and C𝑠𝑝𝑒 (·, ·, 𝑖), we
combine them with the spatial and spectral data, expressed as:

T 𝑓 𝑢𝑠 (·, ·, 𝑖) = {C𝑠𝑝𝑎 (·, ·, 𝑖)T 𝑐 (·, ·, 𝑖)} ⊙ {(T𝑏 (·, ·, 𝑖)C𝑠𝑝𝑒 (·, ·, 𝑖)},
(3)

where T 𝑓 𝑢𝑠 ∈ R𝐻𝑊 ×𝑆′×𝑁 denotes the fused output that contains
both spatial and spectral information. T 𝑓 𝑢𝑠 (·, ·, 𝑖) ∈ R𝐻𝑊 ×𝑆′ rep-
resents the 𝑖𝑡ℎ matrix in T 𝑓 𝑢𝑠 . Additionally, ⊙ defines the element-
wise multiplication. Compared with other fusion techniques like
concatenation, the SSIO enables effective and comprehensive inte-
gration of spatial details and spectral characteristics.

After acquiring T 𝑓 𝑢𝑠 , we reshape it into a fusion matrix, de-
noted as M 𝑓 𝑢𝑠 ∈ R𝐻𝑊 ×𝑆 . Subsequently, we employ a fully con-
nected layer to process the M 𝑓 𝑢𝑠 and convert it into a spatial-
spectral-integrated feature map, represented as F 𝑓 𝑢𝑠 ∈ R𝐻×𝑊 ×𝑆 .

Besides, please refer to the Sup. Mat. for a comprehensive expla-
nation regarding the relationship between our S2Block and multi-
head attention in Transformer [20].

3.4 Loss Function
The main contributions of this work focus on the network archi-
tecture, thus we only employ the commonly used ℓ1 loss function
for network training, shown as follows:

L𝑜𝑠𝑠 =
1
𝑀

𝑀∑
𝑚=1

∥ 𝑓Θ (A {𝑚},B {𝑚}) − X {𝑚} ∥1, (4)

whereA {𝑚} ,B {𝑚} , andX {𝑚} represent the𝑚𝑡ℎ PAN/RGB image,
LRMS/LRHS image, and GT image in the training dataset. 𝑓Θ (·)
denotes the U2Net with learnable parameters Θ, and𝑀 is the total
number of training examples. Besides, ∥ · ∥1 defines the ℓ1 norm.

4 EXPERIMENTS FOR PANSHARPENING
To demonstrate the effectiveness of our method, we conduct a se-
ries of experiments on datasets acquired by WorldView-3 (WV3)
and WorldView-2 (WV2) satellites. The U2Net is compared with
several recent SOTA pansharpening approaches.

4.1 Experiment Settings
Datasets. For the pansharpening problem, we train the DL-based
methods on a dataset acquired by WV3 which contains 10000 sam-
ples (90% for training and 10% for validation). Each sample consists
of a PAN/LRMS/GT image pair of sizes 64 × 64, 16 × 16 × 8, and
64 × 64 × 8, respectively. The PAN images have a spatial resolu-
tion of 0.3m, while the LRMS images have a spatial resolution of
1.2m. Additionally, the LRMS bands comprise four standard colors
(RGB and near-infrared 1) and four new bands (coastal, yellow, red
edge, and near-infrared 2). We compare our U2Net with represen-
tative pansharpening approaches using various datasets acquired
by WV3 and WV2. The testing datasets are categorized into two
classes, i.e., the reduced-resolution datasets and the full-resolution
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Figure 5:Qualitative evaluation results on a reduced-resolution sample acquired byWV3.Thenatural colormaps are presented
in the first and third rows, while the corresponding AEMs are listed in the second and fourth rows.

datasets. The former includes PAN/LRMS/GT image pairs with di-
mensions 256 × 256, 64 × 64 × 8, and 256 × 256 × 8, while the
latter consists of PAN/LRMS image pairs of sizes 512 × 512 and
128 × 128 × 8. All datasets used in this section are from the Pan-
Collection proposed by [4]. The PanCollection offers multiple pan-
sharpening datasets, accompanied by detailed descriptions of data
simulation, and can be downloaded from this website1.
Benchmarks. We compare our method with recent SOTA works
consisting of five traditional approaches: BT-H [1], TV [18], MTF-
GLP-HPM [25], MTF-GLP-FS [24], and BDSD-PC [21]; and nine
DL-based methods: PNN [8], PanNet [34], MSDCNN [29], DiCNN
[9], BDPN [37], FusionNet [3], MUCNN [27], LAGNet [14], and
PMACNet [16]. To ensure fairness, we train DL-based methods us-
ing the same Nvidia GPU-3090 and PyTorch environment.
EvaluationMetrics. Following the research standard of pansharp-
ening, we utilize four metrics to evaluate the results on reduced-
resolution datasets, including PSNR, Q8 [7], SAM, and ERGAS [26].
As for full-resolution datasets, we apply 𝐷𝜆 , 𝐷𝑠 , and QNR indexes
[23] for evaluation.
Parameters Tuning. For the pansharpening task, we set the val-
ues of 𝑆 and 𝑆 ′ in our network to 32 and 16, respectively. Addi-
tionally, the value of N depends on the 𝑆 and 𝑆 ′. On training the
U2Net, the initial learning rate, epoch, and batch size are set to
0.001, 360, and 16, respectively. We select Adam as the optimizer,
and the learning rate is reduced by half every 100 epochs. As for
other DL-based methods, we utilize the default settings in related
papers or codes to train the networks.
1https://github.com/liangjiandeng/PanCollection

4.2 Results on WV3 Datasets
Reduced-Resolution Assessment. We assess the performances
of representative approaches and our method, using 20 reduced-
resolution samples acquired by WV3. The quantitative evaluation
outcomes are presented in Tab. 1, and the proposed method ob-
tains the best average results on all quality indexes. Additionally,
the qualitative evaluation outcomes on one of the 20 samples are
shown in Fig. 5, alongside the GT. As the darker absolute error map
(AEM) indicates a better result, our U2Net outperforms other ap-
proaches. The experimental outcomes above demonstrate that our
method is superior to recent SOTA pansharpening works.
Full-Resolution Assessment. To prove the practical usefulness
of our method, we conduct experiments on 20 full-resolution sam-
ples acquired by WV3. The quantitative evaluation results are pre-
sented in Tab. 1. The U2Net achieves the best overall performance,
proving the high application value of our method.

4.3 Generalization
Generalization ability is a crucial concern for DL-based methods
in the pansharpening task. If there is a significant difference be-
tween the testing and training datasets, some approaches may not
perform well. We use 20 reduced-resolution samples acquired by
WV2 to test all DL-based models trained on the WV3 dataset. The
quantitative evaluation outcomes are presented in Tab. 2, and the
U2Net yields the best results on all four metrics, indicating the
strong generalization capability of our method. Notably, the in-
flexible and unreasonable structure of PMACNet [16] significantly

https://github.com/liangjiandeng/PanCollection
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Table 2: Quantitative evaluation results of DL-based meth-
ods on 20 reduced-resolution samples acquired byWV2. Sec-
tion 4.3 explains the unsatisfactory outcomes of the PMAC-
Net. (Red: best; Blue: second best).

Method PSNR(±std) Q8(±std) SAM(±std) ERGAS(±std)

PNN 28.045±1.865 0.762±0.093 7.115±1.682 5.615±0.943
PanNet 30.276±2.290 0.840±0.080 5.495±0.713 4.337±0.520
DiCNN 27.200±2.327 0.721±0.075 6.921±0.788 6.251±0.574

MSDCNN 29.441±2.227 0.824±0.080 6.006±0.638 4.744±0.494
BDPN 28.973±1.714 0.824±0.093 7.089±0.864 4.856±0.570

FusionNet 28.735±2.460 0.796±0.074 6.426±0.860 5.136±0.515
MUCNN 27.839±2.328 0.777±0.088 7.504±0.539 5.517±0.299
LAGNet 28.050±2.239 0.805±0.084 6.955±0.474 5.326±0.318
PMACNet 19.160±4.512 0.509±0.128 15.95±3.329 15.69±3.307
U2Net 30.740±2.173 0.849±0.085 5.250±0.545 4.070±0.392

Table 3: Ablation study on 20 reduced-resolution samples ac-
quired by WV2. (Red: best; Blue: second best).

Method PSNR(±std) Q8(±std) SAM(±std) ERGAS(±std)

V1 29.849±2.171 0.830±0.087 5.773±0.731 4.512±0.740
V2 30.295±2.324 0.839±0.083 5.520±0.634 4.281±0.380
V3 30.394±2.380 0.841±0.081 5.165±0.610 4.248±0.376
V4 30.104±2.246 0.848±0.086 5.575±0.691 4.380±0.535

U2Net 30.740±2.173 0.849±0.085 5.250±0.545 4.070±0.392

restricts its generalization ability, leading to extremely unsatisfac-
tory outcomes.

4.4 Comparison of Parameter Numbers
Wecategorize theDL-based pansharpeningmethods into two groups
based on their number of parameters (NoPs). Specifically, models
with less than 1 × 105 parameters are considered lightweight net-
works, whereas those with more than 5 × 105 parameters are clas-
sified as heavyweight networks. The U2Net is a heavyweight net-
work, which prompts us to develop a lightweight version called
U2Net-L to demonstrate the superiority of our method more effec-
tively. To ensure fairness, we compare U2Net-L with lightweight
networks and U2Net with heavyweight networks. Fig. 6 shows the
comparisons of NoPs on 20 reduced-resolution samples acquired
byWV3. BothU2Net-L andU2Net achieve exceptional performance
within their respective categories, demonstrating the superiority
of our framework. For more details, kindly refer to the Sup. Mat.

4.5 Ablation Study
To validate the effectiveness of our method, we create four vari-
ants of the U2Net. In the first variant (V1), we employ a single-
branch U-shape network to extract spatial and spectral features
uniformly while maintaining the original structure of the S2Block.
The purpose of V1 is to demonstrate that the double-branch net-
work is more effective in capturing diverse information compared

Figure 6: The comparisons of NoPs. The first row: compar-
isons of lightweight networks (≤ 1 × 105 parameters) based
on PSNR and ERGAS indexes. The second row: comparisons
of heavyweight networks (≥ 5×105 parameters) based on the
same quality indexes.

to the single-branch one. The second variant (V2) retains the dou-
ble U-shape network architecture but replaces the S2Blocks with
concatenation operations. The V2 is designed to confirm the supe-
riority of S2Blocks in information integration. In the third variant
(V3), the S2Block only produces spatial self-correlation matrices
and combines themwith the spectral featuremap. As for the fourth
variant (V4), only spectral self-correlation matrices are generated
and merged with the spatial feature map.

We perform experiments on 20 reduced-resolution samples ac-
quired by WV2. The results are presented in Tab. 3, and the U2Net
yields the best overall performance, proving the effectiveness of
our method. Further explanation and discussion on the ablation
study can be found in the Sup. Mat.

5 EXPERIMENTS FOR HISR
5.1 Experiment Settings
Datasets. For the HISR task, experiments are conducted on the
CAVE dataset [35], which contains 31 RGB/LRHS image pairs with
sizes 512 × 512 × 3 and 512 × 512 × 31. We select 20 samples for
training, and the rest are for testing. The 20 training samples are
made into 3920 overlapped RGB/LRHS/GT image pairs (80% for
training and 20% for validation) with sizes 64× 64× 3, 16× 16× 31,
and 64 × 64 × 31, while the testing samples are processed as 11
RGB/LRHS/GT image pairs with sizes 512× 512× 3, 128× 128× 31,
and 512 × 512 × 31.
Benchmarks and Evaluation Metrics.We compare our method
with some recent SOTA approaches, including five traditionalmeth-
ods: CSTF [15], LTMR [5], LTTR [6], UTV [32], and IR-TenSR [31];
and three DL-based works: ResTFNet [17], SSRNet [36], and Fus-
former [11]. Four commonly used metrics are selected, including
PSNR, SSIM [28], SAM, and ERGAS [26].
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Figure 7:Qualitative evaluation results on a CAVE testing sample. The first row: natural color maps. The second row: AEMs.

Spectral vectors at (293, 233) Spectral vectors at (194, 172) Spectral vectors at (286, 403)

Figure 8: The comparisons of spectral vectors from three spatial locations of a CAVE testing sample.

Table 4: Quantitative evaluation results on 11 testing sam-
ples of the CAVE dataset. (Red: best; Blue: second best).

Method PSNR(±std) SSIM(±std) SAM(±std) ERGAS(±std)

CSTF 34.463±4.281 0.866±0.075 14.368±5.302 8.289±5.285
LTMR 36.543±3.300 0.963±0.021 6.711±2.193 5.387±2.529
LTTR 35.851±3.488 0.956±0.029 6.990±2.554 5.990±2.921
UTV 38.615±4.064 0.941±0.043 8.649±3.376 4.519±2.817

IR-TenSR 35.608±3.446 0.945±0.027 12.295±4.683 5.897±3.046
ResTFNet 45.584±5.465 0.994±0.006 2.764±0.699 2.313±2.438
SSRNet 48.620±3.918 0.995±0.002 2.542±0.837 1.636±1.219

Fusformer 49.983±8.097 0.994±0.011 2.203±0.851 2.534±5.305
U2Net 50.441±4.403 0.997±0.002 2.164±0.609 1.267±0.967

Ideal value +∞ 1 0 0

Parameters Tuning. For the HISR task, we set the values of 𝑆
and 𝑆 ′ in our network to 64 and 16, respectively. Upon training
the U2Net, the initial learning rate, epoch, and batch size are set to
0.0003, 500, and 8, respectively. Additionally, we choose Adam as
the optimizer, and the learning rate is halved every 50 epochs.

5.2 Results on the Cave Dataset
We assess the performance of recent SOTA approaches and our
method on 11 testing samples of the CAVE dataset. The quantita-
tive evaluation outcomes are presented in Tab. 4, and the U2Net

achieves the best average results on all quality indicators. Addi-
tionally, the qualitative evaluation outcomes are shown in Fig. 7
together with the GT. Obviously, our method exhibits the dark-
est AEM, proving its superiority in the HISR task. Furthermore, in
Fig. 8, we display the spectral vectors from three different spatial
locations of a testing sample. The spectral vectors of U2Net are the
closest to the GT, indicating that our method has a potent spectral
preservation ability.

6 CONCLUSION
In this paper, we propose a spatial-spectral-integrated double U-
shape network called U2Net for image fusion tasks. The U2Net em-
ploys a spatial U-Net and a spectral U-Net to extract spatial details
and spectral characteristics discriminately and hierarchically. Be-
sides, we create a novel structure named S2Block that sufficiently
merges feature maps from diverse images in a logical and com-
prehensive manner. We compare our U2Net with several recent
SOTA pansharpening and HISR approaches. The proposed method
outperforms all others on a series of datasets, demonstrating its
exceptional feature learning, information integration, and general-
ization capabilities. Therefore, we are confident that our method
offers an effective solution for the image fusion problems.
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