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ABSTRACT
Pansharpening is a challenging low-level vision task whose aim
is to learn the complementary representation between spectral
information and spatial detail. Despite the remarkable progress, ex-
isting deep neural network (DNN) based pansharpening algorithms
are still confronted with common limitations. 1) These methods
rarely consider the local specificity of different spectral bands; 2)
They often extract the global detail in the spatial domain, which
ignore the task-related degradation, e.g., the down-sampling pro-
cess of MS image, and also suffer from limited receptive field. In
this work, we propose a novel bidomain modeling paradigm for
pansharpening problem (dubbed BiMPan), which takes into both
local spectral specificity and global spatial detail. More specifically,
we first customize the specialized source-discriminative adaptive
convolution (SDAConv) for every spectral band instead of sharing
the identical kernels across all bands like prior works. Then, we
devise a novel Fourier global modeling module (FGMM), which is
capable of embracing global information while benefiting the dis-
entanglement of image degradation. By integrating the band-aware
local feature and Fourier global detail from these two functional
designs, we can fuse a texture-rich while visually pleasing high-
resolution MS image. Extensive experiments demonstrate that the
proposed framework achieves favorable performance against cur-
rent state-of-the-art pansharpening methods. The code is available
at https://github.com/coder-qicao/BiMPan.
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Figure 1: (a) Illustration of commonly used network design,
which only works in the spatial domain. (b) Proposed bido-
main network scheme, in which the 𝑏𝑙𝑢𝑒 𝑎𝑟𝑟𝑜𝑤 and 𝑟𝑒𝑑 𝑎𝑟𝑟𝑜𝑤

denote the information flow in the spatial domain and the
Fourier domain, respectively.
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1 INTRODUCTION
The rapid development of satellite sensors have promoted the wide-
spread applications of multispectral (MS) images, such as military
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system, change detection, and mapping services [1–3]. Notably,
both high-resolution spatial details and rich spectral information
with respect to MS images are desired in practical applications. Nev-
ertheless, existing remote sensors, such as World-View3 (WV3) and
QuickBird (QB), cannot directly capture high spatial resolution MS
images due to their physical limitations. Instead, they often observe
paired low-resolutionMS images and high-resolution panchromatic
(PAN) images. Therefore, pansharpening technique is developed
to produce high-resolution MS images by super-resolving the low-
resolution MS images in the spatial domain, conditioning on the
paired PAN images. In other words, pansharpening attempts to
borrow the spatial information from PAN images to enhance the
spatial resolution of the MS images [4, 5].

To date, numerous pansharpening methods have been proposed
by the research community. They can be roughly divided intomodel-
driven methods (also known as traditional methods), including com-
ponent substitution (CS)-based methods, multi-resolution analysis
(MRA)-based methods, variational optimization (VO)-based meth-
ods, and deep neural networks (DNNs)-based methods [1–3]. With
the success of deep learning in various levels of visual tasks, such
as object detection, image segmentation, and single image supers-
resolution, explosive DNN methods mainly based on convolutional
neural networks (CNNs) have been proposed for pansharpening.
The pioneering DNN-based pansharpening method only consists
of a three-layer convolution operation [6], which is inspired by
the representative single image super-resolution network SRCNN
[7]. Afterward, more complicated network architectures have been
designed to improve the non-linear representative capacity of pan-
sharpening [8–11]. Although existing pansharpening methods have
achieved remarkable progress, they still suffer from some limita-
tions. First, they rarely focus on the local specificity with respect to
each spectral band, while the local difference among the bands is
obvious according to our observation and should not be ignored.
Second, most DNN-based pansharpening methods commonly con-
duct detail extraction in the spatial domain as shown in Fig. 1(a),
which inevitably suffers from the limited receptive field due to the
attribute of the convolution operation. Besides, the down-sampling
process of MS images often inevitably leads to the loss of high-
frequency information, which is tightly coupled to the frequency
domain [4, 12, 13]. Given the above facts, we intend to develop a
new modeling framework that can take into account both the local
specificity of each spectral band and the global contextual detail,
as illustrated in Fig. 1(b).

Our Motivation. We first take a high-resolution example from
the 4-band QB dataset to demonstrate the difference and connec-
tion of different spectral bands. Fig. 2(a) displays the pixel value
of every spectral band of MS image and PAN image, and we can
clearly see that the pixel distribution of each spectral band varies
greatly. This observation reveals a significant fact associated with
the pansharpening problem that the local spatial content of dif-
ferent bands is widely diverse. Although prior works attempt to
design the content-adaptive convolution kernels to discriminatively
deal with the different regions of the input image, they often share
identical adaptive kernels across all bands [14–16], which ignores
the local specificity of each band. In addition, the gradient statistics
of MS image filtered by the Sobel operator are similar to that of
PAN image, as shown in Fig. 2(b). This implies that the correlation

(a) Pixel statistics (b) Gradient statistics

Figure 2: (a) The pixel statistics for every MS band and PAN.
(b) The high-frequency gradient statistics for every MS band
and PAN. For simplicity, here, we take a 4-band MS image to-
gether with paired PAN image as an instance for the purpose
of visualization.

between all bands and PAN image is similar in global detail. In other
words, an ideally fused high-resolutionMS (HRMS) image should be
consistent with PAN image in terms of the global detail as much as
possible. Currently, pansharpening research community commonly
employs multi-scale networks or transformer-based methods to
extract the global structure in the spatial domain [17–19]. Neverthe-
less, they suffer from limited receptive fields and ignore the image
priors related to the degradation process.

Based on the above analyses, we consider customizing the spe-
cialized adaptive kernels (i.e., source-discriminative adaptive con-
volution, dubbed as SDAConv) for every band instead of sharing
the identical kernels across all bands. The proposed SDAConv is
capable of focusing on the local specificity of every band, which
is conducive to generating more realistic and content-rich HRMS
images. In addition, we intend to extract the global detail in the
Fourier domain driven by its nature of global modeling capacity
and rich image priors. To be specific, we propose a novel Fourier
global modeling module (FGMM) by borrowing the ideas from the
existing global modeling paradigm, which neatly incorporates these
innate advantages of the Fourier domain into the global modeling
rule. By integrating the extracted local features from every spectral
band and the global detail, we can predict a desired HRMS image.
In conclusion, the contributions of this work can be condensed into
the following aspects:

• We propose a novel bidomain modeling paradigm for pan-
sharpening, which achieves the local-global representation
learning on HRMS images through two functional designs,
i.e., the Band-aware local specificity modeling branch and
Fourier global detail reconstruction branch.

• Unlike the prior works, we customize the specialized adap-
tive convolution kernels for every spectral band given the
local differences among various spectral bands, instead of
sharing the identical kernels across all band patches. Be-
sides, we propose a novel Fourier global modeling module
by borrowing the ideas from the existing global modeling
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Figure 3: The pipeline of the proposed bidomain modeling framework, which consists of two parts: band-aware local specificity
modeling (BLSM) branch and Fourier global detail reconstruction (FGDR) branch. Note that we use a 4-band sample to outline
the proposed framework for better illustration.

paradigm, which neatly incorporates the innate advantages
of the Fourier domain into the global modeling rule.

• Our proposed modeling framework yields the best qualita-
tive and quantitative results against existing state-of-the-art
approaches on different satellite datasets and also generalizes
well to real-world full-resolution scenes.

.
2 RELATEDWORKS
Adaptive Convolution Techniques. Standard convolution suf-
fers from its inherent spatial-invariance property, which leads to
limited performance in some pixel-level vision tasks, e.g., single
image super-resolution, and pansharpening. In recent years, adap-
tive convolution techniques have aroused much attention in the
computer vision research community due to their flexibility, in
which the sampling locations and/or kernel values are adjusted
according to the input content [20–22]. For pansharpening task,
some representative adaptive convolution techniques also have
been proposed and shown favorable performance in comparison
to standard convolution. In [14], researchers first design a novel
adaptive convolution that includes both local content and global
harmonic basis, dubbed LAGConv, which can effectively exploit
local specificity and integrate global information of the involved
image patch. Inspired by the LAGConv, Lu et. al. [16] proposes
a lightweight pansharpening network consisting of several adap-
tive feature learning blocks. In [23], the distinctive attributes of
input source images are considered to design the so-called source-
adaptive discriminative kernels, which consist of two components,
i.e., spatial kernels derived from texture-rich PAN images and spec-
tral kernels derived from MS images. To tackle the computational
cost of standard convolution operation, Chen et. al. [24] devises
an interpretable span strategy to generate the convolution kernels,

which only learns two navigated kernels, and then extends them to
all channels.

Fourier Based DNN Networks. In low-level vision tasks, most
existing DNN-based methods are designed to learn the non-linear
mapping between the inputs and outputs in the spatial domain,
which inevitably suffer from limited receptive fields. Recently, the
Fourier domain has gained much attention due to its unique char-
acteristics, e.g., image priors and global modeling attribute. In [25],
researchers attempt to address the low-light image enhancement
problem in the Fourier domain. Mao et. al. [26] embeds a novel Res
FFT-ReLU Block into the cascaded network for image deblurring,
which learns the spatial-frequency bidomain representations to
extract both kernel-level and pixel-level features. Likewise, [27]
and [28] adopt a similar methodology to deal with the related issues.
In [29], authors first explore the commonly used spatial down-/up-
sampling operation from the perspective of the Fourier domain
and design a plug-and-play FourierUP operator, which is capable
of modeling the global dependency, thus breaking the common
limitation of spatial operators. For pansharpening, some represen-
tative works have been proposed by combining spatial-frequency
dual-domain information to reconstruct HRMS images [4, 13, 30].

3 METHODOLOGY
3.1 Overall Architecture
Our main goal is to explore an effective modeling paradigm for pan-
sharpening based on the aforementioned facts, which can produce
a texture-rich while visually pleasing HRMS image. To this end, we
attempt to take into account both the local specificity of each spec-
tral band and the global contextual detail. Specifically, we devise
two core designs, i.e., band-aware local specificity modeling branch
and Fourier global detail reconstruction branch. We first introduce
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Figure 4: Structure of the proposed source-discriminative
adaptive convolution (SDAConv).

the overall pipeline of our framework, and then we elaborate on
the detailed structures of two functional branches.

Overall Pipeline. Fig. 3 outlines the overall architecture of our
method. For the upper branch, 𝑐 parallel subbranches are adopted
to focus on the local specificity of every band, where 𝑐 denotes the
number of spectral bands. Given an up-sampled MS image M ∈
R𝐻×𝑊 ×𝑐 , we first split it into 𝑐 single bands. Then, we send each
band paired with a PAN image P to the corresponding subbranch
to extract its local features. Specifically, we first apply a convolution
layer as well as the ReLU function to extract the shallow features
of the input band and PAN image. After that, we concatenate the
obtained band features 𝐹𝑠𝑝𝑒

𝑖
and PAN features 𝐹𝑠𝑝𝑎 as the input data

of the corresponding subbranch to extract the local information.
Finally, the outputs of all subbranches are integrated to obtain the
local features.

In addition, we devise a novel Fourier global modeling module
(FGMM) to construct the below branch. For a pair of input images,
i.e., the up-sampled MS image M and PAN image P, we first du-
plicate P along the spectral dimension. Then, the high-frequency
contents of M are obtained by subtracting every band from P,
which is used as the input data to reconstruct the global detail.
Finally, we integrate the obtained local feature and global detail,
and add the up-sampled MS images to produce the super-resolution
MS images.

3.2 Band-Aware Local Specificity Modeling
Branch

Source-Discriminative Adaptive Convolution. Unlike existing
adaptive convolution techniques that usually generate the kernels
using a certain image patch including all bands. To explore the local
uniqueness of each band, we devise a new adaptive convolution
operation, denoted as source-discriminative adaptive convolution
(SDAConv), whose kernels are generated depending on the local
patch of every MS band coupled with PAN image, as shown in Fig.
4. Without loss of generality, we take a single band as an instance to

introduce the kernel generation process of the proposed SDAConv.
In fact, the kernel generation process aims to obtain a weight matrix
W ∈ R𝑘×𝑘×𝐶𝑖𝑛 , where 𝑘 and𝐶𝑖𝑛 represent the size and the number
of channels corresponding to the input local patch, respectively. To
be specific, given an input patch 𝑘 × 𝑘 × 𝐶𝑖𝑛 , it is first projected
to the low-level features through a layer convolution layer. Next,
we apply a spatial modulation and a spectral modulation to deal
with the extracted shallow features. Then, we further combine the
outputs from these two modules to generate the expected weight
matrixWΩ , which can be illustrated as follows:

𝐹
𝑠𝑝𝑎

Ω , 𝐹
𝑠𝑝𝑒

Ω = 𝑆𝑀 (𝜎 (𝐶𝑜𝑛𝑣 (𝐴))),𝐶𝑀 (𝜎 (𝐶𝑜𝑛𝑣 (𝐴))),

WΩ = 𝑅𝑒 (𝐹𝑠𝑝𝑎Ω ⊙ 𝐹
𝑠𝑝𝑒

Ω ),
(1)

where 𝐴 represents the input local patch, 𝐶𝑜𝑛𝑣 (·) and 𝜎 (·) are the
convolution layer and ReLU non-linear function, 𝑆𝑀 (·) and 𝐶𝑀 (·)
denote the spatial modulation operation and channel modulation
operation, respectively. 𝐹𝑠𝑝𝑎Ω and 𝐹

𝑠𝑝𝑒

Ω correspond to the outputs
of 𝑆𝑀 (·) and 𝐶𝑀 (·). The symbol ⊙ is the inner product operation
and 𝑅𝑒 (·) represents the reshape operation, while the symbol𝑊Ω

denotes the obtained weight matrix.
After that, we perform this weight matrix WΩ on a group of

candidate kernels K ∈ R𝐶𝑜𝑢𝑡×𝑘×𝑘×𝐶𝑖𝑛 to generate the adaptive
kernels. Finally, we can apply the obtained adaptive convolution
kernels to the feature maps of the input patch. Briefly, they can be
formulated as follows: K̃Ω ∈ R𝐶𝑜𝑢𝑡×𝑘×𝑘×𝐶𝑖𝑛

𝐷Ω = 𝜎 (𝐶𝑜𝑛𝑣 (𝐴)) ⊗ (WΩ ⊙ K), (2)

where ⊗ and 𝐷Ω denote the convolution operation and the corre-
sponding output, respectively.

Band-aware Local Specificity Modeling Branch. Our band-
aware local specificity modeling (BLSM) branch consists of 𝑐 sub-
branches, where 𝑐 is the number of the spectral band corresponding
to the MS image. All subbranches adopt the same structure that
contains several cascaded SDAConv blocks, but does not share the
parameters due to the difference of source inputs, i.e., different
bands of MS images. In addition, the outcomes of all subbranches
are integrated through a merging module. The entire procedure
can be mathematically represented as follows:

𝑂𝑖
_
= Φ(𝐶𝑎𝑡 (𝐶𝑜𝑛𝑣 (M𝑖 ),𝐶𝑜𝑛𝑣 (P))),

𝐹𝑙𝑜 = Ψ (𝑂1
_
,𝑂2

_
, · · · ,𝑂𝑐

_
),

(3)

where 𝐶𝑎𝑡 (·) is concatenation operation, Φ(·) represents the map-
ping function of each subbranch, and 𝑂𝑖

_
is the output of the i-th

subbranch. The symbol Ψ (·) denotes integrating the outputs from
all subbranches, and 𝐹𝑙𝑜 is the final outcome of the proposed BLSM
branch.

3.3 Fourier Global Detail Reconstruction
Branch

Extracting accurate global detail is a popular yet challenging issue
in pansharpening tasks. Most existing approaches often address
this problem in the spatial domain, which ignore the degradation
of MS images and require a high computational cost. Recently, the
Fourier domain has gained extensive attention from the research
community. On the one hand, the Fourier transform is capable
of capturing the image priors with respect to the down-sampling
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process of MS images. On the other hand, the Fourier domain
associates each pixel in such space with all spatial pixels owing to
its innate global attributes. Therefore, we attempt to borrow the
ideas from existing global modeling paradigms, e.g., [31–33], to
explore the analogous design in Fourier domain to reconstruct the
global details.

Preliminary. Given an image 𝑥 ∈ R𝐻×𝑊 ×𝐶 , we can employ the
Fourier transformation F (·) to convert it into a complex component
in the Fourier space, which can be mathematically represented as
follows:

F (𝑥) (𝑢, 𝑣) = 1
𝐻 ×𝑊

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑥 (ℎ,𝑤)𝑒− 𝑗2𝜋 ( ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣) , (4)

where u and v represent the coordinates in Fourier space. In turn,
we can use the inverse Fourier transform F −1 (·) to achieve the
transformation from the Fourier domain to the spatial domain.
Besides, the amplitude and phase of 𝑥 in Fourier space can be
calculated using the following formula:

𝐴(𝑥) (𝑢, 𝑣) =
√︁
𝑅2 (𝑥) (𝑢, 𝑣) + 𝐼2 (𝑥) (𝑢, 𝑣),

𝑃 (𝑥) (𝑢, 𝑣) = 𝑎𝑟𝑐𝑡𝑎𝑛

[
𝐼 (𝑥) (𝑢, 𝑣)
𝑅(𝑥) (𝑢, 𝑣)

]
,

(5)

where R(x) and I(x) are the real part and the imaginary part, re-
spectively. Notably, both F (·) and F −1 (·) can be independently
performed on each channel of the input data.

Structure of the Fourier Global Modeling Module. Fig. 5
gives the detailed architecture of the proposed Fourier global model-
ingmodule (FGMM), which consists of two components, i.e., Fourier
spatial unit and Fourier spectral unit.

Fourier Spatial Unit. Given an input feature 𝑋 ∈ R𝐻×𝑊 ×𝐶𝑖𝑛 ,
it will go through two paths in parallel, i.e., Fourier operation and
spatial operation. In terms of the former, the Fourier transform is
first conducted as follows:

𝑋𝑅, 𝑋𝐼 = F (𝑋 ), (6)

where 𝑋𝑅 and 𝑋𝐼 represent the real and imaginary parts, respec-
tively. Afterward, we adopt a 3 × 3 depth-wise convolution layer
coupled with the ReLU activation function to integrate the spatial
information, which can be expressed as follows:

𝑆𝑅, 𝑆𝐼 = 𝜎 (𝐷𝑊 (𝑋𝑅)), 𝜎 (𝐷𝑊 (𝑋𝐼 )), (7)

where 𝐷𝑊 (·) represents the depth-wise convolution. Then, we
transform the obtained 𝑆𝑅 and 𝑆𝐼 back to the spatial domain through
the inverse Fourier transform, illustrated as follows:

𝑍𝐹 = F −1 (𝑆𝑅, 𝑆𝐼 ). (8)

Besides, we also adopt a spatial path to complement the spatial
structure information, in which the input feature is directly fed
into a 3 × 3 depth-wise convolution layer followed by the ReLU
activation function, which can be written as follows:

𝑍𝑆 = 𝜎 (𝐷𝑊 (𝑋 )), (9)

Next, we fuse the Fourier features𝑍𝐹 and spatial features𝑍𝑆 through
an efficient Half Instance Normalization (HIN) block[34], which is
represented as follows:

𝑈 = 𝐻𝑆 (𝑍𝐹 , 𝑍𝑆 ), (10)

where 𝐻𝑆 (·) represents integrating the spatial information using
an HIN block and U is the output features.

Fourier Spectral Unit. Similar to the Fourier spatial integra-
tion, we take an analogous design, i.e., Fourier modulation path
and spatial modulation path, to implement the Fourier spectral
adjustment, in which the 3 × 3 depth-wise convolution is replaced
by point-wise convolution. Firstly, the Fourier transform is utilized
to decompose the output𝑈 from the Fourier spatial integration into
real and imaginary components, i.e.,𝑈𝑅 and𝑈𝐼 . Then, we adopt a
point-wise convolution layer followed by ReLU non-linear activa-
tion to perform the Fourier channel adjustment. Specifically, this
procedure can be formulated as follows:

𝐶𝑅, 𝐶𝐼 = 𝜎 (𝑀𝐿𝑃 (F (𝑈𝑅))), 𝜎 (𝑀𝐿𝑃 (F (𝑈𝐼 ))),
𝐶𝐹 = F −1 (𝐶𝑅,𝐶𝐼 ),

(11)

where𝑀𝐿𝑃 (·) represents the point-wise convolution and 𝐶𝐹 is the
output of the Fourier channel adjustment.
Afterward, we integrate the outcomes from the frequency path and
spatial path via theHIN block to output the final result of our Fourier
global modeling module (FGMM), which can be mathematically
written as follows:

𝐶𝑆 = 𝜎 (𝑀𝐿𝑃 (𝑈 )),
𝑂𝑢𝑡 = 𝐻𝐶 (𝐶𝐹 ,𝐶𝑆 ),

(12)

where 𝐶𝑆 is the output from the spatial channel modulation. 𝐻𝐶 (·)
denotes adjusting the channel information using an HIN block,
while 𝑂𝑢𝑡 is the outcome of the proposed FGMM.
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Table 1: Average quantitative metrics on 20 reduced-resolution and 20 full-resolution samples for the WV3 dataset. Some
traditional methods (the first four rows) and CNN methods are compared. (Bold: best; Underline: second best)

method Reduced Full
SAM(± std) ERGAS(± std) Q8(± std) SCC(± std) 𝐷_(± std) 𝐷𝑠 (± std) QNR(± std)

BDSD-PC 5.4675±1.7185 4.6549±1.4667 0.8117±0.1063 0.9049±0.0419 0.0231±0.0171 0.0730±0.0356 0.9061±0.0474
MTF-GLP-FS 5.3233±1.6548 4.6452±1.4441 0.8177±0.1014 0.8984±0.0466 0.0354±0.0211 0.0630±0.0284 0.9043±0.0454
BT-H 4.8985±1.3028 4.5150±1.3315 0.8182±0.1019 0.9240±0.0243 0.0430±0.0232 0.0810±0.0374 0.8803±0.0540
CDIF 4.8548±1.4788 4.5029±1.5338 0.8322±0.1032 0.9163±0.0298 0.0317±0.0075 0.0305±0.0152 0.9389±0.0213
PNN 3.6798±0.7625 2.6819±0.6475 0.8929±0.0923 0.9761±0.0075 0.0213±0.0080 0.0428±0.0147 0.9369±0.0212
DiCNN 3.5929±0.7623 2.6733±0.6627 0.9004±0.0871 0.9763±0.0072 0.0362±0.0111 0.0462±0.0175 0.9195±0.0258
MSDCNN 3.7773±0.8032 2.7608±0.6884 0.8900±0.0900 0.9741±0.0076 0.0230±0.0091 0.0467±0.0199 0.9316±0.0271
BDPN 4.1646±0.8223 3.0335±0.7269 0.8724±0.0979 0.9677±0.0087 0.0395±0.0251 0.0459±0.0187 0.9168±0.0404
FusionNet 3.3252±0.6978 2.4666±0.6446 0.9044±0.0904 0.9807±0.0069 0.0239±0.0090 0.0364±0.0137 0.9406±0.0197
LagNet 3.1042±0.5585 2.2999±0.6128 0.9098±0.0907 0.9838±0.0068 0.0368±0.0148 0.0418±0.0152 0.9230±0.0247
BiMPan(ours) 2.9842±0.6009 2.2569±0.5520 0.9153±0.0865 0.9843±0.0049 0.0170±0.0128 0.0344±0.0144 0.9493±0.0255
Ideal value 0 0 1 1 0 0 1

BDSD-PC

BDPNMTF-GLP-FS CDIF MSDCNN DiCNNPNN FusionNet LagNet BiMPan GTBDSD-PC

Figure 6: Qualitative comparison on the reduced-resolution sample fromWV3 dataset. The first row demonstrates the RGB
visualization, while the corresponding absolute error maps are presented in the second row.

BDSD-PC

BDPNMTF-GLP-FS CDIF MSDCNN DiCNNPNN FusionNet LagNet BiMPan GTBDSD-PC

Figure 7: Qualitative comparison on the reduced-resolution sample from QB dataset. The first row demonstrates the RGB
visualization, while the corresponding absolute error maps are presented in the second row.

4 EXPERIMENTS
Due to the page limitation, experiment settings including datasets,
metrics, benchmarks, and implementation details are provided in
the appendix.

4.1 Evaluation on Reduced-Resolution
The reduced-resolution evaluation is conducted to measure the
difference between the predicted SR images and the GT images.
Quantitative results of all compared methods and our model on 20

WV3 testing examples are presented in Table 1. It is clearly seen
that our model achieves the best performance on all indexes, which
well demonstrates the superiority of the proposed method. On the
one hand, our network can focus on the local specificity of each
band through the customized source-discriminative adaptive convo-
lution; on the other hand, it is capable of effectively extracting the
global details using the natural advantages of the Fourier domain
in global modeling. Fig. 6 presents the visual comparisons among
all compared pansharpening methods. As shown in the figures, the
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Table 2: Average quantitative metrics on 20 reduced-resolution and 20 full-resolution samples for the QB dataset. Some
traditional methods (the first four rows) and CNN methods are compared. (Bold: best; Underline: second best)

method Reduced Full
SAM(± std) ERGAS(± std) Q4(± std) SCC(± std) 𝐷_(± std) 𝐷𝑠 (± std) QNR(± std)

BDSD-PC 8.2620±2.0497 7.5420±0.8138 0.8323±0.1013 0.9030±0.0181 0.0345±0.0172 0.1636±0.0483 0.8078±0.0497
MTF-GLP-FS 8.1131±1.9553 7.5102±0.7926 0.8296±0.0905 0.8998±0.0196 0.0570±0.0137 0.1500±0.0238 0.8017±0.0295
BT-H 7.1943±1.5523 7.4008±0.8378 0.8326±0.0880 0.9156±0.0152 0.0526±0.0141 0.1648±0.0167 0.7912±0.0177
CDIF 7.2961±1.6703 7.1086±0.7077 0.8460±0.0918 0.9118±0.0139 0.0175±0.0137 0.0486±0.0298 0.9351±0.0398
PNN 5.2054±0.9625 4.4722±0.3734 0.9180±0.0938 0.9711±0.0123 0.0569±0.0112 0.0624±0.0239 0.8844±0.0304
DiCNN 5.3795±1.0266 5.1354±0.4876 0.9042±0.0942 0.9621±0.0133 0.0920±0.0143 0.1067±0.0210 0.8114±0.0310
MSDCNN 5.1471±0.9342 4.3828±0.3400 0.9176±0.0987 0.9722±0.0124 0.0320±0.0237 0.0667±0.0282 0.9041±0.0466
BDPN 6.1225±1.2106 5.2756±0.6870 0.8991±0.0938 0.9580±0.0154 0.0734±0.0273 0.0492±0.0126 0.8812±0.0336
FusionNet 4.9226±0.9077 4.1594±0.3212 0.9252±0.0902 0.9755±0.0104 0.0586±0.0189 0.0522±0.0088 0.8922±0.0219
LagNet 4.5548±0.8155 3.8436±0.4032 0.9303±0.0935 0.9805±0.0088 0.0844±0.0238 0.0676±0.0136 0.8536±0.0178
BiMPan(ours) 4.5860±0.8206 3.8394±0.3187 0.9311±0.0908 0.9800±0.0079 0.0259±0.0201 0.0399±0.0121 0.9355±0.0298
Ideal value 0 0 1 1 0 0 1

Table 3: Average quantitative metrics on 20 reduced-resolution and 20 full-resolution samples for the WV2 dataset. Some CNN
methods are compared. (Bold: best; Underline: second best)

method Reduced Full
SAM(± std) ERGAS(± std) Q8(± std) SCC(± std) 𝐷_(± std) 𝐷𝑠 (± std) QNR(± std)

PNN 7.1158±1.6812 5.6152±0.9431 0.7619±0.0928 0.8782±0.0175 0.1484±0.0957 0.0771±0.0169 0.7869±0.0959
DiCNN 6.9216±0.7898 6.2507±0.5745 0.7205±0.0746 0.8552±0.0289 0.1412±0.0661 0.1023±0.0195 0.7700±0.0505
MSDCNN 6.0064±0.6377 4.7438±0.4939 0.8241±0.0799 0.8972±0.0109 0.0589±0.0421 0.0290±0.0138 0.9143±0.0516
BDPN 7.0934±0.8630 4.8568±0.5698 0.8235±0.0929 0.9033±0.0094 0.1117±0.0859 0.0328±0.0243 0.8606±0.0979
FusionNet 6.4257±0.8602 5.1363±0.5151 0.7961±0.0737 0.8746±0.0134 0.0519±0.0292 0.0559±0.0146 0.8948±0.0187
LagNet 6.9545±0.4739 5.3262±0.3185 0.8054±0.0837 0.9125±0.0101 0.1302±0.0856 0.0547±0.0159 0.8229±0.0884
BiMPan(ours) 5.7496±0.6008 4.5111±0.4837 0.8271±0.1043 0.9127±0.0089 0.0184±0.0064 0.0386±0.0137 0.9438±0.0181
Ideal Value 0 0 1 1 0 0 1

fused result from our model is very close to the GT image. Fur-
thermore, we also conduct experiments on a 4-band dataset QB,
to validate the wide applicability of the proposed method. Table
2 shows the outcomes for all baselines. As expected, our model
outperforms other compared pansharpening approaches on the
4-band dataset as well, which further proves the effectiveness of
the proposed method. The visual comparison results are provided
in Fig. 7.

4.2 Evaluation on Full-Resolution
The goal of pansharpening is to achieve real-world applications.
Therefore, we also conduct the full-resolution analysis to corrobo-
rate the generalization capability of the reduced-resolution results,
in which the GT images are unavailable. Specifically, we use 20WV3
and 20 QB images, respectively, to perform the full-resolution ex-
periments. Table 1 presents the quantitative comparisons of all com-
pared methods on the WV3 dataset. Again, the proposed method
yields the best results. Fig. 8 displays the qualitative comparisons on
WV3, in which our model produces visual fidelity images against
other methods. Considering the 4-band QB dataset, our method also
outperforms other benchmarks in both quantitative and qualitative

results at full-resolution, as demonstrated in Table 2 and Fig. 9,
respectively.

4.3 Generalization Capability
To further verify the generalization ability of the proposed approach,
we directly use 20 WV2 samples from the reduced-resolution to test
all DNN-based models that are trained on the WV3 dataset. Table
3 demonstrates the quantitative evaluation results, from which
our method performs the favorable generalization capability in
comparison to other DNN-based pansharpening techniques.

4.4 Ablation Study
In this section, we conduct some ablation experiments to prove the
effectiveness of the designed components, as well as the universal-
ity of the proposed framework.
Different Convolution Operations. We compare the perfor-
mance of different types of convolution operation, including stan-
dard convolution, involution operator, and the proposed SDAConv.
Table 4 indicates that both adaptive convolutions outperform the
standard convolution, while our adaptive technique is superior to
the involution operator.
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BDSD-PC

BDPNMTF-GLP-FS CDIF MSDCNN DiCNNPNN FusionNet LagNet BiMPanBDSD-PC

Figure 8: Qualitative comparison on the full-resolution sample fromWV3 dataset. The first row presents the RGB visualization,
while the second row gives the corresponding QNR maps. The rightmost image is PAN.

BDSD-PC

BDPNMTF-GLP-FS CDIF MSDCNN DiCNNPNN FusionNet LagNet BiMPanBDSD-PC

Figure 9: Qualitative comparison on the reduced-resolution sample from QB dataset. The first row demonstrates the RGB
visualization, while the second row gives the corresponding QNR maps. The rightmost image is PAN.

Different Strategies of Global Detail Extraction. We conduct

Table 4: Qualitative comparisons of the different convolution
operations.

Methods SAM(± std) ERGAS(± std) Q8(± std) SCC(± std)
Standard convolution 3.30±0.68 2.47±0.67 0.91±0.09 0.98±0.01

Involution 3.04±0.61 2.28±0.58 0.92±0.09 0.98±0.01
SDAConv 2.98±0.60 2.26±0.55 0.92±0.09 0.98±0.01

the global detail extraction through two strategies, i.e., using the
proposed FGMM and FGMM without the Fourier transform (w/o
FFT). From Table 5, we can observe that our FGMM achieves better
outcomes due to its comprehensive superiority.

Table 5: Qualitative comparisons of strategies of global details
extraction.

Methods SAM(± std) ERGAS(± std) Q8(± std) SCC(± std)
w/o FFT 3.16±0.61 2.46±0.63 0.91±0.09 0.98±0.01
FGMM 2.98±0.60 2.26±0.55 0.92±0.09 0.98±0.01

Different Types of Input Sources for Extracting Global De-
tails.We also investigate the effects of different input sources: 1)
MS images and PAN images, denoted as general inputs; 2) the high-
frequency components of MS images obtained by subtracting each
band from PAN, represented as HFC. From Table 6, we can see that
using high-frequency components as input data obtains favorable
results.

Table 6: Qualitative comparisons of strategies of global details
extraction.

Input sources SAM(± std) ERGAS(± std) Q8(± std) SCC(± std)
General inputs 3.21±0.65 2.43±0.63 0.92±0.09 0.98±0.01

HFC 2.98±0.60 2.26±0.55 0.92±0.09 0.98±0.01

5 CONCLUSION
We propose a novel bidomain modeling framework for pansharp-
ening, which consists of a band-aware local specificity modeling
branch and a Fourier global detail reconstruction branch. Specif-
ically, the former is utilized to focus on the local specificity of
each spectral band through the customized source-discriminative
adaptive convolution. While the latter is devised to extract the
global detail using the innate properties of the Fourier domain, e.g.,
the disentanglement of image degradation and global modeling
capability. By integrating the complementary information from
the well-designed two branches, our model outperforms the ex-
isting state-of-the-art pansharpening methods on a wide range of
benchmark datasets. Specially, it is capable of generalizing well to
real-world full-resolution scenes.
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In this Appendix, we present the loss function, detailed experi-
ment settings, and additional experimental results.

A LOSS FUNCTION
For simplicity, we choose the L1 loss function to minimize the
difference between the predicted super-resolution images SR and
the ground truth images GT during the network training process,
which can be represented as follows:

L(Θ) = 1
𝑁

𝑁∑︁
𝑖=1

∥𝑆𝑅𝑖 −𝐺𝑇𝑖 ∥1 , (13)

where 𝑁 denotes the number of training samples, and ∥·∥1 is the
L1 norm.

B EXPERIMENT SETTINGS
Datasets. We investigate the effectiveness of the proposed method
on awide range of datasets, including 8-band datasets fromWorldView-
3 (WV3) and WorldView2 (WV2) sensors, and 4-band datasets from
QuickBird (QB) sensors. Notably, we leverage Wald’s protocol to
simulate the source data due to the unavailability of ground truth
(GT) images. All training data (i.e., PanCollection dataset[3]) used in
this work is available on the public website (https://liangjiandeng.
github.io/PanCollection.html.), which includes fair and detailed
data description. Take WV3 as an instance, we use 10000 PAN
(64 × 64 × 1)/LRMS (64 × 64 × 8)/GT(64 × 64 × 8) image pairs for
network training. For the testing, we take 20 PAN/LRMS/GT image
pairs with the sizes of (256×256×1), (64×64×8), (256×256×8) on
the reduced-resolution evaluation, and 20 PAN/LRMS image pairs
with the sizes of (512×512×1)/(128×128×8) thanks to the absence
of GT images on the full-resolution assessment.

Metrics. According to the research standard of the pansharp-
ening community, we adopt four quality indexes for the reduced-
resolution assessment, including the spectral angle mapper (SAM)
[35], ERGAS[36], SCC[37] and𝑄2𝑛[38]. In terms of the full-resolution
evaluation, we use another three metrics, i.e., 𝐷_ , 𝐷𝑠 and QNR[39].

Benchmarks. To assess the performance of our approach, we
qualitatively and quantitatively compare the proposed method with
current state-of-the-art pansharpening methods, including tradi-
tional methods and DNN-based techniques. The traditional algo-
rithms include the BT-H [40], BDSD-PC [41], MTF-GLP-FS [42],
and CDIF [43] are implemented. Besides, some representative DNN-
based models are also compared, such as PNN [6], DiCNN [9],
MSDCNN [17], FusionNet [11], and LagNet [14]. Notably, all DNN-
based comparison approaches are trained with the same datasets,
while the hyperparameter settings comply with the original papers.

Implementation Details. The proposed model is implemented
in PyTorch 2.0 and Python 3.10 using a Linux operating system
with an NVIDIA RTX3090 GPU. We adopt Adam optimizer with
a dynamic learning rate to train the network, where the learning
rate is 0.0003 for the first 500 epochs and becomes 0.1 times of the
original one for the next 500 epochs.

C ABLATION STUDY
The purpose of ablation research is to determine whether each
component of our proposed framework is necessary.Note that all
ablation studies are conducted on the WV3 dataset. We first com-
pare the performance of different convolution operations, including

the standard convolution, involution operator [22], and our pro-
posed SDAConv. Then, we investigate different strategies to extract
global details: i.e. using the proposed FGMM and FGMM without
the Fourier transform (without FFT). Additionally, we explore the
effects of different input sources.

The qualitative comparisons of the ablation studies are displayed
in Fig. 10. It is evidently observed that our baseline model (i.e.
BiMPan) gains the superior visual performance (revealed by the
dark blue error map) compared with other configurations, showing
the effectiveness of our model design.

InvolutionStandard convolution w/o FFT

General inputs BiMPan GT

Figure 10: Qualitative comparison of ablation study results
on the reduced-resolution sample from WV3 dataset. The
first/third row demonstrates the RGB visualization, while
the corresponding absolute error maps are presented in the
second/fourth row.

D EXPERIMENT ONWV2 DATASET
To confirm our model’s generalizability, we use 20 WV2 samples
from both full-resolution and reduced-resolution to evaluate all
DNN-based models trained on the WV3 dataset. Specifically, we
select five representative DNN-based methods for comparison, in-
cluding PNN [6], DiCNN [9], MSDCNN [17], FusionNet [11], and
LagNet [14].

https://liangjiandeng.github.io/PanCollection.html.
https://liangjiandeng.github.io/PanCollection.html.
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BDPNMSDCNN DiCNN PNN FusionNet LagNet BiMPan GT

Figure 11: Qualitative comparison on the reduced-resolution sample fromWV2 dataset. The first row demonstrates the RGB
visualization, while the corresponding absolute error maps are presented in the second row.

BDPNMSDCNN DiCNN PNN FusionNet LagNet BiMPan

Figure 12: Qualitative comparison on the full-resolution sample fromWV2 dataset. The first row presents the RGB visualization,
while the second row gives the corresponding QNR maps. The rightmost image is PAN.

The spectral channel of the WV2 sensor and the WV3 sensor
are identical, but their spatial resolution is slightly different. WV2
provides eight MS bands and a high-resolution PAN channel. The
four standard colors are red, green, blue, and near-infrared 1, while
the four new bands that make up these eight bands are coastal,
yellow, red edge, and near-infrared 2. Because the PAN images and
the MS images are dispersed with pixels that are 0.5 m in size and
2 m in size, respectively, the spatial resolution ratio is equal to 4. 11
bits are utilized in radiometric goal. WV3 and WV2 data share the

same channel. However, in contrast to the characteristics of WV2
data, WV3 has spatial resolutions of 1.2 m and 0.3 m.

Therefore, WV2 dataset serves as a perfect choice to test the
generalization ability of the networks trained onWV3. As shown in
Fig. 11 and Fig. 12, our proposed method demonstrates the favorable
visual effect (as illustrated in the dark blue error map and hot QNR
map) on WV2 dataset, demonstrating its excellent generalization
ability.
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