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Abstract—Transformer has received a lot of attention in com-
puter vision. Because of global self-attention, the computational
complexity of Transformer is quadratic with the number of
tokens, leading to limitations for practical applications. Hence,
the computational complexity issue can be efficiently resolved
by computing the self-attention in groups of smaller fixed-size
windows. In this paper, we propose a novel Pyramid Shuffle-
and-Reshuffle Transformer (PSRT) for the task of Multispectral
and Hyperspectral Image Fusion (MHIF). Considering the strong
correlation among different patches in remote sensing images and
complementary information among patches with high similarity,
we design Shuffle-and-Reshuffle (SaR) modules to consider the
information interaction among global patches in an efficient
manner. Besides, using pyramid structures based on window
self-attention, the detail extraction is supported. Extensive ex-
periments on four widely-used benchmark datasets demonstrate
the superiority of the proposed PSRT with a few parameters
compared with several state-of-the-art approaches. The related
code will be available soon.

Index Terms—Multispectral and Hyperspectral Image Fusion,
Shuffle-and-Reshuffle Transformer, Pyramid Structure, Image
Enhancement, Image Fusion, Remote Sensing.

I. INTRODUCTION

Multispectral and Hyperspectral Image Fusion (MHIF) [2]–
[13], [13]–[19] is a classical task in computer vision involving
high spectral resolution hyperspectral data, which have a
limited spatial resolution because of some physical constraints.
MHIF aims to generate a High-Resolution Hyperspectral
Image (HR-HSI) by fusing a High-Resolution Multispectral
Image (HR-MSI) and a Low-Resolution HSI (LR-HSI). These
outcomes can be used for object recognition [20], classifi-
cation [21]–[25], and segmentation [26], [27]. Despite many
efforts that have recently been made [2], [14], [28]–[37], the
design of a high-efficiency technology for the problem at hand
is still a challenging task.

Convolutional Neural Networks (CNNs) shine in the field
of computer vision thanks to their high accuracy. While
convolution operations have been extensively analyzed and
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Fig. 1. The solid lines divide the plane into several fixed-size windows and
the dotted grids are used to divide the original window into four equal parts.
The blue block represents a quarter of the content in a window which has,
for instance, 2×2 tokens. (a) The Shifted Window approach applied to the
Swin Transformer [1] moving the blue blocks to the adjacent windows. (b)
The Shuffle operation of our PSRT block for similarity calculation, which
gathers the blue blocks of different windows into one window, realizing the
propagation of local information to global regions by window self-attention.

exploited, well-known drawbacks include redundancy and
spatial-agnostic [38]–[42] in convolutional kernels [43], [44].
In particular, convolutional kernels are shared in different posi-
tions of the image. Hence, the results are region-independent,
leading to the difficulty of capturing long-distance dependency
in the feature map. Recently, Transformers [45] have per-
formed well in many computer vision fields, mainly due to
their powerful ability to characterize long-distance relation-
ships that are of crucial importance for MHIF.

Transformer has been extensively used with the aim of mod-
eling non-local relationships in images. In prior works, Vision
Transformer (ViT) [46] considered the use of a Transformer in
Natural Language Processing (NLP) for image classification.
It divides the image into fixed-size patches, then embeds them
into a linear layer. Similarly to the processing of Transformers
in NLP, patches are regarded as tokens, and then the self-
attention mechanism [45] is performed on patches. The hier-
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archical framework of ViT inspired the use of a Transformer
in the field of computer vision. Compared with ViT, Pyramid
Vision Transformer (PVT) [47] introduced a pyramid structure
exploited for segmentation and object detection. In this way,
PVT can be used as a backbone like CNN in dense prediction
tasks. Recently, Swin Transformer [1] demonstrated great
potential and high efficiency. Like PVT, the Swin Transformer
also adopted the hierarchical design, including four stages.
Similar to [20], for expanding the receptive field in CNN,
each stage reduces the resolution of the feature map. Window
self-attention in the Swin Transformer empowers the model
to handle large-sized images. The shifted window operation
creates a long-range dependency between each independent
window, and the masking realizes the calculation of attention
for irregular windows without changing the original method.
The development of high-level computer vision tasks has also
led to the innovation of low-level tasks. Indeed, SwinIR [48]
borrowed the structure of the Swin Transformer, achieving
competitive performance in low-level tasks, such as image
super-resolution [49], image de-raining [50], [51], image
denoising [52], and JPEG compression [53]. SwinIR fully
exploits the advantages of Swin Transformer and designs
cascade blocks for deep feature extraction.

In this paper, we introduce the Pyramid Shuffle-and-
Reshuffle Transformer (PSRT), a new stage-to-stage hier-
archical framework for MHIF designing a novel way for
information interaction. In summary, the contributions of this
paper are as follows:

• We propose the so-called PSRT for the task of MHIF,
combining the Shuffle-and-Reshuffle (SaR) strategy and
the multi-scale feature extraction to learn both local and
more distant representations, and reducing the amount of
computation compared with the ViT.

• The customized SaR strategy can propagate the informa-
tion among different windows and enhance the efficiency
of modeling long-distance dependence. Besides, the de-
sign of the window pyramid structure can capture features
at different granularities (resolutions), recovering, in a
suitable way, detailed information for MHIF.

• We demonstrate the performance of the proposed ap-
proach on four commonly used datasets, i.e., Chikusei,
CAVE, Harvard, and Pavia. Results show that the pro-
posed approach can achieve state-of-the-art performance
with fewer parameters.

The rest of the paper is organized as follows. In Sect. II,
we introduce the related works about the MHIF problem.
Sect. III presents the proposed SaR strategy as well as the
network architecture. In Sect. IV, extensive experiments are
conducted to assess the effectiveness of the proposed SaR
strategy and PSRT block. In addition, experiments on the
performance of the SaR strategy considering image boundaries
and a comparison with the shifted window approach in [1] are
also provided to the readers.

II. RELATED WORKS

A. CNNs and MHIF

Very recent attempts to solve the MHIF task are often
based on the use of CNNs. SSRNet [54] proposed a physical
straightforward CNN model designing two loss functions for
spatial and spectral reconstructions, respectively. The residual
mechanism [55] is widely used to optimize the structure of
networks, and approaches like ResTFNet [56] exploited it
to avoid model degradation caused by the deep network.
MHFNet [57] employed the convolutional expansion opti-
mization algorithm to obtain a new network with the aim
of improving interpretability. MoG-DCN [58] adopted a U-
Net [59] deep convolutional network (DCN), which can exploit
the multi-scale dependence of HSIs. After model-guided un-
rolling, the entire network is trained end-to-end using a DCN-
based denoiser. HSRNet [30] exploited channel attention [60]
and spatial attention modules to extract information from
different dimensions. Although CNN is a powerful structure,
the use of Transformers demonstrated to have a great potential
for computer vision.

B. Self-Attention in MHIF
The core module for the Transformer is the self-attention

mechanism. Unlike convolutional operations in CNNs, the
self-attention mechanism can theoretically expand the recep-
tive field infinitely, thereby correlating different patches with
each other. However, applying self-attention directly to the
feature map in a pixel-to-pixel fashion leads to a dramatic
increase in the computation burden. ViT subtly splits the
feature maps into fixed-size patches, linearly embedding each
of them and feeding the sequence of the resulting vectors to
a standard Transformer encoder. PVT inherits the advantages
of both CNN and Transformer, making a unified backbone
for various vision tasks and directly replacing the CNN
backbone. PVT differs from ViT because it can be trained on
dense partitions of images to achieve high-resolution outputs,
and it leverages on a stage-to-stage structure to reduce the
computation. In T2T-ViT [61], novel tokenization for ViT
has been developed, in which the adjacent tokens are further
processed by splicing to achieve the purpose of aggregating
information and reducing parameters. In addition, researchers
also attempted to apply Transformer to low-level tasks. For
instance, the SwinIR [48] approach relies upon a robust model
for image restoration where the structure of Swin Transformer
has been directly used to build a Transformer block for deep
feature extraction.

C. Shuffle-wise Operation
In recent years, works as in [62], [63] addressed the problem

of creating a cross-window connection through shuffle opera-
tion. For easier understanding, it is assumed that the input is a
1D sequence to preserve generality, and a Window-based Self-
Attention with a window size of M and an input of N tokens
is considered. Shuffle Transformer [62] uses Self-Attention
first, reshapes the spatial input into (M , N

M ), transposes, and
then flats it to serve it as input for the Window-based Self-
Attention. Long-range cross-window connections are made
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possible by this type of operation, which groups tokens from
several windows. Ocnet [63] is based on two stages, i.e., local
and global, to implement the cross-window connection. The
first stage uses window-based Self-Attention to deal with local
information, and the other stage reshapes the input spatial into
( N
M , M ), transposes, and then flats it to serve it as input for

the Window-based Self-Attention. This latter approach shows
a crucial flaw, that is, the number of windows N

M is quite high
if the window size, M , in the first layer is small.

D. Motivation

There are many similar patches inside a hyperspectral
image, all closely related. Through the ViT model, patches in
different positions can be associated with each other to achieve
the purpose of restoring image details, but the computational
cost of this method is quadratic with inputs. The method of
window self-attention solves the problem of high computation
but limits the ability to model long-distance dependence. Swin
Transformer [1] solves these problems through the following
steps: 1) the original windows are shifted a half window
size to get new windows; moreover, some newly generated
windows are made up with original quarter and half windows
at the image boundary; 2) a mask operation is exploited to
independently compute self-attention for the original quarter
and half windows; 3) the computed windows are re-shifted. In
Fig. 1-(a), we can observe that the size of the windows close
to the image boundaries becomes smaller after the shifting
and masking operations. Thus, the mask forces a part of the
attention matrix to negative numbers, leading to an insufficient
self-attention calculation for the windows located at image
boundaries. This issue weakens the information interaction
at image boundaries, thus motivating us to improve Swin
Transformer through the proposed SaR strategy (which does
not use any mask to realize global attention). Fig. 1-(b)
shows the state of the windows after using the proposed SaR
strategy. By shuffling the plane according to the given rules
and then implementing window self-attention, a long-distance
connection can be achieved to obtain a global correlation in
a quick way. The multi-scale design is of crucial importance
for MHIF, and the window attention is the greatest advantage
of the Swin Transformer. Thus, we developed a multi-scale
window attention (i.e., the given PSRT block) inspired by
the classical pyramid structure to enrich features and yield
better information interaction. Sects.IV-H and IV-J assess the
effectiveness of the proposed approach.

III. METHODOLOGY

This section is devoted to the introduction of the main
blocks and mechanisms of the proposed approach together
with the adopted loss function.

A. Overview

As illustrated in Fig. 5, PSRT follows the commonly used
hierarchical architecture, which concatenates HR-MSI and the
upsampled version of the LR-HSI, and the whole architecture
learns the residual between the upsampled version of the LR-
HSI and the ground-truth (GT). The first convolution layer

extracts the shallow features and lifts the number of channels.
Then, we use PSRT blocks to extract deep information, in
which each PSRT block has a decreasing size of the window
for self-attention in order to extract information at different
scales. Finally, a convolutional layer is used as decoder to
merge the information. The outcome is obtained by adding
the upsampled version of the LR-HSI to the output.

B. Window Self-Attention
Transformer is characterized by the establishment of long-

distance dependence among tokens, which can effectively
describe the global correlation. For an image, we usually
take a 4 × 4 patch as a token and then inputting it into the
attention mechanism for calculation. Although this alleviates
the computational problem to a certain extent, it does not
solve the problem that this approach is expensive due to the
use of the original size as input. To address this issue, we
divide the input image into smaller non-overlapped windows
in the spatial dimension (i.e., Swin Transformer [1]), then
we implement self-attention to the tokens in each window
for efficient calculation. The window self-attention can be
expressed as follows:

Pi =
∑
i,j∈Ω

δi→jVj , (1)

where Ω = {1, · · · , N} represents a collection of indexes
within a separate window that contains a set of N tokens and
Pi stands for the i-th token after the attention computation
and matrix multiplication in Ω. We project the N tokens
in Ω into three parts: query, key, and value through matrix
multiplication. The projection can be expressed as follows:

Q = XPQ,

K = XPK,

V = XPV,

(2)

where PQ, PK, and PV represent the projected matrices that
are shared across different windows.

The attention result of the query from the i-th key to the
j-th key is marked as δi→j , Vj is the value of the j-th token
and δi→j is obtained by calculating the cosine value between
Qi and Kj via dot product, softmax function along the row,
and a scaling factor. In this way, the complexity of self-
attention decreases and it allows the model to gain the ability
to handle large-sized feature maps and the original tokens can
be expressed in a local manner.

C. Shuffle-and-Reshuffle (SaR) Strategy
1) Shuffle Operation: This section introduces the Shuffle

operation, which consists of two parts, i.e., horizontal Shuffle
and vertical Shuffle. The details of the two Shuffle operations
are depicted in the flowchart in Fig. 2. More specifically, the
horizontal Shuffle in the spatial domain can be described by
the following equations:

Gk =

{
Vij |k = ⌊ j

d
⌋
}
, (3)

V = Spliceh[G1,G2, · · · ,GW
d
], (4)

Vs = Spliceh[G1,G3, · · · ,GW
d −1,G2,G4, · · · ,GW

d
], (5)
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Fig. 2. The Shuffle consists of two parts, i.e., the Shuffle in the horizontal
and vertical directions, respectively. Step 1 shows the Shuffle of the columns.
Step 2 shows the Shuffle of the rows.

where ⌊·⌋ indicates the floor function.
For simplicity, we mark the plane as V ∈ RH×W and

the tokens in the plane as Vij ∈ R, i ∈ {1, 2, · · · , H},
j ∈ {1, 2, · · · ,W}. In the above formula, d is the length
of the Shuffle, whose value is win size

2 , and, Spliceh, in the
above equations, is used to horizontally merge the groups
Gk. Afterwards, we divide V into W

d groups, denoted as Gk,
k ∈

{
1, 2, · · · , W

d

}
. This operation is shown in the upper

left corner of Fig. 2. Then, we perform the Shuffle operation
on the plane V and the result of this operation is shown in
the upper right corner of Fig. 2. After getting the horizontal
Shuffle outcome, Vs, we exploit a similar strategy to Vs along
the vertical direction to yield the final Shuffle result, see the
second row of Fig. 2.

2) Reshuffle Operation: We execute the window self-
attention to the shuffled tokens and reverse the obtained results
by the Reshuffle operation, which still contains the horizontal
and vertical directions. The specific operation can be found in
Fig. 3 and the equations characterizing the operator along the
horizontal direction are as follows:

Gk =

{
Vij |k = ⌊ j

d
⌋
}
, (6)

Vs = Spliceh[G1,G2, · · · ,GW
d
], (7)

V = Spliceh[G1,GW
2d+1,G2,GW

2d+2 · · · ,GW
2d
,GW

d
], (8)

where Vs represents the plane that has been shuffled. Accord-
ing to Fig. 3, we first divide Vs into W

d groups, denoted as
Gk, k ∈

{
1, 2, · · · , W

d

}
, as in (7), and reshuffle the columns

of Vs to get V by (8), then applying the Reshuffle operation in
the vertical direction. The operation of Reshuffle is the inverse
operation of Shuffle. By adding window self-attention between
Shuffle and Reshuffle, the receptive field originally limited by
the window can be expanded. The following section will detail
the application of this module.
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Step 2.  Vertical Reshuffle

Fig. 3. The Reshuffle consists of two parts, i.e., the Reshuffle in the
horizontal and vertical directions, respectively. Step 1 shows the Reshuffle
of the columns. Step 2 shows the Reshuffle of the rows.

D. PSRT Block

In this section, we will detail the PSRT block that is added
to the main network architecture as a block. The pyramid
structure used in this work is not the same as the stage-to-stage
structure like PVT [47] and Swin Transformer [1]. Our PSRT
block has a window pyramid structure shown in Fig. 4-(a). It is
not difficult to see that the size of the window decreases stage-
to-stage to create multi-scale windows. In the PSRT block, the
size of the window is fixed at each stage, and each window is
independent of the others. The output of the previous stage is
used as input for the next stage. In the meanwhile, the size of
the window reduces to half of the previous stage. Specifically,
a PSRT block consists of three stages, extracting different
information through multi-scale windows in a hierarchical
way, to recover local details. Especially, in the first stage, the
size of input features is H×W×C and the size of the window
is W1×W1 (W1 is equal to 8). When the features reach the
last stage, the size of the window decays to W1

4 ×W1

4 , but the
shape of the feature keeps unchanged. The multi-scale design
is important for MHIF, and the window attention is the greatest
advantage of Swin Transformer. Thus, we designed a unique
model. We developed a multi-scale window attention (i.e.,
the proposed PSRT block) inspired by the classical pyramid
structure to provide larger receptive fields and enrich features,
thus yielding better information interaction.

E. One Stage in PSRT Block

The use of self-attention in a non-overlapped window is
regarded as the fusion of local information. To this end, we
designed a burger-like structure for each stage of the PSRT
block. One stage in PSRT blocks contains three window self-
attention layers, which are shown in Fig. 4-(b). Each stage
mainly consists of a Window Multi-head Self-Attention (W-
MSA) module, a MultiLayer Perceptron (MLP), and two
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Fig. 4. (a) One PSRT block with three stages, whose window size decreases layer by layer. (b) The components of one stage of the PSRT block.
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Fig. 5. The overall architecture of the proposed approach using PSRT blocks. “Win size” stands for the size of the window for self-attention.

LayerNorm (LN) layers. The S in the second block stands for
Shuffle and the R in the third block indicates that Reshuffle
is considered before the W-MSA module. Furthermore, the
nonlinearity (i.e., GELU [64]) and the residual connection are
exploited in each stage. More specifically, we have:

ẑl = W-MSA(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl,

ẑl+1 = W-MSA(LN(S(zl))) + zl,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1,

ẑl+2 = W-MSA(LN(R(z
l+1

))) + zl+1,

zl+2 = MLP(LN(ẑl+2)) + ẑl+2 + zl−1,

(9)

where W-MSA is a window-based self-attention, zl−1 is the
output in the previous stage, zl, zl+1, and zl+2 stand for the
outcomes of each stage. We take the “Window self-attention +
Shuffle + Window self-attention + Reshuffle + Window self-
attention” baseline as one stage of the PSRT block. The self-
attention is conducted first on the windows after shuffling,
to construct the global dependency among different windows.
Then, self-attention is implemented on the windows after
reshuffling, to construct the local dependency in one window.
By the above-mentioned two strategies of SaR, the information
among different windows is propagated.

The overall network architecture is depicted in Fig. 5.

F. Loss Function

L1 Loss: We calculate the L1 distance between the network
output, IMHIF , and the ground-truth, IHR, in a pixel-wise
manner:

L1 = ∥IMHIF − IHR∥1. (10)

SSIM Loss: The Structural SIMilarity (SSIM) can compare
the structural differences between IMHIF and IHR, which
include the luminance contrast function and the structural
contrast function. The SSIM function is defined as:

SSIM(X , X̂ ) =
1

B

B∑
i=1

(2µXiµX̂i + C1)(2σXiX̂i + C2)

(µ2
Xi + µ2

X̂i
+ C1)(σ2

Xi + σ2
X̂i

+ C2)
,

(11)
where B represents the number of bands, X and X̂ are equal

to
{
Xi

}B

i=1
and

{
X̂i

}B

i=1
, respectively, µXi and µX̂i are the

average of Xi and X̂i, respectively, σ2
Xi and σ2

X̂i
are the

variances of Xi and X̂i, respectively, σXiX̂i is the covariance
between Xi and X̂i. C1 and C2 are two fixed constants. We
use SSIM to measure the image distortion. Thus, the loss is
expressed as:

Lssim = 1− SSIM(IMHIF , IHR). (12)

Overall Loss Function: We optimize the parameters of the
network in a unified and end-to-end manner. The overall loss
function consists of the weighed sum of two losses:

Ltotal = L1 + λssimLssim, (13)
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where λssim is a positive hyperparameter fixed to 0.1 in our
experiments.

IV. EXPERIMENTAL RESULTS

This section is devoted to the description of the experimental
results to demonstrate the ability of the proposed approach to
fuse HSIs and MSIs, getting high-quality HR-HSIs, but even
requiring a reduced computational burden. The experimental
settings, the benchmarking, and the adopted quality metrics
will be described first. Afterwards, the results on four popular
datasets will be shown. Finally, an ablation study is provided
to the readers.

A. Experimental Settings

Implementation Details: The proposed network is imple-
mented in PyTorch 1.11.0 and Python 3.8.5 using AdamW
optimizer with a learning rate of 0.0001 to minimize Ltotal

by 2000 epochs and Windows operating system with NVIDIA
GPU GeForce RTX3080. PSRT blocks are initialized using a
normal distribution, instead, the initialization of convolution
modules is based on a constant distribution.
Datasets: To show the effectiveness of the proposed method,
we evaluate the performance on a remote sensing hyperspectral
image dataset called Chikusei, which includes agricultural
and urban regions in Chikusei, Japan. The image consists of
2517× 2335 pixels with 128 spectral bands in the range from
363 nm to 1018 nm. We picked the top-left region with a
spatial size of 1000 × 2200 for training, and we extracted
64 × 64 overlapping patches from that area as ground-truth.
In addition, the sizes of the HR-MSI and LR-HSI patches are
64×64×3 and 16×16×128, respectively. We extracted 6 non-
overlapping images of 680 × 680 × 128 from the remaining
area for testing. The Pavia Centre dataset was collected in
2001 during a flight campaign over the central region of Pavia
(Italy) by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor. It has 102 spectral bands (the water vapor
absorption and noisy spectral bands have been removed from
the initial 115 spectral bands) and 1096 × 1096 pixels in
total. We chose a region on the top of the area captured in
the dataset as a training set (cropping patches with the same
size as the ones in the Chikesei dataset) and the remaining
region as a testing set. The testing set consists of four
256 × 256 non-overlapped hyperspectral patches. To further
test the performance of our model, we conducted experiments
on the CAVE dataset. CAVE dataset contains 32 HSIs and
the corresponding MSIs using red-green-blue (RGB) channels
with a size of 512 × 512 × 31. We selected 20 images for
training the network, and the remaining 11 images constitute
the testing dataset. Instead, Harvard dataset contains 77 HSIs
of indoor and outdoor scenes, and each HSI has a size of
1392×1040×31, covering the spectral range from 420 nm to
720 nm. We cropped the upper left part (1000× 1000) of the
20 Harvard images, 10 of which have been used for training,
and the rest has been exploited for testing.
Data Simulation: The proposed network requires LR-HSI
and HR-MSI (X ,Y) as input pairs and the HR-HSI, Z , as

ground-truth (GT) for training. However, the reference HR-
HSI, Z , is always unavailable. Hence, a simulation step is
needed. Specifically, in the experiments on the CAVE dataset,
we cropped the 20 selected training images generating 3920
overlapped patches with size of 64 × 64 × 31 to serve as
HR-HSI (ground-truth) Z patches. Furthermore, we applied
a 3 × 3 Gaussian blur kernel with a standard deviation of
0.5 on the original HR-HSIs to simulate the corresponding
LR-HSIs. Then, we downsampled the blurred patches with
a scaling factor of 4. Moreover, the HR-MSI patches are
generated by the common spectral response function of the
Nikon D700 camera. Thus, 3920 RGB image patches with size
of 64× 64× 3 and LR-HSI patches with size of 16× 16× 31
form the input pairs (X ,Y). Afterwards, the pairs and the
related GTs have been randomly divided into training data
(80%) and validation data (20%). This procedure is similarly
applied to the other three datasets to simulate the input LR-
HSI and HR-MSI products and the GTs.

B. Benchmarking

To assess the performance of our approach, we compare
it with various state-of-the-art methods for MHIF. The up-
sampled LR-HSI in Fig. 5 is obtained through bicubic in-
terpolation, which is added to the experiments as baseline.
Model-based techniques include the CSTF [65] method, the
FUSE [66] approach, the GLP-HS [67] method, and the CNN-
FUSE [68] approach. In addition, we performed a comparison
with other deep learning methods, such as the SSRNet [54], the
ResTFNet [56], the MHFNet [57], the HSRNet [30], and the
MoG-DCN [58]. All the deep learning approaches are trained
with the same input pairs for a fair comparison. Moreover,
the related hyperparameters are selected consistently with the
original papers.

C. Quality Metrics

Four Quality Indexes (QIs) are adopted to assess the quality
of the fusion approaches, including the Peak Signal-to-Noise
Ratio (PSNR), the Spectral Angle Mapper (SAM), the Erreur
Relative Globale Adimensionnelle de Synthèse (ERGAS), and
the SSIM was introduced before.

The PSNR measures the spatial quality of each band in the
reconstructed HR-HSI. Thus, we have:

PSNR(X , X̂ ) =
1

B

B∑
i=1

PSNR(Xi, X̂i), (14)

where Xi ∈ RH×W and X̂i ∈ RH×W represent the i-th band
of the X ∈ RH×W×B and X̂ ∈ RH×W×B , respectively, and
PSNR(·, ·) is the PSNR function defined as:

PSNR(Xi, X̂i) = 20 · log10

 max
(
Xi

)√
MSE(Xi, X̂i)

 , (15)

where MSE(Xi, X̂i) is the mean square error between Xi and
X̂i and max (·) is the maximum operator applied to an image
Xi.
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The SAM measures the spectral distortion of each hyper-
spectral pixel in the reconstructed HR-HSI. Thus, we have:

SAM(X , X̂ ) =
1

HW

HW∑
i=1

cos−1

(
xT
i x̂i

∥xi∥2∥x̂i∥2

)
, (16)

where cos−1 is the arccosine function, xi ∈ RB×1 and
x̂i ∈ RB×1 denote the spectra of the i-pixel of X and X̂ ,
respectively, ∥·∥2 is the ℓ2 norm, and ·T denotes the transpose
operator.

The ERGAS considers the ratio of the ground sample
distances between HR-MSI and LR-HSI to measure the global
statistical quality of the reconstructed HR-HSI. The ERGAS
is formulated as:

ERGAS(X , X̂ ) =
100

c

√√√√ 1

B

B∑
i=1

MSE(Xi, X̂i)

µ2
X̂i

, (17)

where c denotes the scaling factor and µ2
X̂i

is the square of
the mean value of X̂i.

The SSIM is introduced in the section related to the de-
scription of the adopted loss function. The higher the PSNR
value, the better the performance. In contrast, smaller values of
SAM and ERGAS indicate better quality of the reconstructed
HR-HSI. SSIM ranges from -1 to 1, and values closer to 1
indicate a better quality of the fused product. Finally, optimal
values are +∞ for PSNR, 0 for SAM and ERGAS, and 1 for
SSIM.

D. Results on Chikusei Dataset

We conducted experiments to evaluate our network on real
remote-sensing images. We treated the original data as ground-
truth and simulated the LR-HSI in the same way as described
in Sect. IV-A. The HR-HSI is obtained by the hyperspectral

(a) (b) (c)

(d) (e) (f)

Fig. 6. The 6 testing images from the Chikusei dataset: (a) area 1, (b) area
2, (c) area 3, (d) area 4, (e) area 5, (f) area 6. A pseudo-color representation
is used combining the 119th, the 90th, and the 69th bands.

camera and the corresponding HR-MSI is captured by the
Canon EOS 5D Mark II. In Fig. 6, the 6 non-overlapping
testing images have been presented. All the deep learning-

TABLE I
THE FOUR AVERAGE QIS AND THE CORRESPONDING PARAMETERS ON

THE 6 TESTING IMAGES FROM THE CHIKUSEI DATASET. THE BEST VALUES
ARE HIGHLIGHTED IN BOLD, THE SECOND BEST VALUES ARE

UNDERLINED. M MEANS MILLIONS.

Method PSNR SAM ERGAS SSIM # params

Bicubic 30.16 2.98 6.67 0.912 /
GLP-HS [67] 31.60 3.29 5.69 0.920 /
FUSE [66] 27.76 4.80 7.23 0.882 /
CSTF [65] 30.36 4.58 5.91 0.824 /
CNN-FUSE [68] 31.83 4.76 5.25 0.918 /
SSRNet [54] 35.54 2.33 3.79 0.954 0.03M
ResTFNet [56] 36.70 2.20 3.66 0.949 2.26M
MHFNet [57] 33.19 3.18 6.24 0.927 3.63M
HSRNet [30] 36.95 2.08 3.60 0.952 1.90M
MoG-DCN [58] 36.04 2.04 3.55 0.949 53.19M
Our 36.83 2.01 3.54 0.955 1.05M

based methods are re-trained on training data extracted from
the Chikusei dataset.

The average four QIs and the corresponding parameters
for the 6 testing images of the Chikusei dataset are shown
in Tab. I. Compared with the traditional methods, the deep
learning-based approaches obtain better performance due to
the inductive bias ability. For instance, the deep neural net-
work structure is based on the principle that the hierarchical
processing of information can get better results. Instead, CNNs
made the hypothesis that the information has a spatial locality
and they used sliding convolution to share weights to reduce
the parameter space. Finally, Transformer can establish long-
distance dependence. More specifically, our method achieves
state-of-the-art results compared with the benchmarking for
most of the quality metrics. Regarding to the comparison with
the MoG-DCN [58] (the second best approach), our method
gets a better PSNR (higher than 0.79 dB) and lower SAM
and ERGAS values also requiring fewer parameters. Compared
with the third best method, HSRNet [30], it is clear that our
approach outperforms it considering 3 out of 4 QIs, i.e. SSIM,
SAM, and ERGAS. In terms of qualitative assessment, see
Fig. 7, we present the pseudo-color representations of the fused
products, and some error maps to aid the visual inspection.
Compared with the benchmark, our approach has better detail
recovery and visual effects. More specifically, FUSE [66]
shows color changes and blurred effects, see also Tab. I.
Having a look at the error maps, the reconstruction provided
by our model is close to the ground-truth and surely closer
than the compared approaches. Thus, the proposed approach
achieves the best results in terms of image detail reconstruction
and the darkest colors in the related error map.

E. Results on Pavia Centre Dataset

In this section, we assess the performance of another real
remote sensing dataset (i.e., Pavia Centre). We considered the
original HSI as ground-truth, and we simulated the LR-HSI in
the same way as in Sect. IV-A.

In Fig. 8, the 4 testing images have been presented. We
can see from Fig. 9 that the proposed approach gets high
performance. In particular, the residual maps demonstrate that
there is little difference between the result from our approach
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(a) GT (b) FUSE [66] (c) SSRNet [54] (d) ResTFNet [56] (e) MHFNet [57] (f) HSRNet [30] (g) MoG-DCN [58] (h) Ours0 0.2 0.4 0.6 0.8 1
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Fig. 7. The first and third rows show the results using the pseudo-color representation on “area 4” and “area 6”, respectively, from the Chikusei dataset. Some
close-ups are depicted in the red rectangles. The second and fourth rows show the residuals between the GT and the fused products. (a) GT, (b) FUSE [66],
(c) SSRNet [54], (d) ResTFNet [56], (e) MHFNet [57], (f) HSRNet [30], (g) MoG-DCN [58], and (h) Ours.

(a) (b)

(c) (d)

Fig. 8. The 4 testing images from the Pavia Centre dataset: (a) area 1, (b)
area 2, (c) area 3, (d) area 4. A pseudo-color representation is used combining
the 64th, the 32nd, and the 11th bands.

and the GT. A numerical assessment is reported in Tab. II.
It can be found that deep learning approaches outperform
traditional ones. Our method gets overall good results (in
agreement with high-performance approaches such as HSRNet
and MoG-DCN). Moreover, it represents an efficient solution
supported by a lightweight architecture with a reduced number
of parameters. To sum up, the proposed approach shows an

outstanding trade-off between performance and computational
costs on the Pavia Centre dataset.

TABLE II
THE FOUR AVERAGE QIS AND THE CORRESPONDING PARAMETERS ON
THE 4 TESTING IMAGES FROM THE PAVIA CENTRE DATASET. THE BEST
VALUES ARE HIGHLIGHTED IN BOLD, THE SECOND BEST VALUES ARE

UNDERLINED. M MEANS MILLIONS.

Method PSNR SAM ERGAS SSIM # params

Bicubic 19.00 6.45 9.64 0.573 /
GLP-HS [67] 30.74 4.82 5.55 0.897 /
FUSE [66] 36.66 6.18 3.53 0.953 /
CSTF [65] 45.24 2.22 1.14 0.993 /
CNN-FUSE [68] 43.88 2.68 1.36 0.989 /
SSRNet [54] 46.50 1.73 1.00 0.996 0.22M
ResTFNet [56] 41.07 2.21 1.45 0.993 2.44M
MHFNet [57] 35.42 3.98 3.84 0.946 1.90M
HSRNet [30] 45.56 1.66 1.00 0.995 3.10M
MoG-DCN [58] 48.24 1.48 0.86 0.997 7.69M
Our 48.26 1.53 1.24 0.996 0.59M

F. Results on CAVE Dataset

We also tested our model on the CAVE dataset. Fig. 10
presents the 11 testing images in an RGB color composition.

From Tab. III, we can see that the proposed approach
(with only 0.25M parameters) overcomes the other methods
in 3 out of 4 QIs, i.e. PSNR, SAM, and SSIM. Specifi-
cally, we observed an improvement of ∼ 0.99/5.72/0.06%
in PSNR/SAM/SSIM when compared with the second best
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(a) GT (b) FUSE [66] (c) SSRNet [54] (d) ResTFNet [56] (e) MHFNet [57] (f) HSRNet [30] (g) MoG-DCN [58] (h) Ours0 0.2 0.4 0.6 0.8 1
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Fig. 9. The first and third rows show the results using the pseudo-color representation on “area 2” and “area 4”, respectively, from the Pavia Centre dataset.
Some close-ups are depicted in the red rectangles. The second and fourth rows show the residuals between the GT and the fused products. (a) GT, (b)
FUSE [66], (c) SSRNet [54], (d) ResTFNet [56], (e) MHFNet [57], (f) HSRNet [30], (g) MoG-DCN [58], and (h) Ours.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 10. The testing images from the CAVE dataset: (a) balloons, (b) cd, (c)
chart and stuffed toy, (d) clay, (e) fake and real beers, (f) fake and real lemon
slices, (g) fake and real tomatoes, (h) feathers, (i) flowers, (j) hairs, and (k)
jelly beans. An RGB color representation is used to depict the images.

method, i.e., MoG-DCN [58]. Compared with the third-
best method, HSRNet [30], our approach improves ∼
2.01/7.14/0.07% in PSNR/SAM/SSIM with fewer parameters.

By comparing the results in Fig. 12 and the related close-ups
in the rectangular boxes, we can remark the best performance
of the proposed approach. The colors of the objects in the
figures, the shape of the details, and the edges are closer to
the GT. On the other hand, the residual maps show that the
gap between our outcome and the GT is minimal. Finally, we
illustrated possible spectral distortions in the fused products by
showing spectral vectors. Fig. 11 depicts the spectral vectors
for the 31 bands at position (386, 61). For convenience, we

TABLE III
THE FOUR AVERAGE QIS AND THE CORRESPONDING PARAMETERS ON THE

11 TESTING IMAGES FROM THE CAVE DATASET. M MEANS MILLIONS.

Method PSNR SAM ERGAS SSIM # params

Bicubic 32.86 4.28 7.19 0.945 /
GLP-HS [67] 37.81 5.36 4.66 0.972 /
FUSE [66] 39.72 5.83 4.18 0.975 /
CSTF [65] 42.14 9.92 3.07 0.964 /
CNN-FUSE [68] 42.66 6.44 2.95 0.982 /
SSRNet [54] 45.28 4.72 2.06 0.990 0.03M
ResTFNet [56] 45.35 3.76 1.98 0.992 2.26M
MHFNet [57] 46.32 4.33 1.74 0.992 3.63M
HSRNet [30] 47.82 2.66 1.34 0.995 1.90M
MoG-DCN [58] 48.30 2.62 1.36 0.995 47.28M
Our 48.78 2.47 1.66 0.995 0.25M

zoomed in the spectral vectors of five bands (5th∼9th bands),
see the rectangular boxes in Fig. 11. It can be seen in both the
figures that the spectral vectors of the proposed method (the
red lines) are the closest to the GT.

G. Results on Harvard Dataset

We conducted experiments on the Harvard dataset to assess
the performance of our network. Again, we used the same
simulation approach as in Sect. IV-A. The 10 testing images,
randomly selected from the Harvard dataset, are depicted in
Fig. 13. Tab. IV reports the results.
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(a) balloons

(b) chart and stuffed toy

Fig. 11. Spectral vectors of the GT and the benchmark. (a) Spectral vectors
in “balloons” located at position (386, 61). (b) Spectral vectors in “chart and
stuffed toy” located at position (386, 61).

TABLE IV
THE FOUR AVERAGE QIS AND THE CORRESPONDING PARAMETERS ON 10

TESTING IMAGES FROM THE HARVARD DATASET. M MEANS MILLIONS.

Method PSNR SAM ERGAS SSIM # params

Bicubic 35.01 2.83 4.58 0.945 /
GLP-HS [67] 40.14 3.52 3.74 0.966 /
FUSE [66] 42.06 3.23 3.14 0.977 /
CSTF [65] 43.04 3.29 2.39 0.972 /
CNN-FUS [68] 43.61 3.32 2.78 0.978 /
SSRNet [54] 44.40 2.61 2.39 0.985 0.03M
ResTFNet [56] 44.47 2.56 2.21 0.985 2.26M
MHFNet [57] 43.10 2.76 3.28 0.977 3.63M
HSRNet [30] 44.29 2.66 2.45 0.984 1.90M
MoG-DCN [58] 45.82 2.22 1.99 0.987 47.28M
Our 47.02 2.35 2.13 0.986 0.25M

Because of the presence of high-frequency noise in the
images, the results recovered by each model have both spatial
and spectral distortions. Our model achieves the best perfor-
mance on the PSNR metric and the second-least number of
parameters compared with state-of-the-art methods. Specifi-

cally, comparing it with the second-best method, i.e. MoG-
DCN [58], it is straightforward that our method outperforms
it by 1.2 dB in the PSNR index with a number of parameters
less than 189 times the ones of MoG-DCN. Having a look
at the results of HSRNet [30], our approach has better QIs.
In particular, a higher PSNR (2.73 dB more) and SSIM, and
lower values of SAM and ERGAS with fewer parameters.
From a qualitative point of view, in Fig. 14, our model still
has a great visual rendering showing an excellent details
reconstruction.

H. Ablation Study

This section is devoted to the presentation of the results
about the ablation study to assess the performance of the multi-
scale windows and the SaR strategy in the PSRT. For the sake
of brevity and without affecting the generality, the analysis is
provided considering the CAVE dataset.

1) Shuffle and Reshuffle: Ablation studies on the SaR
strategy are reported in Tab. V. w/o SaR 1 indicates that we
removed the SaR strategy at the first stage, and w/o SaR 2
denotes that we removed the SaR strategy at the first two
stages. Instead, w/o SaR 3 means that the whole PSRT
blocks do not use the SaR strategy. It is clear that removing
the SaR strategy at a stage leads to a decrease in performance.
Moreover, to test the performance of the Shifted Window
approach, we replace the SaR strategy with this latter (called
“shifted” in Tab. V). We can note that with this configuration,
we have a clear decrease in performance.

TABLE V
THE AVERAGE FOUR QIS VARYING THE APPLICATION OF THE SAR

APPROACH ON THE CAVE DATASET. W/O SAR x INDICATES THAT THE
SAR STRATEGY IS REMOVED FROM THE FIRST STAGE TO THE x-TH STAGE.

SHIFTED MEANS THAT WE SUBSTITUTE OUR SAR STRATEGY WITH THE
SHIFTED WINDOW APPROACH [1].

Method PSNR SAM ERGAS SSIM

w/o SaR 1 48.42 2.61 1.95 0.995
w/o SaR 2 48.36 2.60 1.90 0.995
w/o SaR 3 48.35 2.55 2.18 0.995
shifted 48.20 2.58 2.35 0.995
SaR 48.78 2.47 1.66 0.995

2) Multi-Scale Windows: Tab. VI reports the results of the
PSRT blocks with all the windows fixed to the same size. It
is easy to note a degradation in performance if each PSRT
block uses a fixed-size window. We tested three different
configurations with size of 2, 4, and 8. The larger the size
of the window, the better the performance. Anyway, this
test proves the necessity of a multi-scale analysis requiring
different window sizes at different stages.

3) SaR Strategy on Swin Transformer: To further demon-
strate the effectiveness of the SaR strategy, we tested it against
the Shifted Window operation. We designed Swin Transformer
structures with three different sizes comparing the Shifted
Window approach (Swin-Shift) with our SaR strategy (Swin-
SaR). The horizontal axis in Fig. 15 represents the parameter
amount and the vertical axis is related to the PSNR. The purple
dots represent the Swin Transformer with the Shifted Window
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Fig. 12. The first and third rows show the results using the true color representation on “balloons” and “chart and stuffed toy”, respectively, from the CAVE
dataset. Some close-ups are depicted in the red rectangles. The second and fourth rows show the residuals between the GT and the fused products. (a) GT,
(b) FUSE [66], (c) SSRNet [54], (d) ResTFNet [56], (e) MHFNet [57], (f) HSRNet [30], (g) MoG-DCN [58], and (h) Ours.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 13. The 10 testing images from the Harvard dataset: (a) bikes, (b) sofa1,
(c) window, (d) fence, (e) tree, (f) sofa2, (g) backpack, (h) wall, (i) door, and
(j) parcels. A pseudo-color representation is used combining the 30th, the
15th, and the 2nd bands

TABLE VI
THE AVERAGE FOUR QIS VARYING THE SIZE OF THE WINDOWS ON THE

CAVE DATASET. WE INDICATE WITH SIZE=x THAT THE SIZE OF THE
WINDOW IS FIXED TO x.

Method Backbone PSNR SAM ERGAS SSIM

win size=2 PSRT 47.74 2.66 2.65 0.995
win size=4 PSRT 48.16 2.64 2.20 0.995
win size=8 PSRT 48.42 2.57 1.99 0.995
Pyramid PSRT 48.78 2.47 1.66 0.995

approach. Instead, the blue dots indicate the Swin Transformer
with the proposed SaR strategy. It can be noted that the
positive effects of Swin Transformer are improved when the

Shifted Window operation is replaced by our SaR strategy.
This proves that the proposed SaR strategy is better than the
Shifted Window approach when applied to Swin Transformer
for solving the MHIF task.

4) SaR Strategy with another shuffle strategy: We considered
the following experiments to confirm the superiority of our
SaR approach. We employed PSRT as the backbone, replac-
ing our SaR strategy with the Shuffle Transformer approach
in [62] and the OCnet method in [63]. In Tab. VII, we can
easily observe that the SaR strategy outperforms the above-
mentioned methods.

TABLE VII
THE AVERAGE FOUR QIS REPLACING THE SAR STRATEGY WITH THE
SHUFFLE TRANSFORMER APPROACH [62] (SHUFFLE) AND WITH THE

OCNET METHOD [63] (OC) ON THE CAVE DATASET.

Method PSNR SAM ERGAS SSIM

Shuffle 47.07 3.13 2.60 0.994
OC 48.56 2.46 2.66 0.995
SaR 48.78 2.47 1.66 0.995

I. Experiments with Scaling Factor of 8
Focusing again on the CAVE dataset, we assessed the

performance of the compared approaches simulating a scaling
factor of 8. The results are reported in Tab. VIII. The fusion
results show that our method still achieves the best results with
a small amount of parameters.
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Fig. 14. The first and third rows show the results using the pseudo-color representation on “wall” and “parcels”, respectively, from the Harvard dataset. Some
close-ups are depicted in the red rectangles. The second and fourth rows show the residuals between the GT and the fused products. (a) GT, (b) FUSE [66],
(c) SSRNet [54], (d) ResTFNet [56], (e) MHFNet [57], (f) HSRNet [30], (g) MoG-DCN [58], and (h) Ours.
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Fig. 15. PSNR Vs. Parameter amount for Swin-Shift and Swin-SaR on the
CAVE dataset.

J. Image Boundary Influence

Having a look at the Swin Transformer, it can be easily
noted that windows on image boundaries shrink producing
poor results. Thus, we tested the performance on image
boundaries using the PSRT as backbone to compare the SaR
strategy with the Shifted window approach [1]. We cropped
regions with strides of 4, 8, and 12 pixels from image edges.
It can be seen from Tab. IX that our SaR strategy outperforms
the Shifted window approach on image boundaries.

V. CONCLUSIONS

In this paper, we proposed an approach to take into account
of the modeling of global information while reducing compu-
tation complexity to solve the MHIF task. Specifically, the SaR

TABLE VIII
THE AVERAGE FOUR QIS AND THE CORRESPONDING PARAMETERS ON
THE CAVE DATASET SIMULATING A SCALING FACTOR OF 8. M MEANS

MILLIONS.

Method PSNR SAM ERGAS SSIM # params

Bicubic 28.42 5.62 11.09 0.890 /
FUSE [66] 36.18 9.87 1.57 0.927 /
CSTF [65] 39.13 15.61 1.19 0.946 /
CNN-FUS [68] 38.20 9.57 2.32 0.955 /
SSRNet [54] 43.79 5.09 1.23 0.988 0.03M
ResTFNet [56] 43.21 4.69 1.32 0.990 2.26M
MHFNet [57] 45.00 4.88 0.99 0.990 3.63M
HSRNet [30] 44.97 3.33 0.94 0.992 1.90M
MoG-DCN [58] 46.08 3.33 0.90 0.993 47.28M
Our 46.09 3.04 1.73 0.993 0.25M

strategy applied along the horizontal and vertical directions
is adopted to get better window interactions. One stage of
the PSRT is the combination of “Window self-attention +
Shuffle + Window self-attention + Reshuffle + Window self-
attention”, which is similar to a burger-like structure. SaR
strategy with window self-attention allows spreading the local
information without adding extra computation. Meanwhile, the
design relied upon the concept of multi-scale analysis using
pyramidal structures enables the model to extract information
at different resolutions; an approach that is more effective
for the MHIF task. Extensive experiments demonstrated the
advantages of each module of the proposed technique over-
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TABLE IX
RESULTS ABOUT THE IMAGE BOUNDARY INFLUENCE. THE AVERAGE FOUR
QIS ARE CALCULATED ON THE CAVE DATASET WITH A SCALING FACTOR
OF 4. SAR x INDICATES THE RESULTS OF THE PSRT APPLYING THE SAR
STRATEGY ON BOUNDARY REGIONS OF WIDTH OF x PIXELS. SHIFTED x
DENOTES THE RESULTS OF THE PSRT APPLYING THE SHIFTED WINDOW
APPROACH ON BOUNDARY REGIONS OF WIDTH OF x PIXELS. THE BEST
VALUES ARE HIGHLIGHTED IN BOLD, THE SECOND BEST VALUES ARE

UNDERLINED.

Method Backbone PSNR SAM ERGAS SSIM

Shifted 4 PSRT 35.73 16.20 5.84 0.972
SaR 4 PSRT 36.09 16.33 5.91 0.972
Shifted 8 PSRT 41.05 9.93 3.77 0.986
SaR 8 PSRT 41.44 9.84 3.74 0.986
Shifted 12 PSRT 44.07 7.45 2.88 0.990
SaR 12 PSRT 44.10 7.45 2.90 0.990

coming the performance of several state-of-the-art methods
for MHIF.
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