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Abstract
Transformer-based methods have proven to be ef-1

fective in achieving long-distance modeling, cap-2

turing the spatial and spectral information, and3

exhibiting strong inductive bias in various com-4

puter vision tasks. Generally, the Transformer5

model includes two common modes of multi-head6

self-attention (MSA): spatial MSA (Spa-MSA) and7

spectral MSA (Spe-MSA). However, Spa-MSA8

is computationally efficient but limits the global9

spatial response within a local window. On the10

other hand, Spe-MSA can calculate channel self-11

attention to accommodate high-resolution images,12

but it disregards the crucial local information that13

is essential for low-level vision tasks. In this study,14

we propose a bidirectional dilation Transformer15

(BDT) for multispectral and hyperspectral image16

fusion (MHIF), which aims to leverage the advan-17

tages of both MSA and the latent multiscale infor-18

mation specific to MHIF tasks. The BDT consists19

of two designed modules: the dilation Spa-MSA20

(D-Spa), which dynamically expands the spatial re-21

ceptive field through a given hollow strategy, and22

the grouped Spe-MSA (G-Spe), which extracts la-23

tent features within the feature map and learns lo-24

cal data behavior. Additionally, to fully exploit25

the multiscale information from both inputs with26

different spatial resolutions, we employ a bidirec-27

tional hierarchy strategy in the BDT, resulting in28

improved performance. Finally, extensive experi-29

ments on two commonly used datasets, CAVE and30

Harvard, demonstrate the superiority of BDT both31

visually and quantitatively. Furthermore, the re-32

lated code is available at https://github.com/Deng-33

shangqi/BDT.34

1 Introduction35

Hyperspectral imaging (HSI) is a widely used technology36

in various fields, including agriculture [Lu et al., 2020;37

∗Corresponding author: Liang-Jian Deng. This research is sup-
ported by NSFC (12271083) and Natural Science Foundation of
Sichuan Province (2022NSFSC0501).

Figure 1: The comparison of (a) Spa-MSA [Liu et al., 2021], (b)
the proposed D-Spa based on Spa-MSA, (c) Spe-MSA [Zamir et al.,
2022], and (d) the proposed G-Spe based on Spe-MSA. The blue
clusters indicate the image tokens in (a) and (b). Utilizing the dila-
tion operation, the proposed D-Spa can expand the receptive field of
Spa-MSA. In (c) and (d), the blue slices denote the image tokens,
and we design G-Spe to allow the model to learn more data behavior
inside the feature map.

Wu et al., 2011], food safety [Feng and Sun, 2012], biomed- 38

ical diagnostics [Piqueras et al., 2011], and atmospheric en- 39

vironment detection [Gao et al., 2006]. HSIs with high spec- 40

tral resolution produce precise spectral characteristic curves, 41

and the abundance of bands makes it convenient for mutual 42

band correction. However, due to the current physical imag- 43

ing technology’s constraints, there is a trade-off between the 44

spatial and spectral resolution of the natural imaging pro- 45

cess. Therefore, it is impossible to produce an image with 46

high spatial and spectral resolution simultaneously. As a re- 47

sult, multispectral and hyperspectral image fusion (MHIF) 48

has emerged as a promising method to generate the neces- 49

sary high-resolution hyperspectral images (HR-HSI). Numer- 50

ous approaches have been developed for MHIF and can be 51

broadly categorized into two categories: traditional meth- 52

ods [Guo et al., 2020; Yang et al., 2020b; Yang et al., 2020a] 53
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and deep learning (DL)-based techniques [Yan et al., 2022;54

Zhou et al., 2022; Cao et al., 2020].55

In recent years, deep learning (DL)-based techniques have56

become increasingly popular, with CNN modules being57

the current state-of-the-art for MHIF problems due to their58

spatial-agnostic and channel-specific convolutional proper-59

ties [Li et al., 2021]. Researchers have designed specific60

convolution modules and stacked them to construct a gen-61

eral network structure that effectively extracts potential be-62

havior from databases. However, the local receptive field in63

CNNs limits long-range dependencies and may hinder the in-64

ternal modeling of the image. Recently, the Vision Trans-65

former (ViT)[Kolesnikov et al., 2021] has demonstrated im-66

pressive performance on various computer vision tasks[Hu et67

al., 2022]. ViT is based on a self-attention mechanism that68

efficiently captures global interactions by studying the con-69

nections among tokens. To apply the Transformer to visual70

tasks, numerous solutions have emerged, such as the spa-71

tial window-based MSA [Liu et al., 2021], Spe-MSA [Za-72

mir et al., 2022], linear complexity self-attention [Wang et73

al., 2020], among others. Notably, the spatial window-based74

MSA sets a suitable window size and divides the spatial size75

of an image into several patches. For concision, this method76

is also referred to as Spa-MSA.77

We propose a fusion architecture that integrates spatial and78

spectral information and fully exploits MSA to model simi-79

lar patches in a hyperspectral image, considering the proper-80

ties of the MHIF task. While Spa-MSA lacks the modeling81

of longer-distance information, Spe-MSA does not make full82

use of the information inside the data. To achieve a more83

wide-range correlation, our proposed architecture includes84

dilation Spa-MSA and grouped Spe-MSA modules. The con-85

tributions of this paper are listed as follows (also find more86

details in Fig. 1):87

• We present a novel bidirectional dilation Transformer88

(BDT) architecture that utilizes both dilation Spa-MSA89

(D-Spa) and grouped Spe-MSA (G-Spe) modules for90

MHIF. Our experimental results on benchmark datasets91

demonstrate that our method achieves state-of-the-art92

(SOTA) performance. We also conduct additional ex-93

periments to evaluate the efficiency of D-Spa and G-Spe94

modules, the bidirectional structures, and the impact of95

dilation rates on the overall performance.96

• To improve the receptive field of Spa-MSA, we design97

the D-Spa to extract a broader range of local informa-98

tion for the MHIF task. Specifically, D-Spa does not99

require additional parameters and calculations, which100

can be viewed as a plug-and-play module for all Spa-101

MSA based approaches. Various experiments in Sect. 3102

demonstrate the effectiveness of the proposed dilation103

strategy.104

• To fully exploit the spatial information along channel di-105

mension, we design a so-called G-Spe to extract latent106

features inside the feature map and learn local data be-107

havior.108

2 Related Works109

2.1 Transformer in MHIF 110

The Transformer architecture has demonstrated strong per- 111

formance in various vision tasks, and many researchers are 112

attempting to leverage it for the MHIF problem with promis- 113

ing results. For instance, Hu et al.[Hu et al., 2022] were 114

the first to use Transformer for MHIF and achieved pow- 115

erful performance with a lightweight network. Addition- 116

ally, Meng et al.[Meng et al., 2022] proposed an advanced 117

transformer-based model for remote sensing pansharpening. 118

Bandara et al.[Bandara and Patel, 2022] designed a novel 119

attention mechanism for hyperspectral pansharpening using 120

Transformer, where the features of the low-resolution hy- 121

perspectral image (LR-HSI) and panchromatic (PAN) im- 122

age were formulated as queries and keys. Ma et al.[Ma et 123

al., 2021] utilized Transformer instead of CNN to learn the 124

prior of hyperspectral images (HSIs) and then used an un- 125

folding network to simulate iterative solution processes for 126

HSI super-resolution. Furthermore, Zhou et al. [Zhou et al., 127

2021] proposed a customized Transformer that facilitates col- 128

laborative feature learning across two modalities for remote 129

sensing pansharpening. 130

2.2 Motivation 131

Despite the promising outcomes of the aforementioned meth- 132

ods, which largely rely on the powerful self-attention mod- 133

ule, they often adopt the self-attention or Transformer struc- 134

ture for various image fusion tasks without fully considering 135

their deficiencies, especially for the specific MHIF problem. 136

For instance, Spa-MSA can restore image details and reduce 137

computational complexity by correlating local pixels, but its 138

receptive field is significantly restricted by the window size. 139

Similarly, previous Spe-MSA treats channels as tokens and 140

uses the information of the entire space for self-attention, but 141

this does not fully utilize the information inside the image. 142

To address the issue of Spa-MSA, we are inspired by the con- 143

cept of dilation convolution [Li et al., 2018b] to design a new 144

2D dilation structure specifically for Spa-MSA called D-Spa. 145

D-Spa can effectively enlarge the receptive field without in- 146

troducing additional parameters or computational complex- 147

ity. To address the issue of Spe-MSA, we propose a Grouped 148

G-Spe that groups the space and then performs Spe-MSA in 149

small groups, which may extract information within the fea- 150

ture and better learn local data behavior. Additionally, we 151

design a bidirectional hierarchy structure for better exploiting 152

multiscale information of the two inputs, which have different 153

spatial resolutions, for the specific application of MHIF. 154

3 Methodology 155

In this section, we present our BDT designed for the MHIF 156

task. We first introduce the overall architecture of our BDT in 157

Sec. 3.1. Subsequently, we analyse the function of D-Spa in 158

Sec. 3.2. Finally, we describe the design of G-Spe in Sec. 3.3. 159

3.1 The Overall Architecture 160

Our BDT is outlined in Fig. 2, which is a hierarchical bidirec- 161

tional input architecture with two stages, i.e., Bimodal Fea- 162

ture Extraction (BFE) and Bimodal Feature Fusion (BFF). 163

In order to extract spatial information, we concatenate the 164
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Figure 2: The overall architecture of the proposed BDT approach. (a) The diagram of proposed BFE consisted of spatial and spectral branches.
(b) The inputs of proposed BFF are the output of the spectral branch and the spatial branch in the BFE, respectively. Please note that X is the
LR-HSI, Y is the HR-MSI, and XU is the bicubic interpolation LR-HSI. Di and Gi respectively represent spatial information and spectral
information extracted from bimodal feature extraction (BFE), i.e., the subgraph on the left. Then, Di and Gi are paired into the bimodal
feature fusion (BFF) to generate the final output, i.e., the subgraph on the right.

bicubic interpolated LR-HSI XU ∈ RH×W×S and HR-MSI165

Y ∈ RH×W×s as the input of the spatial branch. Besides, D-166

Spa in BFE is designed to learn the spatial information, where167

output feature maps are Di, i = 1, 2, 3. In detail, the process168

of BFE is as follows:169

Di = SpatialBranch
(
Conv1

(
Cat

(
Y,XU

)))
, (1)

where Conv1 is a convolutional structure. Using HR-HSI170

X ∈ Rh×w×S as the input of the spectral branch, the in-171

formation on the spectrum is dynamically learned through G-172

Spe, and outputs feature maps Gi (i = 1, 2, 3) as shown in the173

following formula:174

Gi = SpectralBranch (Conv2 (X )) , (2)

where Conv2 is a multi-layer convolution structure used to in-175

crease the channels. To fuse the feature maps, i.e., Di and Gi,176

we design the BFF model, which is an efficient two-layer con-177

volutional structure. In detail, we concatenateD3 and G1 first,178

and send the concatenated one to the fusion module which in-179

volves a 3 × 3 kernel and a 5 × 5 kernel, and then upsample180

through PixelShuffle, as shown in the following formula:181

F1 = PixelShuffle (Fuse (Cat (D3,G1))) . (3)

Then, we concatenate F1, D2 and G2 together, and upsample182

the concatenated result. After that, we fuse the upsampled183

result as the following formula:184

F2 = PixelShuffle (Fuse (Cat (F1,D2,G2))) . (4)

Finally, we add the fusion results of F2, D3 and G1 to the185

Bicubic interpolated LR-HSI XU , and the final output X̃ ∈186

RH×W×S is expressed by the following formula:187

X̃ = Fuse (Cat (F2,D3,G1)) + XU . (5)

3.2 D-Spa 188

Vanilla convolution is a fundamental building block of 189

convolutional neural networks (CNNs) which have seen 190

tremendous success in several computer vision tasks, e.g., 191

image classification [Hong et al., 2021], image super- 192

resolution [Liang et al., 2021], and image segmentation[Liu 193

et al., 2021]. Dilation convolution increases the receptive 194

field of the convolution kernel without adding additional pa- 195

rameters, retains the internal structure of data and avoids us- 196

ing a pooling layer to downsample the feature map. The di- 197

lation convolution operation with elements k × k in the ker- 198

nel and a dilation rate d at the (i, j)th pixel position can be 199

expressed as a linear combination of input F ∈ RC×H×W 200

around (i, j)th pixel position, which can be expressed as fol- 201

lows: 202

F
′

(:,i,j) =
∑

(x,y)∈Ω(i,j)

W
[
P(i,j) − P(x,y)

]
F(:,x,y), (6)

where F(:,x,y) ∈ RC indicates the vector of the (x, y)th pixel 203

position in the input feature map F; Ω (i, j) represents the co- 204

ordinate set of the dilation area centered on the (i, j)th pixel 205

position; F
′

(:,i,j) ∈ RC
′

indicates the vector of the (i, j)th 206

pixel position in the output feature map F
′ ∈ RC

′
×H×W and 207

W ∈ RC
′
×C×k×k is the convolution kernel of k × k, where 208

W
[
P(i,j) − P(x,y)

]
∈ RC

′
×C means the convolution kernel 209

weight which contains coordinate offset
[
P(i,j) − P(x,y)

]
∈ 210{(

−k+1
2 d,−k+1

2 d
)
,
(
−k−1

2 d,−k−1
2 d
)
, ...,

(
k−1

2 d, k−1
2 d
)}

211

with dilation rate d. Jiao et al. [Jiao et al., 2023] used the 212

unfold operation to implement the expansion of the window 213

and designed a sliding mode. However, our D-Spa expands 214

the window in fixed position, instead of sliding it pixel by 215

pixel, and expands windows by index values. Han et al. [Han 216



A window applying self-attention Valid content in the window
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Figure 3: The dilation in D-Spa (dilation rate = 2) consists of two
steps, i.e., expanding and hollowing. Step 1 expands the 3×3 win-
dow to 5×5, and step 2 hollows out part of the window.

et al., 2021] present a novel point of view, which regards217

Spa-MSA as a variant of convolution, with the properties of218

sparse connectivity, weight sharing, depth separation, and219

dynamic weight. To this end, we can represent D-Spa in the220

form of convolution.221

We operate three 1 × 1 convolutions on the input fea-222

ture F ∈ RC×H×W to generate three tensors, i.e., Q ∈223

RC×H×W , K ∈ RC×H×W and V ∈ RC×H×W , respec-224

tively. Taking only one head in D-Spa as an example, given225

a window size k and a dilation rate d of 2, the output V
′ ∈226

RC×H×W of D-Spa operation at the (i, j)th pixel position227

can be expressed as a linear aggregation of corresponding228

values V ∈ RC×H×W in the local window containing the229

(i, j)th pixel position.230

V
′

(:,i,j) =
∑

(x,y)∈Ω(i,j)

W(i,j→x,y)V(:,x,y), (7)

where V(:,x,y) ∈ RC indicates the value of the (x, y)th pixel231

position in the values map V ∈ RC×H×W ; Ω (i, j) indicates232

the coordinate set of a dilation window which contains k × k233

pixel positions. In Fig. 3, the solid blue box represents the234

window applied self-attention. Taking the window size of235

3× 3 and dilation rate of 2 as an example, the window shape236

becomes 5× 5 after dilating, and the blue patches in the win-237

dow indicate the tokens that validly participates in the self-238

attention computation. The area Ω (i, j) is generated by two239

steps, i.e., the first step is to expand the original window, and240

the second is to prohibit some tokens from participating in the241

calculation of Spa-MSA. In Eq. 7, D is a constant variable;242

V
′

(:,i,j) ∈ RC indicates the vector of the (i, j)th pixel position243

in the output feature map V
′ ∈ RC×H×W ; W(i,j→x,y) ∈ R244

indicates an element in the attention matrix which is com-245

puted as the softmax normalization of the dot-product be-246

tween the query Q(i,j) ∈ RC and the key K(x,y) ∈ RC :247

248

W(i,j→x,y) =
e

1√
D
QT

(i,j)K(x,y)

Si
, (8)

where249

Si =

k,k∑
x=1,y=1

e
1√
D
QT

(i,j)K(x,y) . (9)

By observing the generation of W ∈ Rk×k in the Eq. 8, the250

D-Spa is a convolution operation with the content-aware char-251

acteristic. In other words, it dynamically generates weights252

at each position. Fig. 1 above shows the properties of Spa- 253

MSA and D-Spa. It can find that D-Spa can expand receptive 254

fields like dilation convolution and learn the local informa- 255

tion simultaneously. Furthermore, the D-Spa is pre-fixed, has 256

no sliding characteristic, and adopts a multi-head attention 257

mechanism, which groups the channels first, and each group 258

shares a learned parameter. 259

3.3 G-Spe 260

Fully connected layer (FC) [Gardner and Dorling, 1998] is a 261

basic linear unit in the CNNs, which connects the two hid- 262

den layers with the learnable parameters. Given input is 263

F ∈ RHW×C , and the parameters of FC can be expressed 264

as a matrix W ∈ RC×C
′

, the FC can be expressed in the 265

form of matrix multiplication: 266

F
′

= FW, (10)

where F
′ ∈ RHW×C

′

is the output of FC, and W is updated 267

by the backpropagating gradient. However, the weight of FC 268

is as spatial-agnostic as the vanilla convolution kernel, which 269

does not build a relationship with the input. In order to bet- 270

ter express the channel-wise relationship with the input, Hu 271

et al. [Hu et al., 2018] propose the idea of channel-attention 272

(CA), which can be represented by: 273

F
′

= F�W, (11)

where F
′ ∈ RHW×C is the output of CA, � represents dot 274

product operation and W ∈ RC is learned from the following 275

formula: 276

W = Φ (F) , (12)
where W is a weight learned by the network Φ from the input 277

F, whose value is content-aware with the input. From this 278

view, the weights in Spe-MSA are also content-aware, i.e., 279

Spe-MSA generates a weight matrix using spatial similarity. 280

In the Spe-MSA, the weight contains spatially related in- 281

formation, and the matrix multiplication operation can be 282

regarded as a dynamic FC operation on one head of Spe- 283

MSA. Given the Spe-MSA with one head, the process can 284

be demonstrated as follows: 285

V
′

= VW, (13)

where V
′ ∈ RHW×C indicates the output of Spe-MSA, V ∈ 286

RHW×C means the value of Spe-MSA, and W ∈ RC×C is 287

generated by the following formula: 288

W(i,j) =
e

1√
D

(K(:,i))
T
Q(:,j)

Sj
, (14)

in which 289

Sj =

C∑
i=1

e
1√
D

(K(:,i))
T
Q(:,j) , (15)

where Q ∈ RHW×C means the query of input; K ∈ 290

RHW×C means the key of input; W(i,j) indicates the (i, j)th 291

position of weight matrix W ∈ RC×C , which is generated 292

by softmax normalization of the dot product between query 293



Q(:,j) ∈ RHW and key K(:,i) ∈ RHW ; Sj is the result of294

summing the jth column in the matrix generated by the nu-295

merator in Eq. 14 andD is a constant variable. By comparing296

the weight generation in Eq. 10, Eq. 11, and Eq. 13, we can297

find that Spe-MSA has the dense connection properties of FC298

and the content-aware ability of CA, which means that Spe-299

MSA dynamically establishes the connection between chan-300

nels. To make full use of high-resolution spatial information301

and local content in HR-MSI, we envisage the G-Spe as a302

grouped design for space. In detail, we subdivide the value303

V ∈ RHW×C , Q ∈ RHW×C , and K ∈ RHW×C into304

g2 groups, and in the kth group we get the corresponding305

Vk ∈ R
HW
g2
×C , Qk ∈ R

HW
g2
×C and Kk ∈ R

HW
g2
×C , where306

k ∈
{

1, 2, 3, · · · , HW
g2

}
. Then we calculate the weight ma-307

trix Wk ∈ RC×C in the kth group independently as follows:308

309

Wk
(i,j) =

e
1√
D

(Kk
(:,i))

T
Qk

(:,j)

Sk
j

, (16)

where the Sk
j is calculated by the following formula:310

Sk
j =

C∑
i=1

e
1√
D

(Kk
(:,i))

T
Qk

(:,j) . (17)

We will perform matrix multiplication between Wk and Vk,311

as shown in the following formula:312

Vk′
= VkWk. (18)

Each group of G-Spe realizes a kind of dynamic FC op-313

eration, i.e., a content-aware weight generator. We merge314

together the calculated Vk′ ∈ R
HW
g2
×C according to the315

spatial dimension to get the output V
′ ∈ RHW×C , where316

k ∈
{

1, 2, 3, · · · , HW
g2

}
. In this way, G-Spe realizes the317

grouped design along the spatial dimension through the regu-318

lar space subdivision so that the model has a rich information319

expression capability. In Fig. 1 above, we describe the rela-320

tionship between Spe-MSA and G-Spe. It can be found that321

the Spe-MSA uses the characteristics of the entire space to322

obtain weights, while G-Spe uses part of the spatial informa-323

tion to get dynamic weights. Due to the property of the MHIF324

task, local rich representations have certain advantages, and325

the effect of G-Spe is better than Spe-MSA. Furthermore, we326

design various experiments in Sec. 3 to verify this statement.327

Overall Loss Function: We optimize the parameters of the328

network in a unified and end-to-end manner. The overall loss329

function consists of the weighted sum of two losses:330

Ltotal = L1 + λssimLssim, (19)

where L1 means Sum of Absolute Difference, the loss Lssim331

is expressed as:332

Lssim = 1− SSIM(X̄ , X̃ ), (20)

where the SSIM1 means Structural SIMilarity, X̄ represents333

the reference, X̃ denotes the output of our network, and λssim334

is a positive hyperparameter fixed to 0.1 in our experiments.335

1https://en.wikipedia.org/wiki/Structural similarity

4 Experiments 336

Datasets: To test the performance of our model, we conduct 337

experiments on the CAVE 2 and Harvard3 datasets. CAVE 338

dataset contains 32 HSIs, including 31 spectral bands rang- 339

ing from 400 nm to 700 nm at 10 nm steps. We randomly 340

select 20 images for training the network, and the remaining 341

11 images constitute the testing dataset. In addition, Harvard 342

dataset contains 77 HSIs of indoor and outdoor scenes, and 343

each HSI has a size of 1392× 1040× 31, covering the spec- 344

tral range from 420 nm to 720 nm. We crop the upper left 345

part (1000 × 1000) of the 20 Harvard images, 10 of which 346

have been used for training, and the rest has been exploited 347

for testing. 348

Data Simulation: The proposed network takes LR-HSI and 349

HR-MSI (X ,Y) as input pairs, while the ground-truth (GT) 350

for training is HR-HSI X̄ . However, since HR-HSI is not 351

available as a reference, a simulation stage is required. In our 352

experiments using the CAVE dataset, we produce 3920 over- 353

lapping patches with a size of 64 × 64 × 31 by cropping 20 354

chosen training images. These patches serve as the HR-HSI 355

(ground-truth) X̄ patches. To simulate appropriate LR-HSIs, 356

we apply a 3 × 3 Gaussian blur kernel with a standard devi- 357

ation of 0.5 to the original HR-HSIs. We then downsample 358

the blurred patches with a scaling factor of 4. The HR-MSI 359

patches are generated using the common spectral response 360

function of the Nikon D7004 camera. Therefore, the input 361

pairs (X ,Y) consist of 3920 LR-HSI patches with a size of 362

16×16×31 and RGB image patches with a size of 64×64×3. 363

The pairs and their related GTs are randomly divided into 364

training data (80%) and validation data (20%). The same 365

procedure is used to simulate the input LR-HSI and HR-MSI 366

products and GTs for the Harvard dataset. 367

Benchmark: To assess the performance of our approach, we 368

compare it with various state-of-the-art methods for MHIF. 369

The upsampled LR-HSI in Fig. 2 is the bicubic-interpolated 370

result, which is added to the experiment as a baseline. Model- 371

based techniques include the MTF-GLP-HS [Selva et al., 372

2015], the CSTF-FUS [Li et al., 2018a], the LTTR[Dian 373

et al., 2019], the LTMR[Dian and Li, 2019], and the IR- 374

TenSR[Xu et al., 2022] approaches. In addition, we perform 375

a comparison with other deep learning methods, such as the 376

DBIN [Wang et al., 2019], the SSRNet [Zhang et al., 2020], 377

the ResTFNet [Liu et al., 2020], the HSRNet [Hu et al., 378

2021], the MoG-DCN [Dong et al., 2021], the Fusformer [Hu 379

et al., 2022] and the DHIF [Huang et al., 2022] network. All 380

the deep learning approaches are trained with the same input 381

pairs for a fair comparison. Moreover, the related hyperpa- 382

rameters are selected consistent with the original papers. 383

Implementation Details: The proposed network implements 384

in PyTorch 1.11.0 and Python 3.7.0 using AdamW opti- 385

mizer with a learning rate of 0.0001 to minimize Ltotal by 386

2000 epochs and Linux operating system with a NVIDIA 387

RTX3090 GPU. 388

Results on CAVE Dataset: We test our model on the CAVE 389

dataset. Fig. 4 presents the 11 testing images in an RGB 390

2https://www.cs.columbia.edu/CAVE/databases/multispectral/
3http://vision.seas.harvard.edu/hyperspec/index.html
4https://www.maxmax.com/nikon d700 study.htm

https://en.wikipedia.org/wiki/Structural_similarity
https://www.cs.columbia.edu/CAVE/databases/multispectral/
http://vision.seas.harvard.edu/hyperspec/index.html
https://www.maxmax.com/nikon_d700_study.htm


Table 1: Average quantitative comparisons on 11 CAVE examples and 10 Harvard examples simulating a scaling factor of 4. The best values
are highlighted in bold, and the second best values are underlined. M refers to millions.

Methods CAVE Harvard

PSNR SAM ERGAS SSIM #params PSNR SAM ERGAS SSIM #params

Bicubic 34.33±3.88 4.45±1.62 7.21±4.90 0.944±0.0291 − 38.71±4.33 2.53±0.67 4.45±41.81 0.948±0.0268 −
MTF-GLP-HS [Selva et al., 2015] 37.69±3.85 5.33±1.91 4.57±2.66 0.973±0.0158 − 33.81±3.50 6.25±2.42 3.47±1.82 0.952±0.0321 −

CSTF-FUS [Li et al., 2018a] 34.46±4.28 14.37±5.30 8.29±5.29 0.866±0.0747 − 39.13±3.50 6.91±2.66 4.64±1.80 0.913±0.0487 −
LTTR[Dian et al., 2019] 35.85±3.49 6.99±2.55 5.99±2.92 0.956±0.0288 − 37.91±3.58 5.35±1.94 2.44±1.06 0.972±0.0183 −

LTMR[Dian and Li, 2019] 36.54±3.30 6.71±2.19 5.39±2.53 0.963±0.0208 − 38.41±3.58 5.05±1.70 2.24±0.97 0.970±0.0166 −
IR-TenSR[Xu et al., 2022] 35.61±3.45 12.30±4.68 5.90±3.05 0.945±0.0267 − 40.47±3.04 4.36±1.52 5.57±1.57 0.962±0.0140 −
DBIN [Wang et al., 2019] 50.83±4.29 2.21±0.63 1.24±1.06 0.996±0.0026 0.469M 47.88±3.87 2.31±0.46 1.95±0.81 0.988±0.0066 0.469M

ResTFNet [Liu et al., 2020] 45.58±5.47 2.82±0.70 2.36±2.59 0.993±0.0056 2.387M 45.93±4.35 2.61±0.69 2.56±1.32 0.985±0.0082 2.387M
SSRNet [Zhang et al., 2020] 48.62±3.92 2.54±0.84 1.63±1.21 0.995±0.0023 0.027M 47.95±3.37 2.31±0.60 2.30±1.42 0.987±0.0070 0.027M

HSRNet [Hu et al., 2021] 50.38±3.38 2.23±0.66 1.20±0.75 0.996±0.0014 0.633M 48.29±3.03 2.26±0.56 1.87±0.81 0.988±0.0064 0.633M
MoG-DCN [Dong et al., 2021] 51.63±4.10 2.03±0.62 1.11±0.82 0.997±0.0018 6.840M 47.89±4.09 2.11±0.52 1.89±0.82 0.988±0.0073 6.840M

Fusformer [Hu et al., 2022] 49.98±8.10 2.20±0.85 2.50±5.21 0.994±0.0111 0.504M 47.87±5.13 2.84±2.07 2.04±0.99 0.986±0.0101 0.467M
DHIF [Huang et al., 2022] 51.07±4.17 2.01±0.63 1.22±0.97 0.997±0.0016 22.462M 47.68±3.85 2.32±0.53 1.95±0.92 0.988±0.0074 22.462M

BDT (ours) 52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014 2.668 M 48.83±3.45 2.07±0.49 1.83±0.81 0.989±0.0067 2.668 M

Ideal value ∞ 0 0 1 - ∞ 0 0 1 -

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 4: The testing images from the CAVE dataset: (a) balloons,
(b) cd, (c) chart and stuffed toy, (d) clay, (e) fake and real beers, (f)
fake and real lemon slices, (g) fake and real tomatoes, (h) feathers,
(i) flowers, (j) hairs, and (k) jelly beans. An RGB color representa-
tion is used to depict the images.

color composition. From Tab. 1, we can see that the proposed391

approach overcomes the other methods in 4 quality indexes392

(QIs), i.e., PSNR, SAM, ERGAS, and SSIM. Specifically,393

we observe an improvement of ∼1.30/4.93/8.11/0.028% in394

PSNR/SAM/ERGAS/SSIM compared to the second best395

method, i.e., MoG-DCN [Dong et al., 2021]. Com-396

pared with the third best method, DHIF [Huang et al.,397

2022], our approach gets the gains ∼2.41/3.98/16/0.09% in398

PSNR/SAM/ERGAS/SSIM. In terms of visual assessments399

(see Fig. 5), we present the pseudo-color representations of400

the fused products and some error maps to aid the visual in-401

spection. Compared to the benchmark, our approach has bet-402

ter details and visual effects. Having a look at the error maps,403

the reconstruction of BDT is closest to the all zero map, and404

significantly lower values than compared approaches.405

Results on Harvard Dataset: Besides, we evaluate the per-406

formance of our BDT on another hyperspectral image dataset407

(i.e., Harvard). We consider the original HSI as ground-408

truth, and simulate the LR-HSI in the same way as the CAVE409

dataset. From Tab. 1, the results show that deep learning ap-410

proaches outperform traditional ones. Our method gets the411

best results (outperforms high-performance approaches such412

as DHIF and Fusformer). The proposed approach shows an413

excellent trade-off between performance and computational414

costs on the Harvard dataset.415

4.1 Ablation Study 416

In this section, we provide an in-depth discussion of D-Spa 417

and G-Spe in the BDT to demonstrate their effectiveness and 418

rationale. We compare their performance with ablation on 419

self-structure and other existing networks. To maintain gen- 420

erality and conciseness, we present our analysis based on the 421

CAVE dataset. 422

Table 2: The average four QIs and the corresponding parameters on
the CAVE dataset simulating a scaling factor of 4.

D-Spa G-Spe PSNR SAM ERGAS SSIM
52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014
52.03±3.79 2.02±0.59 1.04±0.75 0.997±0.0014
51.96±3.72 2.03±0.59 1.04±0.74 0.997±0.0013
51.91±3.77 2.02±0.59 1.05±0.76 0.997±0.0014

1) D-Spa and G-Spe: To verify the effectiveness, in Tab. 2, 423

results show that replacing D-Spa with Spa-MSA will bring 424

the performance gain, and replacing G-Spe with Spe-MSA 425

will also boost performance. And our BDT utilizes both D- 426

Spa and G-Spe obtaining the best results. It proves that the 427

designed modules boost performance of networks. Please 428

note that Spa-MSA and Spe-MSA indicates the dilation 1 of 429

D-Spa and the group 1 of G-Spe in BDT, respectively. 430

Table 3: The average four QIs and the corresponding parameters on
the CAVE dataset simulating a scaling factor of 4.

Methods PSNR SAM ERGAS SSIM

Swin-Shift 51.47 ± 3.88 2.08 ± 0.60 1.09 ± 0.81 0.997 ± 0.0015
Swin-D 51.57 ± 4.00 2.04 ± 0.58 1.10 ± 0.85 0.997 ± 0.0016
Restormer-T 50.67 ± 4.36 2.34 ± 0.72 1.29 ± 1.06 0.996 ± 0.0024
Restormer-G 51.16 ± 3.93 2.22 ± 0.67 1.15 ± 0.79 0.996 ± 0.0017

2) Embedding in existing networks: We test D-Spa against 431

the Shifted Window operation in Swin Transformer and G- 432

Spe against the Spe-MSA in Restormer. We use a Swin 433

Transformer structure comparing the Shifted Window ap- 434

proach (Swin-Shift) with our D-Spa (Swin-D). And we 435

also compare Restormer network structure with the trans- 436

pose MSA (T-MSA) approach (Restormer-T) and our G-Spe 437



Figure 5: The first and third rows show the results using the pseudo-color representation on “balloons” and “chart and stuffed toy”, respec-
tively, from the CAVE dataset. Some close-ups are depicted in the red rectangles. The second and fourth rows show the residuals between the
GT and the fused products. (a) IR-TenSR [Xu et al., 2022], (b) DBIN [Wang et al., 2019], (c) ResTFNet [Liu et al., 2020], (d) SSRNet [Zhang
et al., 2020], (e) HSRNet [Hu et al., 2021], (f) MoG-DCN [Dong et al., 2021], (g) Fusformer [Hu et al., 2022], (h) DHIF [Huang et al., 2022],
(i) Ours, and (j) GT.

(Restormer-G). After using the proposed D-Spa and G-Spe,438

the performance of Swin Transformer and Restormer have439

corresponding enhancement in Tab. 3. It proves that the pro-440

posed D-Spa and G-Spe improve the network performance441

for solving the MHIF task.442

3) Spatial grouped design in G-Spe: In the Tab. 4, we443

tested the performance of Spe-MSA and G-Spe without spec-444

tral multi-head (w/o head), using BFE in BDT as the back-445

bone. Specifically, the Spe-MSA structure is grouped in the446

spectral dimension, and the G-Spe structure is grouped in the447

spatial dimension. The result shows that the effect of the spa-448

tial grouped design outperforms slightly than spectral dimen-449

sion on the MHIF task.

Table 4: The average four QIs and the corresponding parameters on
the CAVE dataset simulating a scaling factor of 4. w/o head means
G-Spe without spectral multi-head. G means gillions.

Methods PSNR SAM ERGAS SSIM #Flops

Spe-MSA 52.03 ± 3.79 2.02 ± 0.59 1.04 ± 0.75 0.997 ± 0.0014 33.52G
w/o head 52.09 ± 3.78 2.00 ± 0.58 1.03 ± 0.75 0.997 ± 0.0013 33.87G

450

4) D-Spa with different dilations: We investigated the im-451

pact of different dilation rates on the MHIF task by designing452

D-Spa. The proposed D-Spa has adjustable dilations that can453

expand and hollow the window shown in Fig.3, thereby in-454

creasing the receptive field. As shown in Tab.5, we found that455

a dilation rate of 2 yields the best results among the choices of456

1, 2, and 3. Thus, D-Spa can provide a long-range response457

from a flexible range, and it outperforms Spa-MSA in terms458

of achieving better results.459

5) Test of multi-scaled input in bidirectional branch: We460

Table 5: The average four QIs and the corresponding parameters on
the CAVE dataset simulating a scaling factor of 4. d indicates the
dilation rate in D-Spa.

Method PSNR SAM ERGAS SSIM

d = 1 52.03±3.79 2.02±0.59 1.04±0.75 0.997±0.0014
d = 2 52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014
d = 3 51.51±3.91 2.18±0.65 1.11±0.83 0.997±0.0019

gradually reduced the participation of the spectral branch in 461

the BFF process. The results in Tab. 6 show the spectral 462

branch plays a vital role in the restoration of image details. 463

Table 6: The four average QIs and the corresponding parameters on
the 11 testing images from the CAVE dataset simulating a scaling
factor of 4. G1, G2, and G3 indicate the output which is the result of
G-Spe in spectal branch. G refers gillions.

G1 G3 G3 PSNR SAM ERGAS SSIM #Flops

52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014 33.52G
52.04±3.84 1.99±0.57 1.03±0.76 0.997±0.0014 33.44G
51.91±3.70 2.02±0.59 1.03±0.73 0.997±0.0012 33.10G
50.72±3.48 4.48±1.38 3.84±1.15 0.993±0.0013 27.74G 464

5 Conclusions 465

This paper proposes the BDT, a Transformer fusion frame- 466

work, to address the MHIF problem, which employs D-Spa, 467

G-Spe, and bidirectional modules. Specifically, motivated by 468

the MHIF problem, D-Spa and G-Spe are used for spatial and 469

spectral information extraction, respectively. 470
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