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Abstract—Pansharpening refers to the fusion of a panchro-
matic image with a high spatial resolution and a multispectral
image with a low spatial resolution, aiming to obtain a high
spatial resolution multispectral image. In this paper, we propose
a novel deep neural network architecture with level-domain
based loss function for pansharpening by taking into account
the following double-type structures, i.e., double-level, double-
branch, and double-direction, called as triple-double network
(TDNet). By using the structure of TDNet, the spatial details
of the panchromatic image can be fully exploited and utilized to
progressively inject into the low spatial resolution multispectral
image, thus yielding the high spatial resolution output. The
specific network design is motivated by the physical formula of
the traditional multi-resolution analysis (MRA) methods. Hence,
an effective MRA fusion module is also integrated into the
TDNet. Besides, we adopt a few ResNet blocks and some multi-
scale convolution kernels to deepen and widen the network to
effectively enhance the feature extraction and the robustness of
the proposed TDNet. Extensive experiments on reduced- and full-
resolution datasets acquired by WorldView-3, QuickBird, and
GaoFen-2 sensors demonstrate the superiority of the proposed
TDNet compared with some recent state-of-the-art pansharpen-
ing approaches. An ablation study has also corroborated the
effectiveness of the proposed approach. The code is available at
https://github.com/liangjiandeng/TDNet.

Index Terms—Deep Convolutional Neural Networks, Triple-
Double Network, Multi-Resolution Analysis, Multi-Scale Feature
Extraction, Pansharpening, Multispectral Image Fusion, Remote
Sensing.

I. INTRODUCTION

Remote sensing satellites are dedicated to collect image
data from the Earth’s surface. However, because of some
constraints on the signal-to-noise ratio (SNR) for the sensor
hardware, we cannot get high spatial and spectral resolutions
in a unique acquisition. Thus, satellites, such as, IKONOS,
GaoFen, QuickBird, and WorldView-3, usually capture images
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Fig. 1. First row: pansharpening on a WorldView-3 dataset. This
row includes the low spatial resolution MS (LRMS) image, the
PAN image, and the desired ground truth (GT) image. Second
row: the pansharpened results by three representative DL-based meth-
ods, i.e., DMDNet (SAM/ERGAS/Q8=2.9355/1.8119/0.9690) [1], Fu-
sionNet (SAM/ERGAS/Q8=2.8338/1.7510/0.9714) [2], and the TDNet
(SAM/ERGAS/Q8=2.7373/1.6733/0.9764). Third row: the corresponding er-
ror maps, which show that TDNet produces less errors than the other two
approaches.

containing several spectral bands, called multispectral (MS)
images, together with panchromatic (PAN) images having high
spatial resolution, i.e., containing many image details. Hence,
the fusion of these kinds of data is often required to get
very high spatio-spectral resolution products. Pansharpening
is the fusion of a PAN image and an MS image to obtain
the final outcome with the same spatial resolution as the PAN
image and the same spectral resolution as the MS image. This
research topic has been rapidly developed in recent years and
has been proved to be an effective image fusion method [3].
The results of pansharpening have been widely used in ground
object detection, mapping, and image data pre-processing for
various high-level applications [4], [5].

Over the past decades, many different approaches have
been proposed for the pansharpening problem, and these
techniques can be roughly divided into four categories [6]–[8],
i.e., component substitution (CS) methods, multi-resolution
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analysis (MRA) methods, variational optimization (VO) ap-
proaches, and deep learning (DL) techniques, respectively.
In this work, our approach is based on convolutional neural
networks (CNNs), thus belonging to DL techniques. In what
follows, we will introduce the representative approaches for
each category.

CS-based methods are usually simple approaches belonging
to traditional techniques. They project the original MS image
into a transformation domain, whose purpose is to simplify
the replacement of part or all the spatial information, making
easier the replacement of the spatial structure components with
the PAN image. It is worth mentioning that many pioneering
pansharpening methods are based on the CS philosophy be-
cause approaches in this category usually have simple and
efficient implementations. Some representative examples into
this class are the partial replacement adaptive CS (PRACS) [9],
the Gram-Schmidt (GS) spectral sharpening [10], and the
band-dependent spatial-detail with local parameter estimation
(BDSD) [11]. Note that the CS-based methods can generally
get products with a better rendering paying it with a greater
spectral distortion.

MRA methods are another class of traditional approaches
whose goal is to inject the spatial details extracted from the
PAN image into the MS image that is interpolated to the
size of the PAN image. The MRA-based fused results are
superior to those of the CS-based methods considering the
spectral quality. However, these methods can easily generate
artifacts, thus often introducing spatial distortion. Some meth-
ods belonging to this class are, for instance, the smoothing
filter-based intensity modulation (SFIM) [12], the additive
wavelet luminance proportional (AWLP) [13], the modulation
transfer function generalized Laplacian Pyramid with high-
pass modulation injection model (GLP-HPM) [14], and the
modulation transfer function generalized laplacian pyramid
with full resolution regression-based injection model (GLP-
Reg) [15].

Unlike the above-mentioned traditional approaches, VO-
based methods have been developed by imposing pre-specified
prior terms to regularize the underlying high-resolution multi-
spectral (HRMS) image [16]–[18]. These methods show an el-
egant mathematical formulation and have a good performance
on spatio-spectral preservation [19]–[21] compared with some
state-of-the-art CS and MRA techniques. The main drawback
of VO-based methods is the heavy computational burden,
including the tuning of many hyper-parameters. Therefore, CS
and MRA approaches are still nowadays used for benchmark-
ing purposes.

Recently, deep learning (DL) techniques have gained much
attention due to their powerful ability to implicitly learn the
priors from big data. Undoubtedly, methods based on deep
learning have been widely used in the field of remote sensing
images [22]–[24]. As a newly developed category to solve
pansharpening, deep learning requires physical support at a
higher level. The structure design is of critical importance
since it is closely related to the performance gain of the model.
By building a convolutional neural network (CNN) with a
certain structure and functional units, (e.g., deep residual
network [25], multiscale and multidepth network [26]), the

DL method can reproduce the nonlinear relationship between
MS images, PAN images, and ideal fusion images through the
training on satellite datasets. The groundbreaking attempt was
made by Masi et al. [27], in 2016, with a three-layer CNN
designed specifically for pansharpening, achieving promising
results. Inspired by PNN, many researchers developed vari-
ous structures relied upon CNNs. Among them, the residual
module in ResNet [28] is widely used for pansharpening [1],
[25], [29]. However, the learning process is difficult to be
explained and the neural network often gets into the dilemma
of vanishing gradient when the parameters are hard to update.
In particular, some essential properties and prior information
of the images, such as the uniqueness of high-frequency
information, and the intrinsic relationship of the spectrum are
often ignored by these types of “black box” deep models,
leaving big room for further improvement. Therefore, we argue
that the network framework should be designed based on some
characteristics of the problem at hand underlining the unique
relationships between the input images [16], [30].

In this paper, we propose a novel DL approach for pan-
sharpening, which can exploit a multi-scale spatial details
strategy, progressively injecting PAN details into the low-
resolution MS image. A novel triple-double network (TDNet)
structure is designed based on the MRA formulation. The main
contributions of this work can be summarized as follows:

1) We propose an overall structure of the network
with double-level, double-branch, and double-direction,
which injects the latent multi-scale spatial details of
the PAN image to the MS image in a hierarchical and
bidirectional way. Under this framework, we adopted
a level-domain-based loss function to pose constraints
on multi-level outcomes, which ensure reasonable final
fusion results.

2) Following the traditional MRA methods, an MRA block
(MRAB) embedded in the TDNet structure is designed.
The MRAB can better complete the extraction of struc-
tural information from the PAN image. The design of
this block structure also introduces the idea of the
attention mechanism, which is more flexible and robust
than traditional methods.

3) Considering the pansharpening problem, which requires
the injection of different objects at various scales, a
multi-scale convolution kernel module is adopted to
deepen and widen the proposed network to improve the
capability of the nonlinear fitting. The results, shown
in Fig. 1, demonstrate the superiority of the proposed
method.

The remaining of this paper is organized as follows. In
Sect. II, the background and related works will be briefly
introduced. The proposed network is presented in Sect. III.
Afterwards, the experimental results and discussion are pro-
vided in Sect. IV. Finally, conclusions are drawn in Sect. V.

II. NOTATION AND RELATED WORKS

A. Notation

For convenience, the notation used throughout this paper is
presented first. The low-resolution multispectral (LRMS) im-
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Fig. 2. (a) The diagram of traditional MRA methods. (b) MRA block (MRAB)
was designed based on traditional MRA methods. Please note that the
upsampling operation in (a) is a polynomial kernel with 23 coefficients [31].
8-bands datasets are considered to define the number of convolution kernels
in (b).

age and the high-resolution (HR) panchromatic (PAN) image
are denoted as MS ∈ Rh×w×c and P ∈ RH×W , respectively.
The desired high-resolution multispectral (HRMS) image is
defined as M̂S ∈ RH×W×c. The multispectral image upsam-
pled at PAN image scale is represented by M̃S ∈ RH×W×c,
and the ground truth image is represented as GT ∈ RH×W×c.

B. Background

As introduced in Sect. I, due to limitations of hardware de-
vices, LRMS and PAN images are only acquired. Considering
the goal of pansharpening, which is to generate multispectral
images with high spatial resolution, the general fusion formula
can be summarized as follows,

M̃S = Fθ(P, MS), (1)

where Fθ(·) is used to depict the latent relationship between
the involved images. The common idea behind many pansharp-
ening approaches (both traditional and DL-based) is to find
the befitting way to characterize the relationship between the
known LRMS and PAN images and the desired HRMS image.

C. Overview of MRA Methods

Traditional MRA methods competitively perform in pan-
sharpening. The schematic diagram of general MRA methods
is shown in Fig. 2(a). It can be seen that the MRA methods
have two main processes, i.e., extracting spatial structure
details from the PAN image, P, and injecting information
obtained from the P into M̃S through certain strategies. The
mathematical formulation of MRA methods is given by:

M̂S = M̃S + G� (P−PL), (2)

where G ∈ RH×W×c is the general form of the injection
coefficient gain, PL stands for the low-pass version of the PAN
image P, and � represents the element-wise multiplication.
Please, refer to [32] for more details. In (2), the spatial
structure can be obtained by the difference P−PL, where

PL can be obtained by different filters, see e.g., [33], [34], and
[35]. The related literature also presents various attempts about
the detail injection process, see, e.g., [36], [37]. The traditional
MRA methods can preserve the spectral information, but
paying it with the possible introduction of spatial distortion.

D. CNNs for Pansharpening

Among DL methods for pansharpening, the techniques
based on CNNs have been deeply explored thanks to their
excellent ability in the feature extraction phase. Existing CNN-
based frameworks addressing the pansharpening problem can
be roughly summarized by minimizing the following loss
function:

min
Θ
L = ‖GT−N (P,MS; Θ)‖, (3)

where N (·; Θ) represents the functional mapping, through the
unknown parameter Θ, between the inputs and an ideal HRMS
output, and the ‖ · ‖ is a function to describe the distance
between the outcome of the network (HRMS) and the GT
image. The basic structure for pansharpening can be expressed
as follows,

C0 = {P, MS},
C1 = σ(W1 ⊗C0 + b1),

Cn = σ(Wn ⊗Cn−1 + bn), n = 2, · · · , L,
(4)

where the initial {P, MS} generated by concatenation or
other strategies is fed into the network as input. Ci, i =
1, 2, · · · , L, represents the i-th convolution layer with the
corresponding weight Wi and bias bi, where L is the to-
tal number of layers. σ(·) is usually a nonlinear activation
function, e.g., ReLU.

Many effective and promising CNNs are proposed for
the task of pansharpening based on the above-mentioned
strategy. In [27], a modified super-resolution network that
maps relations through a simple three-layer convolution is
proposed by Masi et al.. Another typical example is PanNet
proposed by Yang et al. in [25]. It considers spectral and
spatial fidelity on high-pass features and introduces the ResNet
structure to deepen the given network. In [38], Yuan et al.
propose the use of multi-scale convolution kernels to extract
features on different image scales achieving satisfactory results
compared with the single-scale convolution kernel. Unlike
feeding together P and MS into the network, Zhang et al.
in [39] propose a novel network architecture named BDPN,
in which P and MS are processed using different branches,
by exploiting a bi-directional pyramid structure.

E. Motivation

Although various CNN-based approaches have achieved
promising results, there is still room for improvements, e.g.,
physically interpretable architectures, the use of multi-scale
structures, and so forth. Recently, unlike other methods that
take CNNs as black boxes, Deng et al. in [2] propose Fu-
sionNet inspired by traditional CS and MRA methods, which
motivates us to regard the formula of traditional methods such
as MRA as a guide for the design of the proposed network.
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The module inspired by traditional methods can be embedded
into the CNN network to have a better details extraction and
injection.

Besides, existing CNN-based techniques do not fully ex-
plore and utilize the multi-scale information in the PAN and
MS images loosing some possible information in the process
of enhancing the LRMS image. This inspires us to focus on the
information injection in hierarchical and bidirectional ways,
which is the original intention of the triple-double structure.

III. THE PROPOSED NETWORK

As stated before, our model is inspired by traditional MRA
methods, where the spatial structure information extracted
from the PAN image was added to the upsampled LRMS
image. The overall flowchart of the proposed network has
been shown in Fig. 3, which includes the following parts: 1)
the MRA block (MRAB), whose structure is based on the
MRA general formulation; 2) the multi-scale convolutional
feature extraction block (MSCB) is used to further improve
the quality of the fused image and to strengthen the learning
potential of the network; 3) the triple-double architecture, i.e.,
double-level, double-branch and double-direction, which can
fully utilize the multi-scale information.

A. MRAB

Let us focus on the physical MRA formula (2), in which the
spatial details to be injected, i.e., G�(P−PL), are extracted
only from the PAN image with the proper injection coefficient
G. Thus, the traditional MRA approaches can equivalently be
represented by the following network architecture,

D = H(P),

M̂S = M̃S + g(D),
(5)

where H(·) is represented by the latent convolution layers,
aiming to extract the details D from the PAN image. Besides,
g(·) is represented by a spatial attention simulating the rule
of the detail injection coefficient in (2). Furthermore, the
upsampled MS image M̃S can be realized by a simple
PixelShuffle upsampling operation. The first formula in (5)
can be viewed as the PAN spatial details, i.e., P−PL, and
the second formula in (5) is equivalent to the MRA formula
(2), where g(·) represents the nonlinear relationship among
the involved images instead of a linear one as in (2). In
summary, the MRA block (MRAB) consists of three parts:
1) the upsampling of the LRMS image, 2) the extraction of
feature maps, and 3) the spatial attention module for detail
injection. The detailed information for MRAB can be found
in Fig. 2(b).

1) Upsampling LRMS Image: In Fig. 2(b), the first step
is to upsample the original LRMS image to the same size
as the GT image. In previous researches for pansharpening,
the LRMS image is usually upscaled by an interpolation or a
deconvolution operation. In [40], Shi et al. propose an efficient
sub-pixel convolution operation (referred to as PixelShuffle),
which learns a group of filters to upscale the low-resolution
features into the high-resolution output. PixelShuffle got high
performance when applied to the single image super-resolution

problem [40]. Therefore, we introduce PixelShuffle into our
model to upscale LRMS images to reach better performance.
In particular, the feature map with c×r2 channels (where r is
the upscaling factor between LRMS and PAN images) is ob-
tained through convolution, then yielding the high-resolution
image by the periodic shuffling.

2) Extracting Feature Maps: As mentioned above, the
traditional MRA methods extract details calculating the dif-
ference between the PAN image and the low-pass filtered
PAN image. Thus, the final result depends on the adopted pre-
defined filters which may mechanically discard some desired
information. Thanks to the use of a convolutional layer, a
set of parameters can be learned and dynamically adjusted
to thoroughly explore the specific details and select expected
features. Besides, to make the model adapt to the different
datasets and to heradicate the misfit problem caused by the
fixed filters, we extract end-to-end high-frequency information
by learning the mapping H(·) in (5). In [39], Zhang et al.
used ResNet blocks as basic structure for feature extraction.
However, to retain more information from the original images
and to reduce the computational burden, we only adopted one
ResNet block to form the PAN branch in TDNet.

As shown in Fig. 2(b), the extracted details from the PAN
image are obtained by the PAN branch depicted in Fig. 3. The
difference with the traditional MRA approaches is that the MS
image is upsampled twice, i.e., using a scale factor of 2 (when
r is equal to 4). The detailed information for the PAN branch
can be found in Fig. 4.

3) Spatial Attention Module for Detail Injection: Recalling
the original MRA formula (2) and the MRA-inspired formula
(5), we can remark that the detail image D multiplied by
G in (2) is equivalent to the spatial attention. Since the
injection coefficient G is generally dependent on MS and P,
it motivates us to design spatial attention involving these two
components. Specifically, we concatenate M̃S and D together
to carry out the convolution operation as shown in Fig. 2(b),
aiming to learn a weight matrix W ∈ RH×W×c containing the
sufficient features of the MS and the P images. The proposed
injection strategy is to multiply the learned feature D obtained
by the PAN branch and the weight matrix W, then adding it to
the M̃S generated by PixelShuffle to yield the MRAB output.

B. MSCB

Although the MRAB could lead to competitive outcomes
with a physical interpretability, the obtained network architec-
ture does not have deep layers, limiting the feature extraction
and its nonlinear fitting abilities. Thus, we introduce a multi-
scale convolutional block (denoted as MSCB) inspired by
Yuan et al. [38] into our model to deepen the network. Fig. 5
shows the details of MSCB and its corresponding parameters.

C. Overall Structure of Triple-Double Network

To solve the problem of a different size between LRMS
and GT images, conventional methods directly upsample the
LRMS image to the GT image size (usually with an upsam-
pling by a factor 4). However, such operation can lead to
spatial loss, even causing image distortion. By considering the
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Fig. 3. Flowchart of the proposed TDNet consisting in two branches, i.e., PAN branch and fusion branch. For convenience, the LRMS image and PAN image
are denoted as MS and P, respectively. The M̂S

D
is the output of the first-level fusion, and M̂S is the final HRMS image. DD and D are the output of

the PAN branch. And the ground truth image and its downsampled version are denoted as GT and GTD, respectively. The parameters and details of the
network can be found in Sect. III. The number of convolution kernels used in the convolution operation is specified in Fig. 4.
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Fig. 4. An overview of the PAN branch, see the bottom of Fig. 3. DF is a
feature map containing detailed information using 64 channels. D is a feature
map with the same number of channels as GT. The output of the MaxPooling
is denoted as PDD, and the feature map with detailed information with
reduced size is denoted as DD. Please, note that the number of convolution
kernels is related to an exemplary fusion case involving a 8-bands dataset.

issues of the size difference and by fully utilizing the multi-
scale information, we design the triple-double network (TD-
Net), i.e., double-level, double-branch, and double-direction.
In what follows, we will present the overall structure of the
proposed TDNet. An overview of the proposed TDNet is
depicted in Fig. 3.

1) Double-branch: From Fig. 3, it is clear that the network
is divided into two branches, i.e., the PAN branch and the
fusion branch. The PAN branch takes the PAN image as the
only input. It extracts and represents the multi-scale spatial
features, which will be injected into the fusion branch for
providing sufficient spatial details. The goal of the fusion

C

Conv（7×7，20）Conv（5×5，20）Conv（3

Conv（7×7，60）

C

Conv（3

Conv（3×3，30）

C

cWH RX

cWH Y~  R D  R H W c

Conv（5×5，c）

×3，20）

×3，10） Conv（5×5，10） Conv（7×7，10）

Fig. 5. An overview of the MSCB. Please, note that since TDNet has a double-
level structure, the diagram here refers to only the MSCB at size H×W . The
inputs Ỹ and D are from MRAB and the feature map of the PAN branch,
respectively, and the output X is the final pansharpened HRMS image, i.e.,
M̂S.

branch is instead to fuse the input LRMS image and the
multi-scale spatial features from the PAN branch to obtain the
final HRMS image. The fusion branch contains some essential
strategies mentioned before, such as, MRAB and MSCB.

2) Double-level: In this work, we upsample the MS im-
age using a two levels strategy, in which the MS image is
upscaled to its double size (i.e., with an upscaling factor of
2) for each level, thus exploiting the multi-scale features for
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pansharpening. In particular, both the PAN branch and fusion
branch have the double-level structure for a better ability in
resolution enhancement.

3) Double-direction: Due to the use of double-level, a
promising strategy for fully employing multi-scale information
of PAN and MS images is to design a network architecture
with two directions (called double-direction). As shown in
the flowchart of TDNet in Fig. 3, both the PAN branch
and the fusion branch involve the double-level structure. The
former downsamples the PAN image to a smaller size, and
the latter one upsamples the LRMS image to a larger size.
The information flows of the two branches are opposite and
correspond to each other, in order to achieve the fusion of
information between the branches. A similar strategy has been
proven to be effective in a previous benchmark work [39].

In summary, the final architecture of the proposed TDNet
has been formulated by the above-mentioned three aspects, i.e.,
double-branch, double-level, and double-direction. Especially,
double-branch takes the known LRMS image and PAN image
as input to achieve the distinguishing feature representation.
The double-level enables the network to exploit the multi-scale
features, and the double-direction reinforces the mutual inter-
action between the two branches improving the performance.

D. Loss Fuction

As mentioned before, our TDNet architecture contains a
double-level structure, which results in two loss functions. Let
M̂S

D
∈ R2h×2w and M̂S ∈ RH×W stand for the output

of the first and second levels, respectively, and let GTD ∈
R2h×2w and GT ∈ RH×W represent the GT images of the
first and second levels, respectively. We define the following
loss function for supervised learning for both the levels,

min
Θ
Loss = γLoss1 + (1− γ)Loss2, (6)

where γ ∈ [0, 1] is a constant during the training phase, and the
magnitude of γ is deeply discussed in Sect. IV. Specifically,
Loss1 and Loss2 are defined as follows,

Loss1 =
1

N

N∑
i=1

‖GTD
i − M̂S

D

i ‖1, (7)

Loss2 =
1

N

N∑
i=1

‖GTi − M̂Si‖1, (8)

where ‖ · ‖1 indicates the `1 norm and N is the number of
training samples.

IV. EXPERIMENTAL RESULTS

This section is devoted to the demonstration of the superi-
ority of our TDNet by comparing it with some state-of-the-art
pansharpening methods on various datasets. In addition, we
comprehensively discuss the structure of our TDNet to explore
the inherent potential of the proposed network.

A. Datasets

Three different datasets captured by three different sensors
(i.e., WorldView-3, GaoFen-2 and the QuickBird) are consid-
ered in this paper. The WorldView-3 works in the visible and
near-infrared spectrum range, which provide eight MS-band
(coastal, blue, green, yellow, red, red edge, near-infrared 1, and
near-infrared 2) and a PAN channel with a spatial resolution
of 1.2 m and 0.3 m, respectively. The radiometric resolution
of WorldView-3 is 11 bits. Both GaoFen-2 and QuickBird
provide four MS-band (red, green, blue, and near-infrared) and
a PAN channel. For GaoFen-2, the spatial resolution is about
3.2 m for the MS bands and 0.8 m for the PAN channel, and
the radiometric resolution is 10 bits. For QuickBird, the spatial
resolution is about 2.44 m for the MS bands and 0.61 m for
the PAN channel, and the radiometric resolution is 11 bits.

B. Implementation Details

This section is devoted to the presentation of some imple-
mentation details related to the proposed approach.

1) Dataset Simulation: In this work, we mainly conduct
the network training on WorldView-3 datasets, which are
available to download on the website1. In particular, there are
no GT images used as reference. Thus, the original LRMS
and PAN images are simultaneously blurred and downsampled
according to Wald’s protocol [41]. The original LRMS image
is used as reference image, i.e., the GT image. We simulate the
WorldView-3 dataset with 12,580 samples (also called patch
pairs), each sample including PAN (with size 64×64), LRMS
(with size 16×16×8), and GT (with size 64×64×8) patches.
For the 12,580 samples, we divided them into 8806/2516/1258
(70%/20%/10%) as for the training dataset, validation dataset,
and testing dataset, respectively. The simulation process for
the datasets is the same as in [2]. Interesting readers can
refer to [2] for further details. Moreover, we also assess the
performance on two 4-bands datasets, i.e., QuickBird and
GaoFen-2. More details about the simulation of these two
datasets can be found in Sect. IV-H1.

2) Training Platform and Parameter Setting: The proposed
network is coded with Python 3.8.0 and Pytorch 1.7.0, and is
trained with NVIDIA GPU GeForce GTX 3080. We use Adam
optimizer, in which the betas and weight decay are set as (0.9,
0.999) and 0, respectively, to minimize the loss function (6)
by 300 epochs, and the batch size is set as 32. To achieve
better performance, we set the initial learning rate as 0.01,
then dynamically adjusting it to 0.001 after 220 epochs. About
the hyper-parameter γ in (6), more discussions can be found
in Sect. IV-H2.

C. Benchmark

Several competitive methods belonging to different pan-
sharpening categories are employed.

• EXP: MS image interpolated by a polynomial kernel with
23 coefficients [31]

• CS methods:

1http://www.digitalglobe.com/samples?search=Imagery

http://www.digitalglobe.com/samples?search=Imagery
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1) GS: Gram-Schmidt sharpening approach [10].
2) PRACS: partial replacement adaptive component

substitution approach [9].
3) BDSD-PC: robust band-dependent spatial-detail ap-

proach [42].
• MRA methods:

1) SFIM: smoothing filter-based intensity modula-
tion [12].

2) GLP-HPM: GLP with MTF-matched filter [43] with
multiplicative injection model [44].

3) GLP-CBD: the GLP with MTF-matched filter [43]
and regression-based injection model [31], [45].

4) GLP-Reg: the GLP with MTF-matched filter [43]
and full-scale regression [46]2.

• DL-based methods:
1) PNN: pansharpening via convolutional neural net-

works [27]3.
2) PanNet: convolutional neural networks for residual

learning on the high-frequency domain for pan-
sharpening [25]4.

3) DiCNN1: detail injection based convolutional neural
networks [47]5.

4) BDPN: efficient bidirectional pyramid network for
pansharpening [39]6

5) DMDNet: deep multi-scale detail convolutional neu-
ral networks for pansharpening [1]7.

6) FusionNet: deep convolutional neural network in-
spired by traditional CS and MRA methods [2].

D. Reduced Resolution Assessment

The reduced resolution assessment measures the similarity
between the fused image and the ideal reference image (the
original MS image). The similarity can be determined by
the calculation of several evaluation indexes. For the reduced
resolution experiments, the spectral angle mapper (SAM) [48],
the dimensionless global error in synthesis (ERGAS) [49], the
spatial correlation coefficient (SCC) [50], and the Q2n (Q8 for
8-band datasets and Q4 for 4-band datasets) [51] are employed
as evaluation indexes. The ideal values for SAM and ERGAS
are 0, whereas 1 for Q2n and SCC.

As mentioned in Sect. IV-B, we have 1258 testing samples
from WorldView-3 images. We first compare the proposed
TDNet with the five state-of-the-art CNN-based pansharpening
approaches on the 1258 samples. From Tab. I, it is clear
that the TDNet obtains the best average quantitative perfor-
mance on all the metrics demonstrating the superiority of the
proposed method. This can be justified because, comparing
our approach with conventional CNNs for pansharpening, it

2http://openremotesensing.net/kb/codes/pansharpening/
3Note that the given source code in Open Remote Sensing does not

contain the trained models for WorldView-2 and WorldView-3, thus we re-
implemented the network with default parameters in Python using Tensorflow
for fair comparisons.

4Code link: https://xueyangfu.github.io/
5DiCNN1 has been implemented by ourselves with default parameters.
6BDPN has been implemented by ourselves with default parameters.
7DMDNet has been implemented by ourselves with default parameters.

utilizes multi-scale convolution kernels for a better feature
extraction. Besides, comparing it with PanNet and DMDNet,
which directly send the high-frequency information of PAN
and MS images into the network, our TDNet adopts two
branches for better exploiting the multi-scale structures of
PAN and MS images. Moreover, our MRA-inspired TDNet
could hold better physical meanings with respect to DiCNN.
Furthermore, due to the triple-double network structure, i.e.,
double-level, double-branch, and double-direction, the TDNet
can fully utilize the latent multi-scale information of PAN and
MS images, thus obtaining better results than FusionNet.

Furthermore, we generated two WorldView-3 test cases (Rio
dataset and Tripoli dataset) at reduced resolution by applying
Wald’s protocol (please, refer to Sect. IV-B for details about
Wald’s protocol implementation). The GT image has a size
256× 256× 8, as well as the LRMS and PAN images have a
size 64×64×8 and 256×256, respectively. Figs. 6-9 show the
visual comparisons among all the 15 compared pansharpening
approaches. From these figures, it is easy to note that the TD-
Net yields results very close to the GT image. The traditional
CS and MRA techniques generate products with some obvious
spatial blur, especially at near the boundaries of the buildings
and/or spectral distortion. The other DL-based approaches
perform better than the traditional methods. However, TDNet
shows less image residuals compared with the other CNN-
based methods, see Fig. 7 and Fig. 9. In Tab. II, the quantitative
metrics demonstrate that TDNet still gets the best performance,
assessing the superiority of our TDNet approach, which is able
to reduce both spatial and spectral distortions in the fusion
outcome.

E. Full Resolution Assessment

To corroborate the results at reduced resolution, a full
resolution analysis is also needed involving the original MS
and PAN products. Unlike the reduced resolution test cases,
we have no reference (GT) image. Thus, three widely used
metrics, that do not exploit the GT image, are employed,
i.e., the quality with no reference (QNR) index, the spectral
distortion Dλ index, and the spatial distortion Ds index [7].

Fig. 10 presents the visual comparison of all the compared
pansharpening approaches on a full resolution example. In
this case, the spectral quality of the image should refer to
the LRMS image, and the spatial details of a high-quality
fusion image should be close to the PAN image. It can be
observed that result by the TDNet is the most qualified one,
with sharper and clearer edges and without ghosting, blurring,
etc. Furthermore, Tab. III reports the average performance
on 50 full resolution examples. Again, TDNet obtains the
best average results and the minimum standard deviations
demonstrating the superiority and stability of our method on
full resolution test cases.

F. The Ablation Study

This section is devoted to ablation studies to investigate the
effect of each component of the TDNet. For simplicity, we take
a WorldView-3 dataset as reference. An overall performance
calculated on the training/validation loss function can be found

http://openremotesensing.net/kb/codes/pansharpening/
https://xueyangfu.github.io/
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EXP GS PRACS BDSD-PC SFIM GLP-HPM GLP-CBD GLP-Reg

PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet GT

Fig. 6. Visual comparisons of all the compared approaches on the reduced resolution Rio dataset (sensor: WorldView-3).

EXP GS PRACS BDSD-PC SFIM GLP-HPM GLP-CBD GLP-Reg

PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet GT

Fig. 7. The corresponding absolute error maps (AEMs) using the reference (GT) image on the reduced resolution Rio dataset (sensor: WorldView-3). For a
better visualization, we doubled the intensities of the AEMs and added 0.3.

TABLE I
AVERAGE METRICS FOR ALL THE COMPARED DL-BASED APPROACHES ON 1258 REDUCED RESOLUTION SAMPLES. (BOLD: BEST; UNDERLINE: SECOND

BEST)

Method SAM (± std) ERGAS (± std) Q8 (± std) SCC (± std)
PNN [27] 4.4015 ± 1.3292 3.2283 ± 1.0042 0.8883 ± 0.1122 0.9215 ± 0.0464

DiCNN1 [47] 3.9805 ± 1.3181 2.7367 ± 1.0156 0.9096 ± 0.1117 0.9517 ± 0.0471
PanNet [25] 4.0921 ± 1.2733 2.9524 ± 0.9778 0.8941 ± 0.1170 0.9494 ± 0.0460
BDPN [39] 3.9952 ± 1.3869 2.7234 ± 1.0394 0.9123 ± 0.1128 0.9515 ± 0.0457

DMDNet [1] 3.9714 ± 1.2482 2.8572 ± 0.9663 0.9000 ± 0.1141 0.9527 ± 0.0446
FusionNet [2] 3.7435 ± 1.2259 2.5679 ± 0.9442 0.9135 ± 0.1122 0.9580 ± 0.0450

TDNet 3.5036 ± 1.2411 2.4439 ± 0.9587 0.9212 ± 0.1117 0.9621 ± 0.0440
Ideal value 0 0 1 1

EXP GS PRACS BDSD-PC SFIM GLP-HPM GLP-CBD GLP-Reg

PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet GT

Fig. 8. Visual comparisons of all the compared approaches on the reduced resolution Tripoli dataset (sensor: WorldView-3).
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EXP GS PRACS BDSD-PC SFIM GLP-HPM GLP-CBD GLP-Reg

PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet GT

Fig. 9. The corresponding AEMs on the reduced resolution Tripoli dataset (sensor: WorldView-3). For a better visualization, we doubled the intensities of
the AEMs and added 0.3.

TABLE II
QUALITY METRICS FOR ALL THE COMPARED APPROACHES ON THE REDUCED RESOLUTION RIO AND TRIPOLI DATASETS, RESPECTIVELY. (BOLD: BEST;

UNDERLINE: SECOND BEST)

Method (a) Rio dataset (b) Tripoli dataset
SAM ERGAS SCC Q8 SAM ERGAS SCC Q8

EXP [31] 7.0033 6.5368 0.4797 0.5929 7.8530 9.0903 0.5137 0.6608
GS [10] 8.9481 6.3662 0.6775 0.8666 8.3772 7.8041 0.7240 0.7291
PRACS [9] 7.1176 5.5392 0.6370 0.7380 7.9705 7.4826 0.7111 0.7951
BDSD-PC [42] 7.0721 4.9515 0.7164 0.7853 7.7347 7.0345 0.7304 0.8202
SFIM [12] 6.8501 4.9571 0.7558 0.7882 7.4338 7.0695 0.7514 0.8020
GLP-HPM [44] 7.2994 5.1185 0.7369 0.7849 7.9390 7.1489 0.7415 0.8238
GLP-CBD [45] 7.4053 5.0372 0.6738 0.7880 7.8051 6.9162 0.7312 0.8300
GLP-Reg [46] 7.3275 5.0154 0.6822 0.7889 7.7680 6.9100 0.7327 0.8298
PNN [27] 4.0659 2.7144 0.9487 0.8888 5.6714 3.5657 0.9435 0.9166
DiCNN [47] 3.8289 2.5819 0.9544 0.8895 5.3622 3.3104 0.9523 0.9348
PanNet [25] 3.9062 2.6583 0.9522 0.8814 4.8500 3.1744 0.9642 0.9190
BDPN [39] 4.0788 2.6897 0.9439 0.8969 5.5728 3.3880 0.9520 0.9379
DMDNet [1] 3.6917 2.4968 0.9594 0.8990 4.5649 2.9795 0.9706 0.9243
FusionNet [2] 3.5700 2.4346 0.9607 0.9044 4.3850 2.8533 0.9718 0.9422
TDNet 3.3801 2.3522 0.9648 0.9155 4.1445 2.7076 0.9761 0.9526
Ideal value 0 0 1 1 0 0 1 1

in Fig. 11 for various network structures. It is easy to show
that the proposed TDNet shows the smallest loss compared
with the other test cases.

1) The Effect of MRAB: To explore whether the MRAB
contributes to the final result, we remove the MRAB from
TDNet running the training with the same data and parameters.
Tab. IV presents the average outcomes and the corresponding
standard deviations for the TDNet with and without MRAB
(w/o MRAB). It can be observed that the fusion results w/o
MRAB have inferior performance on all the metrics compared
with the original TDNet. This indicates that the MRAB can
help the network in learning more details and features.

2) The Effect of MSCB: The role of MSCB in TDNet is to
increase the depth and width of the network to improve the
ability of feature extraction. Its innovation lies in the use of
convolution kernels with different scales to learn various scales
in real scenes. As shown in Fig. 12, to explore whether such
MSCB can favor the fusion task, we change the original multi-
scale convolution kernels (i.e., 3×3, 5×5 and 7×7) to a single-
scale convolution kernel (i.e., 5× 5). The reduced structure is
called single-scale convolution block (SSCB). Tab. IV reports

that the TDNet with SSCB has lower performance with respect
to the original TDNet with MSCB, which verifies the benefits
of using the MSCB module.

3) The Effect of PAN Branch: In the original network
structure, we designed the PAN branch to extract the spatial
features from the PAN image. These spatial features are
then injected into the fusion branch. Hence, we alternatively
feed the fusion branch directly using the PAN image and its
downsampled version to explore whether such PAN branch can
affect the final outcomes. We denoted the TDNet without PAN
branch as w/o PAN branch. The quantitative results shown in
Tab. IV demonstrate that the original TDNet with the PAN
branch yields the best performance.

4) The Effect of Double-level Structure: In the work, the
proposed TDNet has two levels. In each level, the MS image is
upsampled to its double size. The fusion performance can ben-
efit from the use of the double-level structure. To corroborate
this point, we implemented a single-level (directly upsampling
by a factor of 4) strategy using our TDNet approach. Tab. IV
clearly shows that the single-level structure will significantly
reduce the fusion performance demonstrating the advantages
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TABLE III
AVERAGE VALUES OF QNR, Dλ AND Ds WITH THE RELATED STANDARD DEVIATIONS (STD) FOR 50 FULL RESOLUTION WORLDVIEW-3

SAMPLES. (BOLD: BEST; UNDERLINE: SECOND BEST)

Method QNR (± std) Dλ (± std) Ds (± std)
EXP [31] 0.8078 ± 0.0673 0.0582 ± 0.0274 0.1010 ± 0.0428
GS [10] 0.8806 ± 0.0351 0.0343 ± 0.0239 0.0882 ± 0.0238
PRACS [9] 0.9204 ± 0.0172 0.0335 ± 0.0055 0.0668 ± 0.0159
BDSD-PC [42] 0.9063 ± 0.0231 0.0322 ± 0.0108 0.0731 ± 0.0175
SFIM [12] 0.8999 ± 0.0423 0.0371 ± 0.0207 0.0657 ± 0.0244
GLP-HPM [44] 0.8384 ± 0.0757 0.0332 ± 0.0162 0.0647 ± 0.0234
GLP-CBD [45] 0.8795 ± 0.0510 0.0418 ± 0.0210 0.0827 ± 0.0337
GLP-Reg [46] 0.8812 ± 0.0498 0.0408 ± 0.0205 0.0818 ± 0.0328
PNN [27] 0.9446 ± 0.0233 0.0255 ± 0.0138 0.0306 ± 0.0117
DiCNN1 [47] 0.9564 ± 0.0124 0.0231 ± 0.0113 0.0208 ± 0.0072
PanNet [25] 0.9421 ± 0.0227 0.0345 ± 0.0146 0.0242 ± 0.0107
BDPN [39] 0.9206 ± 0.0399 0.0365 ± 0.0252 0.0350 ± 0.0089
DMDNet [1] 0.9383 ± 0.0329 0.0309 ± 0.0162 0.0320 ± 0.0192
FusionNet [2] 0.9435 ± 0.0259 0.0303 ± 0.0096 0.0255 ± 0.0076
TDNet 0.9575 ± 0.0051 0.0209 ± 0.0079 0.0219 ± 0.0052
Ideal value 1 0 0

EXP GS PRACS BDSD-PC SFIM GLP-HPM GLP-CBD GLP-Reg

PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet PAN

Fig. 10. Visual comparisons between the TDNet and the benchmark on the full resolution Rio dataset (sensor: WorldView-3).
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Fig. 11. Convergence curves for different network structures. (a) Training
loss curves. (b) Validation loss curves. Please note that the single-level loss
is calculated by (8), while the loss of the other structures is calculated by (6)
(with γ = 0.4). Please note that the learning rate for 0-220 epochs is 0.001,
and for 220-300 epochs is adjusted to 0.0001.

of the double-level structure.
5) The Effect of PixelShuffle: In the fusion branch, we

introduce PixelShuffle to upscale LRMS images, instead of
the more common interpolation or deconvolution operations.
To demonstrate the superiority of PixelShuffle, we replaced
PixelShuffle with linear interpolation and deconvolution up-
sampling, denoted as TDNet(bilinear) and TDNet(Deconv),

respectively. The results of the variants are reported in Tab. IV.
It can be seen that TDNet performs better with the assistance
of PixelShuffle.

6) The Effectiveness of the Overall strcture: Compared with
other DL-based methods, the results of TDNet are significantly
improved. To prove the effectiveness of the TDNet structure
more fairly, we reduce the number of channels in the original
MSCB as showed in Fig. 12, aiming at bring the model com-
plexity to the level of FusionNet and DMDNet. The degenerate
model is denoted as TDNet(-). The results of TDNet(-) are
shown in Tab. IV. Compared with the results obtained by other
comparative methods shown in Tab. I. It is clear that although
the performance of TDNet(-) has degraded, it still outperforms
all the compared DL-based methods. This is also a proof about
the superiority of the triple-double structure.

G. Comparison of MRAB and Traditional MRA Scheme

An important module in our model, MRAB, is a derivative
of the traditional MRA scheme. The traditional MRA scheme
requires manual estimation of its injection coefficient. These
handcrafted coefficient with subjective and relatively simple
forms, however, always could not sufficiently and adaptively
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TABLE IV
QUALITY METRICS FOR DIFFERENT NETWORK STRUCTURES ON THE REDUCED RESOLUTION 1258 DATASETS. (BOLD: BEST; UNDERLINE: SECOND

BEST)

Method SAM (± std) ERGAS (± std) Q8 (± std) SCC (± std)
w/o MRAB 3.7731 ± 1.2394 2.5608 ± 0.9443 0.9139 ± 0.1156 0.9587 ± 0.0445

SSCB 3.5739 ± 1.3035 2.4501 ± 0.9812 0.9199 ± 0.1241 0.9601 ± 0.0517
w/o PAN branch 3.8701 ± 1.3509 2.7572 ± 0.9910 0.9099 ± 0.1127 0.9577 ± 0.0443

Single-stage 3.9706 ± 1.2493 2.8432 ± 0.9677 0.9098 ± 0.1134 0.9523 ± 0.0430
TDNet(bilinear) 3.5197 ± 1.2567 2.5207 ± 0.9908 0.9198 ± 0.1232 0.9607 ± 0.0510
TDNet(Deconv) 3.5276 ± 1.2721 2.5103 ± 0.9601 0.9207 ± 0.1219 0.9610 ± 0.0456

TDNet(-) 3.6987 ± 1.3107 2.5479 ± 0.9511 0.9187 ± 0.1201 0.9607 ± 0.0457
TDNet-TMRA 3.9942 ± 1.8703 2.7812 ± 1.0123 0.8997 ± 0.1257 0.9465 ± 0.0529

TDNet 3.5036 ± 1.2411 2.4439 ± 0.9587 0.9212 ± 0.1117 0.9621 ± 0.0440
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Fig. 12. TDNet with MSCB (top row) and without MSCB (bottom row, also
called SSCB). Note that the numbers in color boxes mean the number of
convolution kernels.

reflect complex spatial and spectral relationships among PAN
image, LRMS image, and HRMS image. In addition, in the
framework of deep learning, traditional schemes need to be
improved to learn more discriminate representations from big
data. In order to verify the rationality of our motivation,
we conducted experiments to compare MRAB and traditional
MRA scheme.

Specifically, one competing MRA method, GLP-HPM [44],
is exploited here. Its generalized form is the same as equation
(2). GLP-HPM adopts the injection model as follows:

Gk =
M̃Sk

PL
, k = 1, ..., c. (9)

where Gk represents the injection gain in the k-th band, and
the division is intended as pixel-wise. The main difference
between this model and our proposed MRAB (5) is that the
latter uses the injection gain learned by designed convolutional
layers. By replacing the proposed MRAB as following, we can
obtain the TDNet-TMRA method:

D = H(P),

M̂Sk = M̃Sk +
M̃Sk

PL
�Dk, k = 1, ..., c.

(10)

Table IV shows the average results produced by TDNet-
TMRA and the proposed TDNet over 1258 testing samples.
The numerical results on four metrics show that the MRAB is
indeed effective for TDNet, while it is hard to achieve good
performance by embedding a traditional MRA scheme into
our network. Therefore, when combining traditional methods
with DL-based methods, how to overcome the uncertainty
brought by deep learning deserves more in-depth research. In
this work, we provide a feasible method, i.e., MRAB, uses
unique network structures such as the attention mechanism to
make the parameters adaptive to the data.

H. Discussion

1) Evaluation on 4-band Datasets: The datasets used in the
above experiments are all data with 8 spectral bands acquired
by the same sensor (i.e., WorldView-3). In this section, we will
focus on assessing performance on 4-band datasets acquired
by the GaoFen-2 and the QuickBird sensors. The dataset
simulation for the two sensors is the same as that of the
8-band WorldView-3 datasets mentioned in Sect. IV-B. For
the GaoFen-2 dataset, we downloaded the data acquired over
Beijing from the website8 and we simulated 21,607 training
samples (PAN size, 64×64). Besides, 81 testing samples (PAN
size, 256×256) acquired over the city of Guangzhou are used
for comparison purposes. About the QuickBird test case, a
large dataset acquired over the city of Indianapolis is exploited
to simulate 20,685 training samples (PAN size, 64 × 64).
Moreover, we simulated 48 testing samples with spatial size
256 × 256 to assess the performance for all the compared
approaches. More details about the generation of these test
cases can be found in [2]. In Figs. 13 and 14, we show the
performance comparing all the five DL-based approaches9.
Since it is not easy to distinguish the differences having a look
at the 8-bits RGB images, we present the absolute error maps

8Data link: http://www.rscloudmart.com/dataProduct/sample
9Note that, since the traditional methods, i.e., MRA and CS methods, have

obtained lower performance, for the sake of brevity, we excluded them from
the analysis.

http://www.rscloudmart.com/dataProduct/sample
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TABLE V
AVERAGE ASSESSMENT OF THE COMPARED APPROACHES FOR 81 GAOFEN-2 TESTING SAMPLES AND 48 QUICKBIRD TESTING

SAMPLES. (BOLD: BEST; UNDERLINE: SECOND BEST)

SAM (± std) ERGAS (± std) Q8 (± std) SCC (± std)
Guangzhou datasets (GaoFen-2)

PNN 1.6599 ± 0.3606 1.5707 ± 0.3243 0.9274 ± 0.0202 0.9281 ± 0.0206
DiCNN1 1.4948 ± 0.3814 1.3203 ± 0.3543 0.9445 ± 0.0211 0.9458 ± 0.0222
PanNet 1.3954 ± 0.3261 1.2239 ± 0.2828 0.9468 ± 0.0222 0.9558 ± 0.0123
DMDNet 1.2968 ± 0.3156 1.1281 ± 0.2669 0.9529 ± 0.0218 0.9644 ± 0.0100
FusionNet 1.1795 ± 0.2714 1.0023 ± 0.2271 0.9627 ± 0.0167 0.9710 ± 0.0074
TDNet 1.0926 ± 0.2645 0.9303 ± 0.2267 0.9695 ± 0.0131 0.9750 ±0.0132

Indianapolis datasets (QuickBird)
PNN 5.7993 ± 0.9474 5.5712 ± 0.4584 0.8572 ± 0.1481 0.9023 ± 0.0489
DiCNN1 5.3071 ± 0.9957 5.2310 ± 0.5411 0.8821 ± 0.1431 0.9224 ± 0.0506
PanNet 5.3144 ± 1.0175 5.1623 ± 0.6814 0.8833 ± 0.1398 0.9296 ± 0.0585
DMDNet 5.1197 ± 0.9399 4.7377 ± 0.6486 0.8907 ± 0.1464 0.9350 ± 0.0652
FusionNet 4.5402 ± 0.7789 4.0508 ± 0.2666 0.9102 ± 0.1364 0.9547 ± 0.0457
TDNet 4.5047 ± 0.8022 3.9799 ± 0.2326 0.9123 ± 0.1452 0.9551 ± 0.0652
Ideal value 0 0 1 1

TABLE VI
COMPARISON OF THE NUMBER OF PARAMETERS (NOPS), THE ITERATIONS, THE TRAINING TIMES, AND THE TESTING TIMES FOR ALL THE DL-BASED

APPROACHES. (THE TRAINING TIMES UNIT IS HOURS: MINUTES & THE TESTING TIMES UNIT IS SECONDS)

PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet
Iterations 1.12× 106 3× 105 2.4× 105 2.7× 105 2.5× 105 1.4× 105 8.2× 104 (300 epoches)

Training times 25: 15 7: 06 4: 32 46:19 5: 27 2: 21 6: 30
Testing times 0.0778 0.0799 0.0811 0.0912 0.0852 0.0812 0.0861

NoPs 3.1× 105 1.8× 105 2.5× 105 15.2× 105 3.2× 105 2.3× 105 5.5× 105

(AEMs). It is worth to be remarked that our TDNet generates
more details showing less residuals. The quantitative results
of Tab. V also support the conclusion that the TDNet obtains
the best overall performance.

2) The Hyper-Parameter in the Loss function: As described
in Sect. III-D, the loss function consists of two parts, in which
the hyper-parameter γ weights the two sub-loss functions.
Obviously, the higher the value of γ, the more the importance
to the first level. The goal is to generate the final fusion image
closer to the reference image. Therefore, it is worth exploring
how a change in the value of γ can lead to better results. In
our experiment, γ is set to different values. Fig. 16 shows the
changes in the ERGAS index varying γ and increasing the
epochs. When γ = 0 or γ = 1, the convergence is poor. Thus,
we discard these two cases. Fig. 16 shows comparable results,
in terms of the convergence speed and values, varying γ (i.e.,
assuming the values 0.2, 0.4, 0.5, 0.6, 0.8). Thus, we choose
γ = 0.4 for the training of the proposed TDNet.

3) The Computational Analysis: Tab. VI reports the training
time and the number of parameters (NoPs) for all the compared
DL-based methods. The maximum number of iterations shown
in the table is the optimal one for training the network. TDNet
gets a relatively large amount of parameters, mainly due to
the structure of the MSCB. However, the final training time
of TDNet is less than that of PNN and DiCNN1 because of
a less iteration number for the convergence. Besides, TDNet
is able to achieve a satisfying trade-off between effectiveness
and complexity. We perform the evaluation on 1258 testing
samples with size 256 × 256 acquired by the WorldView-3

sensor, as described in Sect. IV-B1. Comparisons on average
testing time are shown in Tab. VI. It is can be seen that the
testing time of TDNet is not much longer than the compared
deep learning methods, and significantly shorter than BDPN,
which is also a double-level structure. Leveraging on the spe-
cial structure, our network can fully fuse the complementary
information from different sources in a more reasonable way,
which leads to good results with the tolerable computational
burden.

4) Structure Discussion and Improvements Analysis: In
fact: the bidirectional, double-branch network structure and
feature pyramid [52] has appeared in several previous signifi-
cant works [39], [53], and has been proved that can implement
feature extraction and image fusion hierarchically and more
effectively. In particular, it is necessary to emphasize the
distinction between the proposed TDNet and BDPN [39]. Aim-
ing at making full use of the high-frequency information in
PAN images, BDPN extracts the multilevel details from PAN
images and directly injects them into the upsampled LRMS
images. Differently, we focus more on the mapping relations
among images. Specifically, the extracted high-frequency in-
formation is adopted as the input of the fusion branch in
multiple stages, and the non-linear “pixel-to-pixel” mapping
is learned in the designed MRAB, which ensures a reasonable
fusion. Besides, we choose the multi-scale convolution module
(MSCB) to be used as a component of the network, which
could achieve the purpose of increasing the receptive field
while avoiding deep convolution layers of the TDNet. This
can also explain why the number of parameters of TDNet is
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Fig. 13. Visual comparisons between the TDNet and the seven DL-based methods on the Guangzhou datasets (sensor: GaoFen-2). For orderly display, we
show the GT image in Fig. 15.

EXP PNN DiCNN1 PanNet BDPN DMDNet FusionNet TDNet
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Fig. 14. Visual comparisons between the TDNet and the seven DL-based methods on the Indianapolis datasets (sensor: QuickBird). For orderly display, we
show the GT image in Fig. 15.

(a) (b) (c)
Fig. 15. Reference (GT) image for 4-band datasets. (a) Guangzhou dataset
(sensor: GaoFen-2) (b) Indianapolis dataset (sensor: QuickBird) (c) The AEM
on GT images.

much smaller than that of the BDPN.

V. CONCLUSIONS

In this paper, we propose a novel deep neural network archi-
tecture for pansharpening, the so-called triple-double network
(TDNet), by taking into account the following three double-
type structures, i.e., double-level, double-branch, and double-
direction. By exploiting the structure of the TDNet, the spatial
details of the panchromatic image can be fully exploited and
progressively injected into the LRMS image yielding a final
MS image with high spatial resolution. Motivated by the tradi-
tional MRA formula, an effective MRA block was integrated
into the TDNet. Furthermore, the MSCB with few ResNet
blocks and some multi-scale convolution kernels was also
used to deepen and widen the network, aiming to effectively
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Fig. 16. ERGAS averaged on WorldView-3 test cases for γ =
{0.2, 0.4, 0.5, 0.6, 0.8}. Since the convergences are poor when γ = 0 and
γ = 1, we decided to avoid plotting them.

enhance the feature extraction and robustness of the proposed
TDNet. Extensive experiments on reduced and full resolution
examples, acquired by WorldView-3, QuickBird, and Gaofen-
2 sensors, demonstrate the superiority of the proposed method.
In addition, several ablation studies and discussions are also
conducted to corroborate the effectiveness of the proposed
TDNet.
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