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An Iterative Regularization Method based on Tensor
Subspace Representation for Hyperspectral Image

Super-Resolution
Ting Xu, Ting-Zhu Huang, Liang-Jian Deng, and Naoto Yokoya

Abstract—Hyperspectral image super-resolution (HSI-SR) can
be achieved by fusing a paired multispectral image (MSI) and
hyperspectral image (HSI), which is a prevalent strategy. But,
how to precisely reconstruct the high spatial resolution hyper-
spectral image (HR-HSI) by fusion technology is a challenging
issue. In this paper, we propose an iterative regularization method
based on tensor subspace representation (IR-TenSR) for MSI-HSI
fusion, thus HSI-SR. First, we propose a tensor subspace repre-
sentation (TenSR)-based regularization model that integrates the
global spectral-spatial low-rank and the nonlocal self-similarity
priors of HR-HSI. These two priors have been proven effective,
but previous HSI-SR works cannot simultaneously exploit them.
Subsequently, we design an iterative regularization procedure to
utilize the residual information of acquired low-resolution images,
which are ignored in other works that produce suboptimal
results. Finally, we develop an effective algorithm based on the
proximal alternating minimization method to solve the TenSR-
regularization model. With that, we obtain the iterative regu-
larization algorithm. Experiments implemented on the simulated
and real datasets illustrate the advantages of the proposed IR-
TenSR compared with state-of-the-art fusion approaches.

Index Terms—Hyperspectral image super-resolution, tensor
subspace, nonlocal self-similarity, global spatial-spectral low-rank
prior, proximal alternating minimization, iterative regularization.

I. INTRODUCTION

Hyperspectral imaging technology has attracted much at-
tention since it can capture hyperspectral images (HSIs) that
contribute to identifying materials accurately [1]–[4]. The ac-
quired HSIs have found a wide range of applications in remote
sensing and computer vision [5]–[10]. However, there is an un-
avoidable tradeoff between spectral and spatial resolution for
acquired HSIs, which will affect subsequent applications. Due
to various hardware limitations, it is costly and challenging
to improve the spatial resolution of HSIs directly. Contrary
to HSIs, multispectral images (MSIs) have lower spectral
resolution and higher spatial resolution. Thereby, fusing a
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paired MSI and HSI has become a popular way to obtain a high
spatial resolution hyperspectral image (HR-HSI). This process
can be seen as hyperspectral image super-resolution (HSI-SR).
The existing HSI-SR methods can be divided into deep learn-
ing (DL)-based methods, sparse representation-based methods,
tensor factorization (TF)-based methods, and matrix subspace
representation (MatSR)-based methods.

With the high efficiency and excellent performance of
DL in computer vision tasks, such as object detection and
classification, many researchers have proposed DL-based HSI-
SR methods [11]–[27]. For example, Hu et al. [17] design
a deep convolution neural network (CNN) that can preserve
both spatial and spectral information for the HSI and MSI
fusion task. The major advantage of these methods is that
they can generate excellent results since CNN has a strong
capacity to explore the image features. However, it is not
easy to collect many training data, i.e., the paired HSI and
HSI. To solve such an issue, unsupervised DL-based methods
are proposed. For example, Zhang et al. [28] develop an
unsupervised adaptation learning framework for the HSI-SR
task. However, these methods may generate suboptimal results
compared with supervised methods.

The sparse representation-based methods [29]–[34] mainly
exploit the the spatial-spectral sparsity of HR-HSI. Under this
framework, the HR-HSI is represented by a dictionary and the
corresponding sparse coefficients. To estimate the dictionary
and coefficients accurately, it is necessary to incorporate other
priors. For example, Xue et al. [30] propose a structured sparse
low-rank representation-based HSI-SR method that considers
the spatial/spectral subspace low-rank relationships between
MSI/HSI and HR-HSI. More recently, inspired by the tensor-
tensor product (t-product), Xu et al. [31] propose a tensor
sparse representation-based HSI-SR method that incorporates
the nonlocal self-similarity and sparse prior. Dian et al.
[35] propose a nonlocal sparse tensor Tucker decomposition
method for the semi-blind fusion of HSI and MSI. However,
these methods fail to fully capture the prior knowledge of HR-
HSI, resulting in unsatisfactory HSI-SR results. In particular,
it is difficult to reconstruct the details in the case of relatively
low sampling ratios.

As the HR-HSI is a three-dimensional (3-D) tensor, TF-
based models have attracted much attention for the HSI-SR
problem. These methods mainly based on different tensor
decompositions that depict the spectral and spatial correlation,
Tucker decomposition [36]–[39], Canonical polyadic (CP) de-
composition [40]–[42], block-term decomposition [43], tensor-
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train decomposition [44], tensor-ring decomposition [45]–[47],
combined with other priors to model the HSI-SR problem.
These methods have generated excellent outcomes, but they
are subject to specific issues. The HR-HSI has strong spectral
and spatial correlations, depicted by the low-rank prior. How-
ever, previous TF-based methods captured the low-rank prior
in the original image space by using tensor decomposition,
leading to high computational costs because of many bands.
Based on previous HSI processing works, this issue could
be alleviated by projecting the original HR-HSI into a low-
dimensional matrix subspace. The prior HR-HSI can be ex-
plored by regularizing the basis coefficient, largely decreasing
the computational cost and enhancing spectral correlation.

The spectral vectors of target HR-HSI are highly correlated,
indicating that these vectors usually live in a low-dimensional
subspace. The essence of MatSR-based methods [48]–[57]
are to exploit the MatSR to depict this property. The results
obtained by considering only spectral correlation are limited.
It is necessary to introduce other regularizers to portray other
priors of HR-HSI. For example, Simoẽs et al. [53] employ
the total variation TV regularizer to characterize the spatial
smoothness prior. Xu et al. [57] introduce the low-rank tensor
ring decomposition based on tensor nuclear norm to depict
the nonlocal self-similarity. MatSR-based methods project the
rearranged matrix into the low-dimensional spectral subspace,
generating excellent effect/efficiency tradeoffs. Compared with
TF-based methods, these methods have lower computational
complexity. However, MatSR-based methods meet the follow-
ing drawbacks: 1) These methods only consider the correlation
in the spectrum of HR-HSI and ignore the correlation in space.
2) The unfolding operation involved in MatSR-based methods
would inevitably destroy the inherent HR-HSI structure.

In addition to the problems of each method analyzed above,
they also have the following points that could be improved.
(1) Motivated by HSI denoising methods [58]–[60], global
spectral-spatial correlation, spatial structure, and nonlocal self-
similarity properties have been widely considered for the task
of HSI-SR. However, previous HSI-SR works cannot simul-
taneously capture the mentioned characteristics. For example,
in [37], the authors use Tucker decomposition and `1 term
to capture the first two priors while ignoring the nonlocal
self-similarity prior that can depict the structured information.
Dian et al. [61] employ the MatSR to capture the spectral
correlation and the nonlocal low-rank regularization on the
matrix coefficient to investigate the nonlocal self-similarity
prior. However, it ignores the spatial correlation. (2) Previous
HSI-SR works do not utilize the residual information1 of
acquired MSI and HSI. Improving the utilization of acquired
image information is one of the core problems of super-
resolution. However, previous HSI-SR works ignore the uti-
lization of residual information of acquired low-resolution
images, resulting in the loss of information and affecting the
HSI-SR results.

1Assume the target HR-HSI X and its spatially and spectrally degraded
versions are Ŷ and Ẑ , respectively. The acquired HSI and MSI are Y and Z ,
respectively. Then, we define Y − Ŷ and Z − Ẑ as the residual information
of Y and Z , respectively.

To address these mentioned issues, we propose an iterative
regularization method based on tensor subspace representation
(IR-TenSR) for HSI-SR. Specifically, we first establish a tensor
subspace representation (TenSR)-based regularization model
that integrates the global spectral-spatial low-rank and non-
local self-similarity priors of HR-HSI. We introduce TenSR,
which was effectively introduced in HSI denoising [59], such
as dimension reduction and structure preservation, to depict
global spectral-spatial low-rank prior. Under the framework
of TenSR (see details in Section III-A), the spatial structure
depiction of the original HR-HSI can be transformed to
explore the representation low-dimensional tensor coefficient
image. To preserve the spatial structure, we exploit the nonlo-
cal self-similarity prior to regularizing the coefficient image.
Moreover, motivated by the effectiveness of tensor nuclear
norm (TNN), we apply it to describe the low-rank property
of the nonlocal grouped tensor. Subsequently, we design an
iterative regularization procedure based on the TenSR-based
regularization model to exploit the residual information of
acquired MSI and HSI. The flowchart of the proposed IR-
TenSR is shown in Fig. 1 and the contributions are summarized
as follows.
• We develop a TenSR-based regularization model to si-

multaneously depict the global spectral-spatial correla-
tion and nonlocal self-similarity properties of HR-HSI.
Thus, the reconstruction of HR-HSI is transformed to
estimate the tensor subspace and tensor coefficient image.
Especially, the global spectral and spatial correlation is
captured by TenSR, and TNN is employed to exploit
the nonlocal self-similarity property by regularizing the
tensor coefficient image.

• Based on the TenSR-based regularization model, we
design an iterative regularization procedure to utilize the
residual information of acquired MSI and HSI, which is
effective but ignored by previous HSI-SR works.

• We develop an efficient algorithm based on the proximal
alternating minimization (PAM) to solve the developed
TenSR-based regularization model. Equipped with that,
we obtain the iterative regularization algorithm. Extensive
experimental outputs on one real dataset and three simu-
lated datasets illustrate that the proposed IR-TenSR per-
forms better than the state-of-the-art HSI-SR approaches
for quantitative and visual comparisons.

We arrange the remaining part as follows. The related
work is described in Section II. We introduce the proposed
IR-TenSR method in Section III. Section IV and Section
V illustrate the experimental results and model discussion,
respectively. Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Notations

We represent tensors, matrices, vectors, and scalars by
calligraphic letter, e.g., B, boldface capital letters, e.g., B,
boldface lowercase letters, e.g., b, and capital or lowercase
letters, e.g., B or b, respectively. The filed of real number and
complex number are denoted as R and C, respectively. For
a three-order tensor B ∈ CW×H×S , we represent (i, j, k)-th



3

element as Bijk or bijk, denote the (i, j)-th tube as B(i, j, :),
and use B(:, :, i), B(:, i, :) and B(i, :, :) to represent the i-th
frontal slice, lateral slice and horizontal slice, respectively, for
brevity, B(:, :, i) is written as B(i). Ã represents the tensor
produced by doing the discrete Fourier transformation (DFT)
along the third dimension of A, i.e., Ã = fft(A, [ ], 3).
The permuted tensors of M ∈ RW×H×S are denoted as
M := permute(M, [I, J,K]), where [I, J,K] is a random
permutations of [1, 2, 3]. For example, we denote M4 as
M4 := permute(M, [1, 3, 2]) ∈ RW×S×H . The lateral slice
ofM4 is the frontal slice ofM. Correspondingly, the inverse
operation of “permute” is denoted as “ipermute”, and we
have M := ipermute(M4, [1, 3, 2]). We denote the Frobenius
norm and the tensor nuclear norm (TNN) as ||M||F =√∑

ijk |mijk|2 and ||M||TNN =
∑S
i=1 ||M̃(i)||∗, respectively.

B. Definitions

The work-related definitions, lemma, and theorems are as
follows.

Definition 1 (t-Product [62]): For two given tensors O ∈
RW×N×S and P ∈ RN×H×S , the result of the t-product O∗P
is a tensor Q ∈ RW×H×S , where (i, j)-th tube of Q is given
by

Q(i, j, :) =

N∑
k=1

O(i, k, :) ∗ P(k, j, :). (1)

Definition 2 (Transpose Tensor [62]): For a given tensor
O ∈ RW×H×S , transpose tensor OT ∈ RH×W×S is obtained
by transposing each frontal slice of O and then reversing the
order of transposed frontal slices 2 through S.

Definition 3 (Identity Tensor [62]): For a given tensor I ∈
RM×M×S , if it’s first frontal slice is identity matrix and other
frontal slices are zeros, this tensor I is called as identity tensor.

Definition 4 (Orthogonal Tensor [62]): Gicen a tensorM∈
RM×M×S , it is an orthogonal tensor ifM∗MT =MT ∗M =
I.

Definition 5 (F-diagonal Tensor [62]): For a given tensor
Q ∈ RW×H×S , if each of its frontal slices is a diagonal
matrix, this tensor Q is called f-diagonal.

Lemma 1: [62] For two given tensors G ∈ RW×N×S and
H ∈ RN×H×S , if G is orthogonal, we have

||G ∗ H||F = ||H||F . (2)

Theorem 1 (t-SVD [62]): For a given tensor M ∈
RW×H×S , the t-SVD of M is

M = U ∗ S ∗ VT . (3)

where U ∈ RW×W×S and V ∈ RH×H×S are orthogonal,
S ∈ RW×H×S is f-diagonal.

Definition 6 (Tensor Tubal Rank [63]): For a given tensor
M∈ RW×H×S , its tensor tubal rank is defined as the number
of nonzero singular tubes of S, that is

rankt(M) = #{j,S(j, j, :) 6= 0}, (4)

where S comes from the t-SVD of M, i.e., M = U ∗S ∗VT .

Theorem 2 [59]: For any B ∈ Rm1×m2×m3 , the following
problem:

argmin
B

1

2
||A − B ∗ C||2F +

β

2
||B − C||2F ,

s.t. BTB = I,
(5)

has a closed-form solution B∗ = V∗UT , where U and V come
from the t-SVD of C ∗ AT + βCT = U ∗ S ∗ VT .

Theorem 3 (TNN-based t-SVT [64]): For a three-order
tensor B ∈ Rm1×m2×m3 , a minimizer to

argmin
B

α||B||TNN +
1

2
||B − C||2F , (6)

which has a closed-form solution

B = U ∗ SαTNN ∗ VT , (7)

where C = U∗S∗VT , S̃αTNN = max(S̃−α, 0), S̃ = fft(S, [ ], 3),
and SαTNN = ifft(S̃αTNN, [ ], 3).

C. Problem Formulation

In this paper, we focus on the HSI-SR task by fusing a pair
of HSI (Y ∈ Rw×h×S) and MSI (Z ∈ RW×H×s) to generate
the HR-HSI (X ∈ RW×H×S).

1) Observation Model: Y ∈ Rw×h×S represents the HSI
with w×h pixels and S bands. In particular, Y can be regarded
as the spatially degraded version of HR-HSI X ∈ RW×H×S
with W ×H pixels and S bands, i.e.,

Y(3) = X(3)BS + N1, (8)

where X(3) ∈ RS×WH and Y(3) ∈ RS×wh are matrices
obtained by unfolding HR-HSI X and HSI Y along the
spectral (third) dimension, respectively. S ∈ RWH×wh is a
spatial degraded matrix. B ∈ RWH×WH is a spatial blurring
kernel, which is band-independent and under circular boundary
conditions. N1 denotes independent and identically distributed
(i.i.d.) noise. For simplicity, we reformulate (8) as

Y = H(X ) +N1, (9)

where H(·) is spatially degraded operator, N1 is the noises
contained in the observed HSI.
Z ∈ RW×H×s denotes the MSI with W ×H pixels and s

bands. Z can be treated as the spectrally degraded version of
HR-HSI X , i.e.,

Z(3) = RX(3) + N2, (10)

where R ∈ Rs×S is spectral response matrix and N2 denotes
i.i.d. noise. For simplicity, we reformulate (10) as

Z = R(X ) +N2, (11)

where R(·) denotes the spectrally degraded operator. N2 is
the noises contained in MSI.
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Fig. 1. Flowchart of the proposed IR-TenSR.

2) The General HSI-SR Model: Directly estimating HR-
HSI from acquired HSI and MSI is an ill-posed issue, and
some regularizes should be introduced to make the problem
as well posed. Thus, we can formulate the general HSI-SR
model as

argmin
X

1

2
||Y − H(X )||2F +

1

2
||Z −R(X )||2F + µJ (X ),

(12)
where the first two terms are called fidelity term, regularization
term J (X ) is used to depict the latent priors of the target HR-
HSI X , and µ is a regularization parameter.

III. PROPOSED ITERATIVE REGULARIZATION METHOD
BASED ON TENSOR SUBSPACE REPRESENTATION FOR

HSI-SR

A. TenSR Model for HSI-SR

1) TenSR: TenSR represents the tensor X ∈ RW×H×S by
t-product over a tensor basis and the corresponding tnesor
coefficient [59], i.e.,

X = B ∗ C, (13)

where B ∈ RW×r×S and C ∈ Rr×H×S denote the tensor basis
and tensor coefficient, respectively, in which B is orthogonal.
r is the subspace dimension, which is described by the tubal
rank of X .

2) Low Tubal Rankness: Since the subspace dimension of
TenSR is related to the tubal rank, which is different if the
spectral mode lies in different dimensions (e.g., the spectral
mode is in the first mode rather than in the third mode)
[59]. In this part, we discuss the low tubal rankness with the

spectral mode in different dimensions. Given an HSI tensor
X ∈ RW×H×S , we define the following five permuted tensors:

X1 := permute(X , [2, 1, 3]) ∈ RH×W×S ,
X2 := permute(X , [3, 1, 2]) ∈ RS×W×H ,
X3 := permute(X , [3, 2, 1]) ∈ RS×H×W ,
X4 := permute(X , [1, 3, 2]) ∈ RW×S×H ,
X5 := permute(X , [2, 3, 1]) ∈ RH×S×W .

(14)

We select seven HR-HSIs and present the tensor singular
values of X , X1, X2, X3, X4, and X5 in Fig. 2. Note that
tensor singular values of X are the entries on the diagonal of
the average of all front slice of S (i.e., 1

S

∑S
i=1 S(i)), where

S(i) comes from the t-SVD of X = U ∗ S ∗ VT . By Fig. 2
(c)-(f), we find that X2, X3, X4, and X5, have lower tubal
rank than X and X1. The result implies that the tensor whose
spectral dimension is in mode-1 or mode-2 has a lower tubal
rank. Through experimental analysis (see details in Section
V-A), we find that permuted tensor X4 has better performance
than others.

Thus, in this work, we assume that the permuted target HR-
HSI X4 ∈ RW×S×H (i.e., X4) can be represented by

X4 = B ∗ C, (15)

where B ∈ RW×r×H denotes the tensor basis with r basis
vectors (r << S), and C ∈ Rr×S×H is the tensor coefficient.
Thus, the permuted observed HSI Y4 ∈ Rw×S×h and MSI
Z4 ∈ RW×s×H can be represented by

Y4 = H(X4) +N14 = H(B ∗ C) +N14,

Z4 = R(X4) +N24 = R(B ∗ C) +N24,
(16)

where N14 := permute(N1, [1, 3, 2]) and N24 :=
permute(N2, [1, 3, 2]).
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Fig. 2. Statistical analysis of low tensor tubal rank on seven HR-HSIs (the same color represents the same dataset). (a)-(f) Normalized tensor singular value
curve of original HR-HSI X and permuted HR-HSIs X1, X2, X3, X4, and X5, respectively.

3) TenSR Model for HSI-SR: Based on the formulation
(16), the HSI-SR problem is transferred to estimate the tensor
subspace B and the tensor coefficient C from the observed
MSI and HSI. Specifically, the TenSR-based HSI-SR model
can be modeled as

min
B,C

1

2
||Y4 −H(B ∗ C)||2F +

1

2
||Z4 −R(B ∗ C)||2F ,

s.t. BT ∗ B = I.
(17)

B. Motivations

1) TenSR model for HSI-SR: In this part, we look into (17)
and see the insights into why the proposed TenSR model can
beat MatSR in HSI-SR. To illustrate the superiority of TenSR
compared with MatSR, we test TenSR model and MatSR
model that generated by replace the TenSR in model (17) by
MatSR [53] on Harvard dataset [65]. Fig. 3 (a) shows the
diagram of TenSR and MatSR; Fig. 3 (b) presents the HSI-
SR results by these two subspaces under different subspace
dimensions. From this figure, we find that the performance of
TenSR is better than MatSR, and the reason is that TenSR
is a more authentic representation for delivering the intrinsic
structure of HR-HSI since MatSR only considers the correla-
tion in the spectrum of HR-HSI, ignoring the correlation in
space. Motivated by the above observation, we would like to
apply TenSR to HSI-SR.

2) Nonlocal Low-Rank Regularization for HSI-SR: TenSR
only consider the correlation of spectrum and space, which is
insufficient. Thus, we need to dig out other priors of HR-HSI.
The nonlocal self-similarity has been proven to be effective in
HSI-SR problem [36], [61]. Under the framework of TenSR,
the tensor coefficient image C inherits the latent property of
the permuted HR-HSI X4. Thus, we will verify the nonlocal
self-similarity prior of HR-HSI on tensor coefficient image
C ∈ Rr×S×H . Specifically, 1) Segment the tensor coefficient
C as K overlapped cubes Ci ∈ Rp×p×r, i = 1, 2, · · · ,K;
2) Cluster K cubes into Λ classes with dj (

∑Λ
j=1 dj = K)

similar cubes in each class; and 3) Stacke similar cubes in
each class to form tensor UjC ∈ Rdi×r×p2 ; 4) Perform t-SVD
on UjC, j = 1, 2, · · · ,Λ. The whole process can be seen in
Fig. 4, and we find that tensors UjC (j = 1, · · · ,Λ) are low-
rank. Therefore, we introduce the TNN on grouped tensor UjC
to depict the nonlocal self-similarity prior. This strategy can
reduce the computational complexity compared with directly
employing the nonlocal regularizer to HR-HSI [66].

(a)

(b)
Fig. 3. (a) shows the diagram of TenSR and MatSR; (b) reports the HSI-SR
results by using TenSR and MatSR with different subspace dimensions.

3) Residual Information for HSI-SR: HSI-MSI fusion tech-
nology aims to utilize the available HSI and MSI to enhance
the spatial resolution of HSI. Therefore, how to improve
the utilization of low-resolution image information is one of
the core problems [67]–[69]. Residual information, defined
as the difference between the downsampled HR-HSI and
the acquired low-resolution images, usually exists between
the downsampled HR-HSI and the acquired HSI and MSI.
However, the existing HSI-SR methods only focus on design-
ing the regularization terms, ignoring the value of residual
information. To solve such an issue, we develop an iterative
regularization procedure to utilize the residual information,
and the details are shown in Section III-C.

C. Iterative Regularization Procedure

1) TenSR-based Regularization Model: By concatenating
the global spectral-spatial correlation and nonlocal self-
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Fig. 4. Spatial-spectral nonlocal self-similarity property of the tensor coefficient.

similarity property of HR-HSI, the proposed TenSR-based
regularization model is formulated as

min
B,C

1

2
||Y4 −H(B ∗ C)||2F +

1

2
||Z4 −R(B ∗ C)||2F + λJ (C),

s.t. BT ∗ B = I,
(18)

where λ denotes a positive regularization parameter, and
J (C) =

∑Λ
j ||UjC||TNN. The permuted HR-HSI is generated

by X4 = B ∗ C.
2) Iterative Regularization Produce: Based on the model

(18), we designed an iterative regularization procedure. Firstly,
calculate X 1

4 as a minimizer of the TenSR-based regularization
model (18) by a paired permuted HSI Y4 and MSI Z4.
Secondly, degenerate X 1

4 by (16) to generate Ŷ4 and Ẑ4.
Thirdly, compute the residual information (Y4 − Ŷ4) and
(Z4 − Ẑ4) as the data input to the model (18) to obtain
X 2

4 . This process is repeated until the maximum number of
iterations (E3) is reached. Finally, we generate the target HR-
HSI X by ipermute(

∑E3

τ=1 X τ4 , [1, 3, 2]). We summarize the
whole procedure as follows:
• Initialize: Y0

4 = Y4, Z0
4 = Z4.

• For τ = 0, 1, 2, · · · , E3

1. Compute X τ+1
4 as a minimizer of the TenSR-based

regularization model (18).
2. Downgrade X τ+1

4 to obtain Ŷ4 and Ẑ4 by Eq. (16).
3. Calculate the residual information, i.e., update Yτ+1

4

and Zτ+1
4 by Yτ4 -Ŷ4 and Zτ4 -Ẑ4, respectively.

• end
• Produce X by ipermute(

∑E3

τ=1 X τ4 , [1, 3, 2]).
Subsequently, we design the optimization algorithm for

the developed TenSR-based regularization model (18), then

embed the designed algorithm into the iterative regularization
procedure to generate the regularization algorithm.

D. Optimization Algorithm for Model (18)

Since the half-quadratic splitting technique has successfully
applied in image processing problem [70], we adopt it to relax
the formula (18) by introducing an auxiliary variable A =
B ∗ C, i.e.,

{A∗,B∗, C∗} = argmin
A,B,C

G(A,B, C), (19)

where G is

G(A,B, C) =
1

2
||Y4 −H(A)||2F +

1

2
||Z4 −R(A)||2F + λJ (C)

+
µ

2
||A − B ∗ C||2F ,

s.t. BT ∗ B = I,
(20)

the last quadratic term (i.e., µ
2 ||A − B ∗ C||

2
F ) encourages A

to approach B ∗ C, and µ denotes a positive hyper-parameter.
We propose an algorithm based on PAM for problem (20).

Each of the subproblems can be updated as follows.
1) A-Subproblem:

Ak+1 = argmin
A

1

2
||Y4 −H(A)||2F +

1

2
||Z4 −R(A)||2F

+
µ

2
||A − Bk ∗ Ck||2F +

β

2
||A − Ak||2F ,

(21)
where β is a proximal parameter. Problem (21) is a quadratic
regularized least-square problem and can be transferred to

H∗H(A)+R∗R(A) + (µ+ β)A =

H∗(Y4) +R∗(Z4) + µ(Bk ∗ Ck) + βAk,
(22)
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where H∗ is the adjoint of H. Formula (22) is a Sylvester
equation with an analytical and efficient solution [44].

2) B-Subproblem:

Bk+1 = argmin
B

µ

2
||A − B ∗ Ck+1||2F +

β

2
||B − Bk||2F ,

s.t. BT ∗ B = I.
(23)

By Theorem 2, problem (23) has closed-form solution

Bk+1 = V ∗ UT , (24)

where U and V come from the t-SVD of Ck+1 ∗ AT +
β
µ (Bk)T = U ∗ S ∗ VT .

3) C-Subproblem:

Ck+1 = argmin
C

λJ (C) +
µ

2
||Ak+1 − Bk ∗ C||2F +

β

2
||C − Ck||2F

= argmin
C

λ
Λ∑
i

||UiC||TNN +
µ

2
||Ak+1 − Bk ∗ C||2F

+
β

2
||C − Ck||2F .

(25)
Since B is orthogonal, by using Lemma 1, problem (25) is

equivalent to

Ck+1 = argmin
C

λ

Λ∑
i

||UiC||TNN +
µ

2
||(Bk)T ∗ Ak+1 − C||2F

+
β

2
||C − Ck||2F .

(26)
For simplicity, we denote C̃ = [µ(Bk)T ∗Ak+1 +βCk]/(µ+

β). The alternating direction method of multipliers (ADMM)
is adopted to problem (26) with global convergence guarantee.
By introducing auxiliary variables Ni = UiC(i = 1, 2, · · · ,Λ),
we have

argmin
Ni, C

λ

µ+ β

Λ∑
i

||Ni||TNN +
1

2
||C̃ − C||2F ,

s.t. Ni = UiC.
(27)

Then we have

L(Ni, C,Oi) =
λ

µ+ β

Λ∑
i

||Ni||TNN +
1

2
||C̃ − C||2F

+
γ

2

Λ∑
i

||Ni − UiC +
(Oi)t

γ
)||2F ,

(28)

where γ > 0 is the penalty parameter and Oi denotes the
Lagrangian multiplier. Under the ADMM framework, Ni, C,
Oi are alternately updated as

N t+1
i = argmin

Ni

L(Ni, Ct,Oti),

Ct+1 = argmin
C

L(N t+1
i , C,Oti),

Ot+1
i = Oti + γ(N t+1

i − UiCt+1).

(29)

Algorithm 1 ADMM Algorithm to Solve Problem (25).
Input: γ.
Initialize: C0 = C̃, O0 = 0.

1: for t = 1→ T do
2: Update N t+1

i by (30), i = 1, 2, · · · ,Λ.
3: Update Ct+1 by (32).
4: Update Ot+1

i by (29).
5: end for

Output: Ck+1.

Algorithm 2 PAM Algorithm to solve problem (19).
Input: Permuted HSI Y4, Permuted MSI Z4, regularization

parameter λ, proximal parameter µ and β.
Initialize: B0, C0 = (B0)T ∗ X pre4 , A0 = B0 ∗ C0.

1: while Relcha > 10−3 and k < E2 do
2: Update Ak+1 by (22).
3: Update Bk+1 by (23).
4: Update Ck+1 by (25).
5: end while

Output: X k+1
4 = Bk+1 ∗ Ck+1.

For Ni-subproblem, we have

N t+1
i = argmin

Ni

γ(µ+ β)

2λ
||Ni − UiCt +

(Oi)t

γ
)||2F

+
∑
i

||Ni||TNN.
(30)

Based on Theorem 3, let the t-SVD of (UiCt − (Oi)
t

γ ) be
U ∗ S ∗ VT , the solution of problem (30) is given by

N t+1
i = U ∗ P ∗ VT , (31)

where P is an f-diagonal tensor whose elements on the
diagonal of each frontal slice in the Fourier domain is
P̃(i, i, k) = max(S̃(i, i, k)− λ

γ(µ+β) , 0).
C-subproblem can be updated by

Ct+1 = argmin
C

1

2
||C̃ − C||2F

+
γ

2

∑
i

||UiC − ((Ni)t+1 +
(Oi)t

γ
)||2F .

(32)

Problem (32) is related to a quadratic minimization problem,
which can be solved directly. The algorithm for C-subproblem
(25) is summarized in Algorithm 1.

E. Initialization and Iterative Regularization Algorithm

The proposed model (18) is nonconvex. Thus, we need
to use "initialize+iterative regularization" to reduce the time-
consuming and improve accuracy.

1) Initialization: We initialize the tensor basis B0 from
X pre and learn B0 = U0(:, 1 : r, :), where r is the subspace
dimension and U0 comes from the t-SVD of X pre4 = U0 ∗
S0 ∗ (V0)T . The preprocessed data X pre is generated by
the d-times cubic interpolation of the observed HSI, where
d denotes the ratio of spatial dimension of MSI and HSI (i.e.,
W/w or H/h). We initialize the tensor coefficient C0 by the



8

projecting the preprocessed data X pre on the subspace. The
PAM algorithm-based to solve the formula (19) is presented
in Algorithm 2.

Termination conditions of Algorithm 2. We define the rela-
tive change (Relcha) as

Relcha =
||X k+1

4 −X k4 ||2

||X k4 ||2
, (33)

where k denotes the number of iterations.
Algorithm 2 will break out if it reaches the maximum

number of iterations K (we set it to 100), or Relcha is less
than the tolerance ( we set it to 10−3).

2) Iterative Regularization Algorithm: We produce the it-
erative algorithm by embedding Algorithm 2 into the iterative
regularization procedure, as shown in Algorithm 3. When E3

is set as 1, Algorithm 3 downgrades to Algorithm 2. Based
on the iterative regularization procedure and Algorithm 3, we
obtain the proposed IR-TenSR.

F. Complexity Analysis

For Algorithm 2, the most time-consuming step is up-
dating A by (22), B by (23), and C by (25). To
calculate A-subproblem, there has a total complexity
O(S · max{W 2H2, logS}) for each iteration [71]. For B-
subproblem, there needs to compute the t- SVD of the tensor
with the size of r × W × H , thus the complexity to B-
subproblem is O(H · min{W 2r, r2W}) for each iteration.
For C-subproblem (25), the most heavy step is updating N
by (30), where requires computing a t-SVD of J tensor
with the size of r × di × q2, i = 1, · · · , J . Thus, the
complexity of C-subproblem is O(q2

∑J
i=1 min{d2

i r, r
2di})

for each iteration in Algorithm 1. Let E1, E2, and E3 denotes
the number of iterations in Algorithm 1, Algorithm 2 and
Algorithm 3, respectively. The total complexity of Algorithm 3
is O(E3 ·(E2 ·(S ·max{W 2H2, logS}+H ·min{W 2r, r2W}+
E1 · q2

∑J
i=1 min{d2

i r, r
2di}))).

IV. EXPERIMENTS

To verify the effectiveness of the proposed IR-TenSR
method, we test it on three simulated datasets and one real
dataset. Meanwhile, we compare the proposed IR-TenSR with
seven state-of-the-art HSI-SR approaches to demonstrate its
superiority, including MatSR-based methods (HySure [53]
and LTMR [61]), nonnegative matrix factorization method
CNMF [48], nonlocal TF-based approaches (LTMR [61],
NLSTF [35], and LTTR [44]), TF-based CSTF [37], and
sparse representation-based S4-LRR [30]. We download all
approaches’ codes from the authors’ homepages and tune
parameters to the best outputs according to the reference com-
mendations. Our parameters are discussed in detail in Section
V-B. We perform all experiments in MATLAB R2020a on an
Intel(R) Core(TM) i9-10900KF CPU @ 3.70GHz 64.00GB
RAM platform.

A. Datasets

This part introduces four datasets for experiments, including
three simulated datasets and one real dataset.

Algorithm 3 Iterative Regularization Algorithm.
Input: Permuted HSI Y4, Permuted MSI Z4.
Initialize: Y0

4 = Y4, Z0
4 = Z4.

1: for τ = 0→ E3 − 1 do
2: Update X τ+1

4 by Algorithm 2.
3: Generate Ŷ4 and Ẑ4 by (16).
4: Generate Yτ+1

4 = Yτ4 − Ŷ4, Zτ+1 = Zτ4 − Ẑ4.
5: end for

Output: X = ipermute(
∑E3

τ=1 X τ4 , [1,3,2]).

1) Simulated Datasets:
• The first simulated dataset is Pavia University of size

610× 340× 115 [72]. We retain 93 bands by removing
the low signal-to-noise ratio (SNR) bands and choose the
up-left 256×256 cube as ground truth (GT), i.e., S = 93,
W = 256, H = 256. We generate the HSI by uniform
blur of ratio 16, i.e., w = W/16 = 16, h = H/16 = 16.
We obtain the MSI with four bands by the IKONOS-like
reflectance spectral response filter, i.e., s = 4.

• The second one is Indian Pines of size 145× 145× 220
[73]. We remove the bands with a low SNR, 182 bands
are retained. We choose the up-left 128 × 128 cube as
GT, i.e., S = 182, W = 128, H = 128. We obtain the
HSI by uniform blur of ratio 4, i.e., w = W/4 = 32,
h = H/4 = 32. We generate the MSI with six bands by
Landsat7-like spectral response, i.e., s = 6.

• The third one is the Harvard with fifty HSIs, describing
outdoor and indoor scenes under daylight illumination
[65]. Each of HSIs has 31 spectral bands and of spatial
resolution 1392×1040. Three HSIs (i.e, imgb0, imgb9,
and imge1) are randomly chosen, then select the up-left
512 × 512 cube of each of selected HSIs as GT, i.e.,
S = 31, W = 512, H = 512. The HSI is obtained by
uniform blur of ratio 16, i.e., w = W/16 = 32, h =
H/4 = 32. Besides, we obtain the MSI with three bands
by the Nikon D700 camera, i.e., s = 3.

When we generate the HSI and MSI of the above three
datasets, respectively, the Gaussian noise with the same SNR
is simultaneously added to MSI and HSI, where SNR is varied
between 10 and 25 dB, with an interval of 5 dB.

2) Real Dataset:
• The acquired HSI [11] has 220 spectral bands in the spec-

tral range of 400-2500nm and spatial resolution of 30m
obtained by the Hyperion sensor loaded on the Earth-
Observing-1 satellite. We retain 89 bands by removing
the low SNR bands and choose space of size 80×80 to
simulate HSI, i.e., w = 80, h = 80, S = 89. The MSI
with thirteen spectral bands is obtained by the Sentinel-
2A satellite, and we select four bands with the spatial size
of 240× 240 to simulate MSI, i.e., W = 240, H = 240,
s = 4. The central wavelengths of the four bands are 490,
560, 665, and 842 nm.

B. Evaluation Index

For a given GT X ∈ RJ1×J2×J3 and the fused results X̂ ∈
RJ1×J2×J3 , we introduce the following five evaluation indexes
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to assess the quality of X̂ .
• The peak signal to noise ration (PSNR) [38].

PSNR(X , X̂ ) =
1

J3

J3∑
i=1

PSNR(Xi, X̂i),

where Xi (Xi ∈ RJ1×J2 ) and X̂i (X̂i ∈ RJ1×J2 ) are the
i-th (i = 1, 2, · · · , J3) band of X and X̂ , respectively.

• The root means square error (RMSE) [38].

RMSE(X , X̂ ) =

√
||X − X̂ ||2F
J1J2J3

,

which evaluates the estimation error between X and X̂ .
The best value is 0.

• The structure similarity (SSIM) [74].

SSIM(X , X̂ ) =
1

J3

J3∑
i=1

SSIM(Xi, X̂i),

which evaluates the structure similarity between X and
X̂ . The best value is 1.

• The relative dimensionaless global error in synthesis
(ERGAS) [38].

ERGAS(X , X̂ ) =
100

d

√√√√ 1

J3

J3∑
i=1

MSE(Xi, X̂i)

µ2
(X̂i)

,

which evaluates the quality of X̂ . The best value is 0.
• The spectral angle mapper (SAM) [38].

SAM(X , X̂ ) =
1

J1J2

J1J2∑
i=1

arcos
x̂Tj xj

||x̂j ||2||xj ||2
,

where x̂j ∈ RJ3 and xj ∈ RJ3 (j = 1, 2, · · · , J1J2) are
pixels in X and X̂ , respectively. SAM is given in degrees
and the best value is 0.

C. Experiments Results on Three Simulated Datasets

1) Results on Pavia University Dataset: Table I presents
the evaluation indexes comparison of all methods on the
Pavia University dataset under different noise levels. We
highlight the optimal and suboptimal results in bold and
underlined, respectively. From the table, the nonnegative
matrix factorization method CNMF and nonlocal TF-
based method LTTR have poor outputs compared with
MatSR-based methods, HySure and LTMR. NLSTF and
CSTF obtain satisfactory results in all noise levels. S4-
LRR generates beautiful outputs in low SNR cases,
which means the sensitivity to noise. The proposed IR-
TenSR has competitive performance in all SNR cases.
For example, when SNR is 15, the PSNR of the image
reconstructed by the proposed IR-TenSR is more than 7
dB higher than that of the suboptimal LTMR. The reasons
include 1) we exploit the TenSR to represent the target
HR-HSI, the smaller subspace dimension (the lower tubal
rank) can help to keep the noise out; 2) we consider
the spatial-spectral nonlocal self-similarity property of the

target HR-HSI, and 3) we utilize the residual information
of acquired low-resolution images.
For visual comparison, the fused results consisted of
the 10-th band, 16-th band, and 47-th band of the
fused images under SNR=25dB, and the corresponding
error results are presented in Fig. 5. We magnify the
representative region (denoted by red block). As shown
in the magnified regions and error outputs, the recon-
structed images by CNMF and NLSTF exist noise; S4-
LRR and HySure have apparent flaws; images fused
by CSTF, LTMR, and LTTR generate good results, but
the details cannot be better preserved. By concentrating
on the spatial-spectral nonlocal self-similarity property
and spatial-spectral correlation property, combined with
residual information, the proposed IR-TenSR obtains the
best-fused output, preserving most of the details and
removing noises. From the error image, the HR-HSI
produced by the proposed IR-TenSR has fewer errors than
that of other compared approaches.
2) Results on Indian Pines Dataset: We present the
evaluation indexes comparison of all approaches on the
Indian Pines dataset in Table II. We highlight the optimal
and suboptimal results in bold and underlined, respec-
tively. From the table, the nonlocal TF-based method
LTTR has poor outputs compared with MatSR-based
methods, HySure and LTMR. NLSTF and CSTF obtain
satisfactory results in all noise levels. CNMF and S4-LRR
get beautiful outputs in high SNR cases. In general, the
proposed IR-TenSR has better performance. For example,
when SNR is 10, the RMSE of the image reconstructed
by the proposed IR-TenSR is 2.23 lower than that of
the suboptimal HySure. For visual comparison, we show
the outputs consisted of the reconstructed 11-th band,
48-th band, and 128-th band of the fused images under
SNR=15dB, and the corresponding error maps in Fig. 6.
We magnify the representative region (denoted by blue
block). As shown in the magnified regions and error
outputs, the reconstructed images by CNMF, HySure,
CSTF, NLSTF, LTTR, LTMR, and S4-LRR exist noise;
CNMF, HySure, LTTR, and S4-LRR have apparent flaws.
The proposed IR-TenSR obtains the best-fused output and
removes most of the noises contained in images. From the
error images, we find that the HR-HSI produced by the
proposed IR-TenSR has fewer errors than that of other
compared approaches.
3) Results on Harvard Dataset: There are 12 experi-
ments in the Harvard dataset since we choose three HSIs
with four different SNR cases. Table III shows the eval-
uation indexes comparison of all methods on three HSIs
under four noise levels. We highlight the optimal and sub-
optimal results in bold and underlined, respectively. From
the table, LTTR and CNMF have poor outputs compared
with MatSR-based methods, HySure and LTMR. NLSTF
and CSTF generate satisfactory results in all noise cases.
S4-LRR obtains beautiful outputs in high SNR cases. The
proposed IR-TenSR has better performance than other
compared methods. For example, when SNR is 10, the
SSIM of imgb0 reconstructed by the proposed IR-TenSR
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is 0.31 higher than HySure. For visual comparison, the
outcomes consisted of the reconstructed 6-th band, 15-
th band, and 28-th band of the fused imgb9 under
SNR=15dB, and the corresponding error maps are shown
in Fig. 7. We magnify the representative region (denoted
by red block). As shown in the magnified regions and
error outputs, the reconstructed images by CNMF, NL-
STF, LTTR, S4-LRR, and LTMR exist apparent noise and
flaws; HySure and CSTF produce better results but have
less noise. In contrast, our method obtains the best-fused
result; the HR-HSI made by the proposed IR-TenSR has
fewer errors than that of other compared approaches, as
shown in the error images.

TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON PAVIA

UNIVERSITY DATASET WITH FOUR NOISE CASES

Evaluation Index PSNR SSIM ERGAS SAM RMSE
Best Value +∞ 1 0 0 0

SNR=25dB
CNMF [48] 28.88 0.81 1.35 6.79 9.38
HySure [53] 31.59 0.93 1.00 5.69 6.83
CSTF [37] 37.29 0.95 0.50 3.51 3.57
NLSTF [35] 37.59 0.96 0.48 3.41 3.46
LTTR [44] 35.31 0.94 0.67 4.21 4.84
LTMR [61] 38.24 0.96 0.45 3.15 3.21
S4-LRR [30] 34.84 0.95 0.70 4.29 4.81
IR-TenSR 40.98 0.98 0.41 3.26 3.02

SNR=20dB
CNMF [48] 27.55 0.74 1.52 9.82 11.08
HySure [53] 30.91 0.91 1.06 6.07 7.40
CSTF [37] 34.38 0.90 0.70 4.69 4.99
NLSTF [35] 33.78 0.89 0.75 5.22 5.35
LTTR [44] 33.24 0.90 0.82 5.45 5.76
LTMR [61] 35.33 0.92 0.62 4.14 4.46
S4-LRR [30] 32.25 0.90 0.92 5.51 6.45
IR-TenSR 40.20 0.97 0.44 3.52 3.18

SNR=15dB
CNMF [48] 23.53 0.53 2.44 16.92 17.55
HySure [53] 29.28 0.83 1.26 7.02 8.97
CSTF [37] 30.67 0.79 1.06 6.82 7.71
NLSTF [35] 29.05 0.73 1.30 8.87 9.26
LTTR [44] 29.43 0.78 1.29 9.03 8.66
LTMR [61] 30.99 0.79 1.04 6.77 7.35
S4-LRR [30] 29.35 0.79 1.25 7.30 8.97
IR-TenSR 38.29 0.96 0.50 4.17 3.61

SNR=10dB
CNMF [48] 23.58 0.51 2.39 15.39 17.64
HySure [53] 26.34 0.67 1.74 9.20 12.72
CSTF [37] 26.93 0.63 1.62 9.75 12.01
NLSTF [35] 24.02 0.50 2.34 15.50 16.70
LTTR [44] 23.58 0.53 2.57 17.93 17.25
LTMR [61] 25.39 0.55 2.00 12.9 14.26
S4-LRR [30] 26.43 0.64 1.74 9.73 12.46
IR-TenSR 32.23 0.89 0.92 7.92 6.47

D. Experiments Results on Real Dataset

We perform the proposed approach on real dataset men-
tioned in Section IV-A to further evaluate its performance.
To simulated MSI and HSI, we estimate spatial blurring
kernel B and spectral response matrix R via work
[53]. Specifically, we have RY(3) = Z(3)BS based on
formulations (8) and (10). Thus, we estimate B and S by
problem argminB,S ||RY(3) − Z(3)BS||2F + λbΦb(B) +

TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON INDIAN PINES

DATASET WITH FOUR NOISE CASES

Evaluation Index PSNR SSIM ERGAS SAM RMSE
Best Value +∞ 1 0 0 0

SNR=25dB
CNMF [48] 30.12 0.83 2.30 4.28 9.05
HySure [53] 28.73 0.84 2.77 4.97 10.58
CSTF [37] 30.76 0.85 2.24 4.26 8.86
NLSTF [35] 29.39 0.84 2.54 4.49 9.87
LTTR [44] 25.27 0.67 4.05 6.54 14.75
LTMR [61] 27.67 0.82 3.01 4.99 11.37
S4-LRR [30] 30.28 0.83 2.31 4.38 8.91
IR-TenSR 30.24 0.83 2.40 4.17 9.39

SNR=20dB
CNMF [48] 27.60 0.76 2.92 5.04 11.42
HySure [53] 28.31 0.83 2.86 5.05 10.95
CSTF [37] 29.07 0.80 2.57 4.65 10.06
NLSTF [35] 28.25 0.80 2.81 4.96 10.96
LTTR [44] 23.32 0.56 5.01 8.55 17.93
LTMR [61] 27.13 0.78 3.18 5.33 12.03
S4-LRR [30] 23.56 0.56 5.63 9.17 18.61
IR-TenSR 30.05 0.83 2.46 4.25 9.44

SNR=15dB
CNMF [48] 24.31 0.61 4.21 6.71 16.29
HySure [53] 27.31 0.78 3.11 5.30 12.00
CSTF [37] 25.74 0.65 3.57 6.00 14.02
NLSTF [35] 25.51 0.69 3.71 6.42 14.34
LTTR [44] 20.04 0.40 7.45 13.03 26.14
LTMR [61] 24.27 0.60 4.36 7.47 16.75
S4-LRR [30] 20.10 0.39 7.84 13.43 26.69
IR-TenSR 28.74 0.78 2.73 4.86 10.39

SNR=10dB
CNMF [48] 19.85 0.38 6.88 10.66 26.82
HySure [53] 25.27 0.68 3.78 5.92 14.68
CSTF [37] 19.91 0.37 6.84 11.24 26.74
NLSTF [35] 20.77 0.45 6.31 10.75 23.98
LTTR [44] 15.83 0.22 11.77 20.63 42.06
LTMR [61] 18.86 0.33 8.07 13.78 31.57
S4-LRR [30] 15.98 0.22 11.72 20.55 41.63
IR-TenSR 26.74 0.68 3.32 6.02 12.45

λrΦr(R), where Φb(·) and Φr(·) denotes the regularizer
of B and R, respectively, λb and λr are regularization
parameters. Φb(B) is set to ||DhB||2F + ||DvB||2F , where
Dh and Dv are the difference operator along the hori-
zontal and vertical direction, respectively. Since we only
need to smooth R along the vertical direction, Φr(R) is
set to ||DvR||2F . We first estimate R and then obtain B
with known R.
Fig. 8 presents the results consisting of 1-st band, 88-
th band, and 89-th band of the fused images. The MSI
shown in Fig. 8 consists of 1-st, 2-nd, and 4-th bands
of the original MSI mentioned in Section IV-A. We
magnify the representative region (denoted by blur block).
We find that fused images by LTTR and S4-LRR have
serious spectral distortion since there is an obvious color
change. Besides, compared with the shown MSI, we find
that the fused images by CNMF, CSTF, and NLSTF
cannot recover the spatial structure well, as shown in the
enlarged blue boxes. In contrast, though the reconstructed
image by the proposed IR-TenSR is imperfect, it makes a
balance between spectral distortion and spatial structure
retaining.
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TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON THREE HSIS OF HARVARD DATASET WITH FOUR NOISE CASES

Method
imgb0 imgb9 imge1

PSNR SSIM ERGAS SAM RMSE PSNR SSIM ERGAS SAM RMSE PSNR SSIM ERGAS SAM RMSE
SNR=25dB SNR=25dB SNR=25dB

CNMF [48] 34.70 0.87 1.09 6.54 5.29 34.25 0.80 1.27 7.32 5.57 24.75 0.59 1.45 12.27 16.24
HySure [53] 37.43 0.94 0.76 4.50 4.16 39.68 0.94 0.74 4.18 2.87 24.16 0.63 1.53 11.60 17.83
CSTF [37] 40.12 0.95 0.57 3.65 3.11 42.73 0.95 0.52 3.30 2.03 25.87 0.75 1.24 8.61 14.51
NLSTF [35] 38.15 0.92 0.92 5.53 3.54 41.28 0.93 0.65 4.20 2.34 25.05 0.57 1.47 16.77 15.44
LTTR [44] 36.17 0.89 1.33 5.95 4.09 39.62 0.91 0.89 5.33 2.75 24.88 0.55 1.56 17.99 15.45
LTMR [61] 38.98 0.93 0.77 4.30 3.13 42.02 0.94 0.62 3.85 2.12 25.20 0.58 1.52 14.93 14.96
S4-LRR [30] 39.13 0.94 0.65 5.03 3.36 40.94 0.94 0.66 4.41 2.45 25.63 0.63 1.30 13.46 14.78
IR-TenSR 42.70 0.98 0.63 2.60 2.12 44.38 0.98 0.49 2.88 1.64 26.55 0.83 1.16 7.70 13.38

SNR=20dB SNR=20dB SNR=20dB
CNMF [48] 33.05 0.81 1.43 8.65 6.17 31.23 0.67 1.93 12.44 7.60 23.64 0.44 1.96 19.6 17.70
HySure [53] 34.93 0.89 1.04 5.38 5.32 37.10 0.88 0.98 5.22 3.82 22.93 0.43 1.82 15.35 20.45
CSTF [37] 36.46 0.88 0.85 5.24 4.74 38.71 0.89 0.82 4.97 3.18 25.42 0.62 1.31 11.14 15.27
NLSTF [35] 32.73 0.78 1.77 9.09 6.30 35.93 0.82 1.29 7.93 4.25 23.17 0.38 1.94 21.94 18.80
LTTR [44] 30.87 0.74 2.47 10.57 7.52 34.31 0.78 1.67 9.75 5.08 22.35 0.35 2.33 24.43 20.14
LTMR [61] 33.77 0.80 1.41 7.65 5.82 37.21 0.85 1.09 6.71 3.74 23.38 0.38 2.04 21.76 18.88
S4-LRR [30] 35.65 0.87 0.96 6.35 4.81 37.77 0.76 0.92 5.87 3.54 22.98 0.37 2.03 22.50 18.99
IR-TenSR 41.63 0.97 0.75 2.92 2.32 43.62 0.97 0.56 3.16 1.77 26.35 0.81 1.21 9.24 13.56

SNR=15dB SNR=15dB SNR=15dB
CNMF [48] 25.50 0.50 3.17 17.42 14.93 29.84 0.57 2.53 15.65 8.70 19.86 0.23 3.04 28.00 27.20
HySure [53] 30.30 0.73 1.93 9.31 9.20 32.34 0.69 1.78 9.00 6.59 20.85 0.28 2.45 19.08 26.15
CSTF [37] 29.47 0.63 2.08 13.55 11.77 33.24 0.70 1.61 9.79 5.96 23.89 0.41 1.56 17.46 18.20
NLSTF [35] 26.35 0.51 3.96 15.81 12.90 29.76 0.56 2.71 15.28 8.62 19.52 0.18 3.41 27.85 27.86
LTTR [44] 25.51 0.51 4.54 17.60 13.94 28.97 0.55 3.07 17.19 9.37 18.89 0.20 3.75 30.23 29.64
LTMR [61] 27.23 0.52 3.65 15.62 13.10 31.25 0.61 2.13 13.13 7.58 19.64 0.19 3.50 28.73 29.24
S4-LRR [30] 26.62 0.53 3.69 15.66 12.48 33.50 0.71 1.48 8.96 5.82 18.62 0.19 3.85 29.88 30.57
IR-TenSR 39.75 0.96 0.96 3.62 2.79 42.15 0.96 0.69 3.75 2.07 25.98 0.76 1.30 11.55 13.96

SNR=10dB SNR=10dB SNR=10dB
CNMF [48] 20.06 0.26 6.54 27.70 27.29 22.30 0.24 5.47 30.85 21.2 15.48 0.10 4.95 32.58 44.83
HySure [53] 28.61 0.61 2.01 8.27 11.54 27.13 0.43 3.24 16.77 13.00 21.43 0.27 2.10 15.26 24.46
CSTF [37] 22.00 0.28 6.05 25.69 28.36 27.91 0.43 3.02 18.11 11.41 20.83 0.23 2.43 24.19 25.67
NLSTF [35] 21.09 0.26 7.27 24.12 23.67 23.92 0.29 5.37 24.99 16.89 15.36 0.10 5.88 33.80 44.80
LTTR [44] 20.58 0.29 8.07 26.68 24.60 23.63 0.30 5.71 27.92 17.28 14.93 0.11 6.20 35.73 46.57
LTMR [61] 19.57 0.21 11.95 30.54 33.49 25.85 0.35 4.02 22.47 14.24 15.35 0.10 6.13 35.09 47.73
S4-LRR [30] 20.73 0.28 7.89 25.74 24.22 24.51 0.31 4.92 25.76 15.81 14.27 0.10 7.06 35.82 49.87
IR-TenSR 36.78 0.92 1.38 5.09 3.83 39.54 0.94 0.97 5.05 2.76 25.25 0.66 1.49 15.05 14.89

CNMF [48] HySure [53] CSTF [37] NLSTF [35] LTTR [44] LTMR [61] S4-LRR [30] IR-TenSR Ground Truth

Fig. 5. HSI-SR results of Pavia University. The first row and second row present the outcomes consisting of 10-th, 16-th, 47-th bands of the fused images
under SNR=25dB and the corresponding error results, respectively. The red block shows the representation region.

CNMF [48] HySure [53] CSTF [37] NLSTF [35] LTTR [44] LTMR [61] S4-LRR [30] IR-TenSR Ground Truth

Fig. 6. HSI-SR results of Indian Pines. The first row and second row present the results consisting of 11-th, 48-th, 128-th band of the fused images under
SNR=15dB and the corresponding error maps, respectively. The blue block shows the representation region.
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CNMF [48] HySure [53] CSTF [37] NLSTF [35] LTTR [44] LTMR [61] S4-LRR [30] IR-TenSR Ground Truth

Fig. 7. HSI-SR results of imgb9 (an HSI in Harvard DATASET). The first row and second row present the results consisting of 1-th, 15-th, 31-th band of
the fused images under SNR=15dB and the corresponding error outputs, respectively. The red block shows the representation region.

HSI CNMF [48] HySure [53] CSTF [37] NLSTF [35]

LTTR [44] LTMR [61] S4-LRR [30] IR-TenSR MSI [35]

Fig. 8. HSI-SR results of real data. This figure presents the results consisting of 1-st, 88-th, and 89-th bands of the fused image. The MSI consists of 1-st,
2-nd, 4-th bands of the original MSI. The blue block shows the representation region.

V. DISCUSSION

A. Determination of the Permuted Tensor

As mentioned in Section III-A2, tensor whose spectral
dimension is in mode-1 or mode-2 has a lower tubal rank.
Thus, we test them (i.e., X2, X3, X4, and X5) on the Indian
Pines dataset, Harvard dataset, and Pavia University dataset to
determine which one is more favorable for the fusion results.
Fig. 9 shows the curve of PSNR and SAM of the fusion results
on three datasets under four different permuted tensors. From
Fig. 9, it is not difficult to find that the performance of the
two evaluation indexes (i.e., PSNR and SAM) is the best in
the case of X4. Therefore, we chose permuted tensor X4 for
all of our experiments.

B. Parameters Analyses

There are seven parameters in the proposed IR-TenSR,
including proximal parameter β, penalty parameter γ, regu-
larization parameter λ, positive hyper-parameter µ, 3-D block
number Λ and size q, and tubal-rank r. For simulated datasets,
we choose the parameter with the best PSNR and SAM value
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Fig. 9. Statistical analysis of the effectiveness of four permuted tensors (i.e.,
X2, X3, X4, and X5) on three simulated datasets.

as the parameter of the dataset; for real dataset, we choose the
parameters with a good visual effect.

1) Simulated data sets: Parameter µ denotes a positive
hyper-parameter to promote A to be closed to B ∗ C. To
analyze µ, we perform the proposed algorithm for different µ
on the Pavia University dataset. Fig. 10 (a) presents PSNR and
SAM curves concerning different µ. In the experiment, we set
µ to [10−7, 10−3]. The SAM decreases when µ varies from
10−7 to 10−4 and increases from 10−4 to 10−3; the PSNR
increases when µ varies from 10−7 to 10−4 and decreases
from 10−4 to 10−3, thus, we set µ as 10−4. Similarly, we set
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µ as 5×10−7 and 10−6 for Indian Pines and Harvard dataset,
respectively.

To analyze the influence of β, we perform the proposed
algorithm with different β on Pavia University dataset. Fig. 10
(b) presents PSNR and SAM curves concerning different β. In
the experiment, we set β to [10−7, 10−3]. The SAM fluctuates
slightly when β varies from 10−7 to 10−5 and increases from
10−5 to 10−3; the PSNR fluctuates slightly when β varies
from 10−7 to 10−5 and decreases from 10−5 to 10−3, thus,
we set β as 5×10−7. Similarly, we set β to 10−5 and 5×10−5

for Indian Pines and Harvard dataset, respectively.
To analyze γ, we perform the proposed algorithm for differ-

ent γ on Pavia University dataset. Fig. 10 (c) presents PSNR
and SAM curves concerning different γ. In the experiment,
we set γ to [10−5, 10−1]. The SAM fluctuates slightly when
γ varies from 10−5 to 10−3 and decreases from 10−3 to 10−1;
the PSNR remains stable when γ varies from 10−5 to 10−3

and increases from 10−3 to 10−1, thus, we set γ as 10−1.
Similarly, we set γ as 10−5 and 10−3 for Indian Pines and
Harvard dataset, respectively.

To analyze λ, we perform the proposed algorithm for differ-
ent λ on Pavia University dataset. Fig. 10 (d) presents PSNR
and SAM curves concerning different λ. In the experiment,
we set λ to [5×10−7, 5×10−3]. The SAM fluctuates slightly
when λ varies from 5× 10−7 to 5× 10−5 and increases from
5×10−5 to 5×10−3; the PSNR remains stable when λ varies
from 5 × 10−7 to 5 × 10−5 and increases from 5 × 10−5

to 5 × 10−3, thus, we set λ as 5 × 10−3. Similarly, we set
λ as 10−7 and 10−4 for Indian Pines and Harvard dataset,
respectively.

To analyze Λ, we perform the proposed algorithm for
different Λ on the Pavia University dataset. Fig. 10 (e)
presents PSNR and SAM curves concerning different Λ. In
the experiment, we set Λ to [2, 42]. The SAM increases when
Λ varies from 2 to 42; the PSNR decreases when Λ varies
from 2 to 42, thus, we set Λ as 2. Similarly, we set Λ as 32
and 22 for Indian Pines and Harvard dataset.

To analyze patch size q, we perform the proposed algorithm
for different q on the Pavia University dataset. Fig. 10 (f)
presents PSNR and SAM curves concerning different q. In
the experiment, we set q to [7, 21]. The SAM decreases when
q varies from 7 to 21; the PSNR increases when q varies from
7 to 21, thus, we set q as 21. Similarly, we set q as 9 and 7
for Indian Pines and Harvard datasets.

To analyze the dimension of TenSR r, we run the proposed
algorithm for different r on the Pavia University dataset. Fig.
10 (g) presents PSNR and SAM curves concerning different
r. In the experiment, we set r to [2, 11]. The SAM increases
when r varies from 2 to 8 and waves from 8 to 11; the PSNR
increases when r varies from 2 to 4 and decreases from 4 to
11, thus, we set r as 3. Similarly, we set r as 8 and 11 for
Indian Pines and Harvard datasets.

We summarize the ranges and values of all parameters used
in three simulated datasets in Table IV.

2) Real datatset: Similar to the strategy of determining
the parameters of the three simulated datasets, we select the
parameters of the real data set. We choose them according to
the visual effect rather than the evaluation index, i.e., PSNR

and SAM. For brevity, we summarize the parameters used in
the real data set in Table IV.
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Fig. 10. Sensitivity analysis of parameters on the Pavia University dataset.

C. Analysis of the Iterative Regularization Algorithm

In Section III-C, we design an iterative regularization pro-
cedure to exploit the residual information of the acquired low-
resolution images. This section will verify its effectiveness and
determine the number of iterations E3 in Algorithm 3. Fig.11
presents the change of PSNR and time concerning different
τ on the three datasets, i.e., (a) Pavia University dataset, (b)
Indian Pines dataset, and (c) Harvard dataset. When τ is from
1 to 3, the PSNR of the results obtained by Algorithm 3
increases significantly, which shows the effectiveness of the
designed iterative regularization procedure. When τ is greater
than 3, the PSNR curve tends to be flat. To sum up, we set the
maximum iteration steps E3 as 6, 7, and 3 for Pavia University,
Indian Pines, and Harvard dataset, respectively.
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Fig. 11. Influence of the number of outer iterations τ on the fusion effect
and efficiency.

D. Analysis of the Regularization Term

In this part, we discuss the performance of the regularization
term (i.e., J (C)) in model (18). Specifically, we perform the
following two points:
• Ponit-1. Set λ in Eq. (18) as zero, then test the model on

three simulated datasets mentioned in Section IV-A, and
compare with the proposed model with λ 6= 0;

• Point-2. Impose the matrix nuclear norm (MNN) on ma-
trix (UiC)(2), i = 1, · · · , CC, rather than tensor nuclear
norm (TNN) on UiC to character the spatial-spectral
nonlocal self-similarity property of tensor coefficient C.

For point 1, we aim to illustrate the effectiveness of the
regularization term. For point 2, we want to present that
it is more effective to impose TNN on tensors UiC than
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TABLE IV
PARAMETERS DISCUSSION OF THE PROPOSED METHOD ON THREE SIMULATED DATASETS AND ONE REAL DATASET.

Parameter β γ λ µ Λ q r
Simulated datasets

Suggested Range [10−7, 10−3] [10−5, 10−1] [5× 10−7, 5× 10−3] [10−7, 10−3] [2, 42] [7, 21] [2, 11]
Pavia University [72] 5× 10−7 10−1 5 ∗ 10−3 10−4 2 21 3
Indian Pines [73] 10−5 10−5 10−7 5× 10−7 32 9 8
Harvard [65] 5× 10−5 10−3 10−4 10−6 22 7 11

Real datasets
Real data [11] 10−7 10−5 5 ∗ 10−7 5 ∗ 101 10 7 5

MNN used in [59] to character the spatial-spectral nonlocal
self-similarity property. Table V and Table VI present the
quantitative analysis results of these two points. From Table V,
we find that the regularization term is effective in the HSI-SR
problem, which has improved in all three simulated datasets.
In particular, the PSNR on the Pavia University dataset has
increased by 4.46dB. Besides, we observe that TNN has more
advantages than MNN from Table VI. For example, SAM in
the Pavia dataset increased by nearly 1, and other values have
improved to a certain extent.

TABLE V
ANALYSIS OF THE REGULARIZATION POINT-1

Dataset PSNR RMSE SSIM ERGAS SAM

Pavia University λ=0 37.11 5.24 0.94 0.75 5.13
λ 6= 0 41.57 2.9 0.98 0.40 3.02

Indian Pines λ=0 29.01 11.14 0.79 2.94 4.8
λ 6= 0 30.18 9.67 0.83 2.52 4.20

Harvard-imgg9 λ=0 50.91 0.87 0.98 1.28 3.56
λ 6= 0 51.52 0.82 0.99 1.19 3.33

E. Convergence Behavior and Running Time Comparison

1) Convergence Behavior: In this part, we empirically
analyze the convergence of the propsoed Algorithm 2. Fig. 12
(a), Fig. 12 (b), and Fig. 12 (c) show the RelCha on Pavia
University, Indian Pines, and Harvard dataset, respectively.
Each RelCha rapidly approachs to zero, confirming the global
convergence of Algorithm 2.
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Fig. 12. RelCha in each iteration of Algorithm 2 on three datasets.
Convergence curve of (a) Pavia University dataset, (b) Harvard dataset, and
(c) CAVE dataset.

2) Runing Time Comparison: In this part, we compare the
runtime results of all test methods, as shown in Table VII,
where the time of each dataset is the average of the time that
the dataset runs under four noise levels. We highlight the least
and second running times in bold and underlined, respectively.
From the table, we find that CNMF has the least running time,

TABLE VI
ANALYSIS OF THE REGULARIZATION POINT-2

Dataset PSNR RMSE SSIM ERGAS SAM

Pavia University MNN 38.94 3.86 0.96 0.54 4
TNN 41.57 2.9 0.98 0.40 3.02

Indian Pines MNN 29.73 10.01 0.82 2.62 4.31
TNN 30.18 9.67 0.83 2.52 4.20

Harvard-imgg9 MNN 51.35 0.81 0.98 1.2 3.4
TNN 51.52 0.82 0.99 1.19 3.33

while S4-LRR has the most running time. Besides, NLSTF,
HySure, and CSTF run in an acceptable time range. The
running time of the proposed IR-TenSR is less than LTTR
and S4-LRR and fine.

TABLE VII
COMPARISONS OF RUNNING TIME FOR ALL TEST METHODS (IN

SECONDS)

Method Time (s)
Pavia University CAVE Indian Pines Realdata

CNMF [48] 5.35 21.84 2.29 7.70
HySure [53] 7.62 42.40 0.95 41.18
CSTF [37] 10.67 31.59 9.33 132.18
NLSTF [35] 6.54 205.68 1.83 16.90
LTTR [44] 192.07 172.62 9.22 66.83
LTMR [61] 65.08 123.67 28.40 41.10
S4-LRR [30] 674.70 6633.00 705.36 384.50
IR-TenSR 124.89 152.86 123.02 74.20

VI. CONCLUSION

In this work, we develop the IR-TenSR for HSI-SR. The
suggested TenSR-based regularization model concatenates the
global spectral-spatial correlation and nonlocal self-similarity
property of HR-HSI. Specifically, to fully describe the corre-
lation in spectrum and space, we use the TenSR to represent
the HR-HSI. Under the framework of TenSR, we introduce
the nonlocal low-rank regularization to constrain the tensor
coefficient image. Equipped with that, we design an iterative
regularization procedure to exploit the residual information
of acquired MSI and HSI. Finally, we obtain the iterative
regularization algorithm by embedding the algorithm for the
TenSR-based regularization model into the iterative regular-
ization procedure. Extensive comparative experimental tests
on one real dataset and three simulated datasets demonstrate
the advantages of the proposed IR-TenSR compared with
the existing state-of-the-art HSI-SR methods, both visual and
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quantitative results. Finally, some discussions further verify
the rationality and effectiveness of the proposed IR-TenSR.
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