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Abstract—Pansharpening is related to the fusion of a low
spatial resolution multispectral (MS) image retaining an abun-
dant spectral content and a high spatial resolution panchromatic
(PAN) image to obtain a product with both the abundant spectral
content of the former and the high spatial resolution of the latter.
Many previous researches are only focused on the global or local
relationship between the PAN image and the corresponding high
resolution multispectral (HRMS) image. However, we found that
the relationship between PAN and HRMS images in the gradient
domain can be better explored through the image context. In
this paper, we propose a context-aware details injection fidelity
(CDIF) with adaptive coefficients estimation, which can fully
explore the complicated relationship between the PAN image
and the HRMS image in the gradient domain. More specifically,
we apply a clustering method to divide the pixels of an image
into different context-based regions. Afterwards, the adaptive
coefficients are estimated by using a regression-based method
for each region. The CDIF is effective in extracting the main
features from the two inputs to be fused. In addition, we integrate
the CDIF with a conventional fidelity term and a total variation
regularization to formulate a novel variational pansharpening
model that is solved by designing an algorithm based on the
alternating direction method of multiplier (ADMM) framework.
Qualitative and quantitative assessments on different datasets
support the effectiveness and robustness of the proposed method.
The code is available at https://github.com/liangjiandeng/CDIF.

Index Terms—Variational Models, Adaptive Coefficients,
Context-Aware Fidelity, Pansharpening, Image Fusion, Remote
Sensing.

I. INTRODUCTION

R emote sensing has several applications, such as, detec-

tion, analysis, and forecasting. Satellites, e.g., IKONOS,

QuickBird, WorldView-2, Pléiades, and WorldView-3, acquire

more information. However, because of hardware limitations,

we can design acquisition sensors with only one high resolu-

tion, usually penalizing the others. Thus, high spatial resolu-

tion panchromatic (PAN) images can be acquired together with

data showing a greater focus on the spectral resolution as low
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Fig. 1. (a) Plot of the intensity for both the PAN image and the HRMS data
randomly choosing a row of the image; (b) Plot of the gradient intensity for
both the PAN image and the HRMS data considering blue (B), green (G), red
(R), and near-infrared (NIR) bands for the same row as in (a). It is worth to
be remarked that the behavior of PAN and HRMS images is more similar in
the gradient domain than in the intensity domain.

spatial resolution multispectral (LRMS) images [1]. The goal

of pansharpening (which stands for panchromatic sharpening)

is to fuse the above-mentioned pairs to obtain high spatial

resolution multispectral (HRMS) images.

A. Related Works

Pansharpening methods can be roughly divided into four

classes [2], [3], [4], i.e., component substitution (CS) methods,

multi-resolution analysis (MRA) approaches, machine learning

(ML) techniques, and variational optimization-based (VO)

https://github.com/liangjiandeng/CDIF
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Fig. 2. The framework of our model. The details of our framework can be found in Sect. III.

methods. More details about the above-mentioned categories

can be found in [1].

The CS methods, commonly considered classic approaches

for pansharpening, are based on the substitution of one or more

components after applying a reversible spectral transformation.

This latter is applied to the MS image with the aim of

separating the spatial and spectral information. The spatial

information is substituted with the PAN image to enhance the

spatial resolution of the MS image. Some instances of these

approaches are the Brovey transform [5], the principal com-

ponent analysis (PCA) [6], the intensity-hue-saturation (IHS)

[7], the Gram-Schmidt (GS) spectral sharpening [8], the partial

replacement adaptive component substitution (PRACS) [9],

and the band-dependent spatial detail (BDSD) [10] methods.

For these techniques, the tradeoff between spatial and spectral

distortions is impossible to be overcome. Thus, CS methods

have a good spatial fidelity, but paying it with a greater spectral

distortion.

The MRA methods rely upon the injection of spatial details

extracted from the PAN image into the MS image. Unlike CS

methods, they can preserve spectral information, but causing

(usually evident) spatial distortions. Spatial details can be ex-

tracted from different decomposition methods. Some instances

of approaches in the MRA class are: the smoothing filter-based

intensity modulation (SFIM) [11], the decimated wavelet

transform (DWT) [12], the undecimated wavelet transform

(UDWT) [13], the “à-trous” wavelet transform (ATWT) [14],

the generalized Laplacian Pyramid [15], and some methods,

i.e., [16] and [17], which propose strategies to extract details

in an accurate way.

ML approaches have recently achieved great success in

several image processing fields including pansharpening [18],

[19], [20], [21], [22], [23], [24], [25]. Many ML methods for

pansharpening, e.g., [26], [27], [28], [29], [30], have a strong

ability in feature extraction. Hence, the relationship among

MS, PAN, and HRMS images can be well-expressed by these

methodologies. But, the other side of the coin is represented by

i) the need of training data and computing resources, ii) a lack

of robustness with respect to the changes of acquisition sensors

and scenarios under analysis, and iii) the assumption usually

made by these methods imposing that the relationship among

MS, PAN, and HRMS images learned at reduced resolution is

the same as that of at full resolution. Thus, the effectiveness

of these approaches in addressing operative scenarios is often

compromised. Besides, some advanced ML techniques, e.g.,

graph convolutional network (GCN) [31] and SpectralFormer

[32], showed their potentialities in hyperspectral image pro-

cessing [33]. These techniques can effectively extract feature

information. However, their validity for the pansharpening

problem needs to be explored and verified.

In recent years, VO methods have become more popular

thanks to their flexibility [34]. They can show a good ability

in modeling the relationship among MS, PAN, and HRMS

images. Ballester et al. in [35] assumed that the PAN image

is a linear combination of the different bands of the HRMS

image, thus proposing the P+XS model. In this category, we

can express the connections among MS, PAN, and HRMS

in several domains. For example, Deng et al. in [36] built the

model based on reproducible kernels in the Hilbert space, Fu et

al. in [37] proposed a VO model based on a local gradient

constraint, and Zhuang et al. in [38] used gradient domain

guided image filtering for both preserving image structures and

suppressing artifacts and noise. Moreover, the use of different

norms is sometimes considered. For instance, Deng et al. in

[39] proposed a pansharpening model with a hyper-Laplacian

prior using a ℓp (0 < p < 1) norm to describe the relationship

between the HRMS image and the upsampled MS image in

the gradient domain [40], instead, Wu et al. in [41] applied a

ℓ2,1 norm to constrain the HRMS image and the PAN image in

the gradient domain, again. VO methods can improve spatial

information of the original MS image without affecting the

spectral content by solving optimization problems. However,

the definition of appropriated fidelity terms is a hard task,
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Fig. 3. (a) The HRMS image; (b) Clustering of the coefficients related to the
HRMS image in (a).

resulting in a reduction of the performance when this operation

is not properly performed.

B. Contributions

A context-aware details injection fidelity (CDIF) with adap-

tive coefficients estimation is proposed in this paper to obtain

spatial structure features from the PAN image. The CDIF

describes the relationship between PAN and HRMS images in

the gradient domain. Unlike local and global approaches, we

explore the relationship based on the image context. This latter

can be drawn in an accurate way (please, see Sect. V-E3 for

more details). The PAN image retains more spatial information

than the original MS image. Thus, the CDIF can obtain

this spatial information from the PAN image thanks to the

exploitation of a context-based approach.

On the above basis, we integrate the proposed CDIF with

two conventional fidelity and regularization terms to formulate

a novel variational pansharpening model. The framework of

the proposed model is shown in Fig. 2. Moreover, we design

an algorithm that is based on the alternating direction method

of multiplier (ADMM) [42] framework to effectively solve

the proposed model. In our experiments, we compare this

approach with some state-of-the-art methods on data acquired

by different satellites, e.g., IKONOS, QuickBird, Pléiades,

WorldView-2, and WorldView-3. The proposed model has

shown good performance when applied to different satellite

data getting a remarkable robustness.

The contributions of this article are summarized as follows:

• We propose a CDIF that can draw the context-aware rela-

tionship between PAN and HRMS images with adaptive

coefficients estimation;

• A variational model including the proposed CDIF and

two conventional fidelity and regularization terms is for-

mulated for the task of remote sensing pansharpening.

Moreover, an ADMM-based algorithm is designed to

effectively solve the proposed model;

• Extensive experiments on several at reduced and at full

resolution datasets demonstrate the superiority of the

proposed approach compared with recent state-of-the-art

pansharpening techniques.

TABLE I
SOME EXPLANATIONS ABOUT THE USED NOTATION.

Notation Explanation

X ,X,x, x Tensor, matrix, vector, scalar

X ∈ R
H×W×S The HRMS image

X ∈ R
S×HW The mode-3 unfolding of X

Xi ∈ R
H×W The i-th band of the HRMS image X

Y ∈ R
h×w×S The LRMS image

Y ∈ R
S×hw The mode-3 unfolding of the LRMS image Y

P ∈ R
H×W The PAN image

P ∈ R
H×W×S The extended PAN image, P, with S bands

P ∈ R
S×HW The mode-3 unfolding of the extended PAN image

G ∈ R
S×2HW The adaptive coefficient

◦ Hadamard product

⊘ The element-wise division

∇i, i = 1, 2, 3. The gradient operation along the i-th direction

∇ =

[

∇1

∇2

]

The gradient operation along the spatial directions

∇X ∈ R
2H×W×S X in the gradient domain

∇X ∈ R
S×2HW The mode-3 unfolding of ∇X

C. Organization

The rest of the paper is organized as follows. Sect. II

briefly introduces the notation and the motivations behind this

work. In Sect. III, we give an interpretation of the proposed

model. The algorithm designed to solve the proposed model

is described in Sect. IV. Instead, Sect. V is devoted to the

experimental results with a particular emphasis on analyzing

the parameters and discussing some details about the proposed

method. Finally, concluding remarks are drawn in Sect. VI.

II. NOTATION AND MOTIVATIONS

The notation is summarized in Tab. I. Instead, the motiva-

tions behind this work are introduced in the following section.

A. Motivations

A widely used assumption performed in the literature is

that the PAN image and the HRMS image share common

spatial structures. Starting from this consideration, spatial

structures are extracted from the PAN image using several

methodologies. Many previous works consider the relationship

between the PAN and the HRMS images in a direct way. Just

for instance, the P+XS method [35] assumes that the PAN

image is the weighted sum of the HRMS bands. However,

this direct approach can lead to a reduction of the overall

accuracy of the approach. Thus, we propose to extract the

spatial information from the PAN image, but working in

the gradient domain. Information in the gradient domain

has demonstrated its usefulness for low-level vision tasks,

including pansharpening, since it can describe, in a better

way, dominant image structures to represent crucial image

features. As shown in Fig. 1, it is evident that the PAN image

approximates, in a better way, the HRMS bands in the gradient

domain with respect to the original intensity domain. Hence,

we can obtain spatial features in an easier way working in the

gradient domain than the original one. This cue motivated us
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Fig. 4. (a) A close-up of the HRMS image of the Pléiades dataset; (b)
Context-aware regions extracted from (a); (c) Scatter plot of ∇1X1 and ∇1P

for pixels belonging to Class 1 in (b); (d) A histogram of ∇1X1 ⊘ ∇1P

for pixels belonging to Class 1 in (b). It is worth to be remarked that the
distribution of ∇1X1 and ∇1P is well described by a directly proportional
function, i.e., the black dotted line in (c). For other regions and bands, there is
a similar directly proportional relationship between HRMS and PAN images
in the gradient domain. Thus, the values of ∇X⊘∇P are approximately the
same inside each region and for each band.

to explore the relationship between PAN and HRMS images

in the gradient domain, unlike what is usually proposed in the

literature.

Many previous methods are focused on the global or the

local relationship between the PAN image and the HRMS

image. For instance, Wu et al. in [41] consider a global

relationship, instead, Fu et al. in [37] investigate on a local

linear relationship among image patches. However, global

and local relationships are not generally enough to accurately

describe the complex relationship between the two input data,

see, e.g., Fig. 1 (b) where the relationship between each band

of the HRMS image and the PAN image is pixel-dependent.

Thus, in this paper, we propose a context-aware method for

the following reasons. First, we found that the relationship

between PAN and HRMS images in the gradient domain is

closely related to the image context. To corroborate it, we

chose a reduced resolution dataset to calculate the coefficients

related to the HRMS and the PAN images in the gradient

domain. Afterwards, we clustered them. As shown in Fig. 3,

there is a remarkable similarity between the clustered results

and the image context in the original data. Second, a simple

linear model can be exploited in this case to describe the

relationship between each band of the HRMS image and the

PAN image. Indeed, as shown in Figs. 4 (c) and (d), the

relationship between the PAN image and the HRMS image

is approximately linear inside the same context-aware region.

Therefore, the above-mentioned observations motivate us to

formulate the context-aware details injection fidelity.

III. THE PROPOSED MODEL

A. The Spectral Fidelity Term

Many previous methods directly up-sample the MS image

to obtain the same size image as the PAN image [43]. Thus,

a fidelity term is built based on the upsampled version of the

MS image and the PAN image. However, the spectral content

obtained by exploiting this fidelity term is often inaccurate.

For this reason, we consider a different spectral fidelity term

relied upon the following model:

XBS = Y + ξ1, (1)

where B ∈ R
HW×HW denotes a blurring matrix, S ∈

R
HW×hw represents the decimation operation, and ξ1 in-

dicates a zero-mean Gaussian noise. The blur operation is

equivalent to the convolution of the HRMS image with the

point spread function (PSF) of the MS sensor [44], [45].

According to (1), the spectral fidelity term can be expressed

as:

fspec = ‖XBS−Y‖
2
F , (2)

where ‖·‖F is the Frobenius norm.

B. The Proposed Context-Aware Details Injection Fidelity

For the pansharpening problem, fidelity terms are at the

basis of each model extracting spatial and spectral information

from the two inputs, i.e., the PAN and the MS images. Many

previous methods, e.g., [37], [40], prefer exploring the global

or local relationship between PAN and HRMS images in the

gradient domain. However, we found that the relationship

between PAN and HRMS images in the gradient domain can

be better described in a context-aware manner, see Figs. 3 and

4. Therefore, we assume that:

∇X = G ◦ ∇P+ ξ2, (3)

where ∇ denotes the gradient operation along the two spatial

directions, ∇X ∈ R
S×2HW stands for the mode-3 unfolding

of ∇X , G ∈ R
S×2HW represents the adaptive coefficients

whose estimation is related to the image context, P is the

mode-3 unfolding of the extended PAN image (obtained by

duplicating P along the spectral direction), ◦ indicates the

Hadamard product, and ξ2 is a zero-mean Gaussian noise.

Hence, the CDIF is described by the following equation:

fCDIF =
∥∥∇X−G ◦ ∇P

∥∥2
F
. (4)

The CDIF with adaptive coefficients estimation is effective

in extracting the features from the two inputs of the fusion

process.

However, we cannot directly calculate G by (3) because the

HRMS image, X, is what we want to find. Thus, the adaptive

coefficients G cannot be directly obtained by the following

relationship:

G = ∇X⊘∇P. (5)

To address this problem, we can exploit the LRMS image, Y,

which is instead known. We use an up-sampling operation to
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Algorithm 1 The estimation of the adaptive coefficients G.

Input: The upsampled version of the LRMS image, Ỹ, the

extended PAN image, P, the number of clusters, k.

1: Calculate XB via (6).

2: Calculate PB via (8).

3: for j = 1 → k do

4: Calculate gj via (10).

5: end for

Output: G collects gj for all the regions j.

simulate the inverse operation of the decimation operation, S,

and, thus, we have that:

XB ≈ Ỹ = Φ(Y), (6)

where Ỹ denotes the mode-3 unfolding of the upsampled ver-

sion of the LRMS image and Φ(·) is the upsampling function

implemented by considering a polynomial interpolator with 23

coefficients [46], commonly exploiting for pansharpening [2],

[47]. Thus, the original relationship in (3) can be reported

at reduced resolution considering the classical hypothesis

performed in developing pansharpening algorithms, that is the

“invariance among scales”. Thus, we approximately have that:

∇(XB) ≈ G ◦ ∇(PB), (7)

where

PB = MTF(P) (8)

and MTF(·) is a Gaussian filter matched with the modulation

transfer function (MTF) of the PAN image [2], [46], [48].

G links the PAN image and the HRMS image. To estimate

it, we search for similar pixels’ locations using a clustering

method, i.e., the k-means clustering algorithm. The k-means

approach needs to set the value of k (i.e., the number of clus-

ters). To balance the computational burden and the clustering

accuracy of the k-means algorithm, we set k to 5. Thus, all

the pixels in the image are divided into k regions denoted by

ωj , j = 1, 2, ..., k. As shown in Fig. 4 (c), the values of the

coefficients ∇X⊘∇P are approximately the same inside each

region and for each band, which indicates that G should have

values around 1 considering (3). Accordingly, we have that:

gj ◦ c(n) = d(n), ∀n ∈ ωj , (9)

where c(n) and d(n) are the pixels of ∇(PB) and ∇(XB),
respectively, inside region j, and gj denotes the adaptive

coefficients for the j-th region, i.e., G evaluated for the j-

th region. The overdetermined equation (9) holds for all the

pixels n belonging to the j-th region, ωj . The regression-based

method, i.e., the ordinary least-squares, is selected to solve

(9) for each spectral band. Therefore, we can estimate gj , as

follows:

gj = Reg({d(n), c(n)}n∈ωj ), (10)

where Reg(·, ·) denotes the ordinary least-squares regression

using the inputs d(n) and c(n) for all n ∈ ωj and separately

applying it to all the spectral bands, thus estimating the

coefficients of the vector gj [49].

Fig. 5. The graphic representation of (22) for a scale ratio equal to 4.
The white squares with a blank content indicate zero values. The first row
shows the processing from U to USST, which is equal to an element-wise
multiplication between D

SST and U, i.e., the second row. It is worth noting
that D

SST is produced from sparse matrices (i.e., the blue squares), whose
entries are 1 only in one position [44].

Finally, G is obtained by collecting gj (defined in (10))

for all the regions j. The adaptive coefficient process is

summarized in Algorithm 1.

C. The Total Variation Regularization

The total variation (TV) regularization is a conventional

regularization term in the field of image processing [50]. This

regularization can keep the piecewise-constant of the result.

The anisotropic TV regularization at pixel (i, j, k) is defined

as follows:

‖∇1X (i, j, k)‖1 = ‖X (i+ 1, j, k)−X (i, j, k)‖1 ,

‖∇2X (i, j, k)‖1 = ‖X (i, j + 1, k)−X (i, j, k)‖1 ,

‖∇3X (i, j, k)‖1 = ‖X (i, j, k + 1)−X (i, j, k)‖1 .

(11)

We apply TV regularization to describe the properties of the

HRMS images, i.e., the piecewise-constant and the sparsity in

the gradient domain. The TV regularization term is as follows:

fTV = β1 ‖∇1X‖
2
1 + β2 ‖∇2X‖

2
1 + β3 ‖∇3X‖

2
1 , (12)

where ∇iX is the mode-3 unfolding of ∇iX and β1, β2, and

β3 are positive parameters.

D. The Proposed Model

Combining the above-mentioned terms, the final model can

be expressed as

min
X

‖XBS−Y‖
2
F + λ

∥∥∇X−G ◦ ∇P
∥∥2
F

+ β1 ‖∇1X‖
2
1 + β2 ‖∇2X‖

2
1 + β3 ‖∇3X‖

2
1 .

(13)

This model is convex, but the direct calculation requires a huge

computational burden. Thus, we designed an algorithm based

on the ADMM [42] framework.
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IV. THE PROPOSED ALGORITHM

The ADMM [42] framework is one of the widely used

methods to solve structured convex optimization problems.

We designed a fast and effective ADMM-based algorithm

to solve the proposed model. Let us introduce the auxiliary

variables U, H1, H2, and H3, where U = XB, H1 = ∇1X,

H2 = ∇2X, and H3 = ∇3X. The optimization model can be

reconstructed as

min
X,U,H1,H2,H3

‖US−Y‖
2
F + λ

∥∥∇X−G ◦ ∇P
∥∥2
F

+ β1 ‖H1‖
2
1 + β2 ‖H2‖

2
1 + β3 ‖H3‖

2
1

s.t. U = XB, H1 = ∇1X,

H2 = ∇2X, H3 = ∇3X.
(14)

Thus, the augmented Lagrangian function is as follows

L = ‖US−Y‖
2
F + λ

∥∥∇X−G ◦ ∇P
∥∥2
F

+
η1
2

∥∥∥∥XB−U+
Λ1

η1

∥∥∥∥
2

F

+ β1 ‖H1‖
2
1 + β2 ‖H2‖

2
1 + β3 ‖H3‖

2
1

+
η2
2

∥∥∥∥∇1X−H1 +
Λ2

η2

∥∥∥∥
2

F

+
η3
2

∥∥∥∥∇2X−H2 +
Λ3

η3

∥∥∥∥
2

F

+
η4
2

∥∥∥∥∇3X−H3 +
Λ4

η4

∥∥∥∥
2

F

+ const,

(15)

where Λ1, Λ2, Λ3, and Λ4 represent the Lagrange multipliers,

and const denotes a constant that is independent from the

variables U, X, and Hi, i = 1, 2, 3. The optimization problem

is solved by dealing with five sub-problems. Each sub-problem

is solved by minimizing one variable under the condition that

the others are fixed.

A. X-sub-problem

According to (15), the X-sub-problem is expressed as the

following optimization problem:

min
X

λ
∥∥∇X−G ◦ ∇P

∥∥2
F
+

η1
2

∥∥∥∥XB−U+
Λ1

η1

∥∥∥∥
2

F

+
η2
2

∥∥∥∥∇1X−H1 +
Λ2

η2

∥∥∥∥
2

F

+
η3
2

∥∥∥∥∇2X−H2 +
Λ3

η3

∥∥∥∥
2

F

+
η4
2

∥∥∥∥∇3X−H3 +
Λ4

η4

∥∥∥∥
2

F

.

(16)

There are only Frobenius norms in the optimization model

above. Thus, it can be solved by the fast Fourier transform

(FFT) algorithm under the periodic boundary condition:

Xk+1 := F−1

(
F
(
Wk +Qk

)

F (O)

)
, (17)

with

Wk = 2λ∇T
(
G ◦ ∇P

)
+ η1U

kBT +

4∑

i=2

(
ηi∇

T
i−1H

k
i−1

)
,

(18)

Algorithm 2 The ADMM-based solver for the proposed

pansharpening model (13).

Input: The LRMS image, Y, the extended PAN image, P,

the adaptive coefficients, G, λ, β1, β2, β3, η1, η2, η3, η4,

r, kmit, and ε.

Initialization: X0 = Ψ(Y, r),U0 = Λ0
1 = 0,H0

1 = H0
2 =

H0
3 = Λ0

2 = Λ0
3 = Λ0

4 = 0, k = 0
1: while k < kmit and RelCha > ε do

2: Update Xk+1 via (17).

3: Update Uk+1 via (23).

4: Update Hk+1
i via (25), i=1,2,3.

5: Update Lagrange multiplier Λk+1
j via (26), j=1,2,3,4.

6: k = k + 1.

7: end while

Output: The fused HRMS image X

Qk = −Λ1
kBT −

4∑

i=2

(
∇T

i−1Λ
k
i

)
, (19)

O = 2λ∇T∇+ η1BBT +

4∑

i=2

ηi∇
T
i−1∇i−1 (20)

where F (·) and F−1 (·) denotes the fast Fourier transform and

its inverse transformation, respectively, (·)
T

is the transpose

operator, and the division is element-wise.

B. U-sub-problem

The U-sub-problem is as follows:

min
U

‖US−Y‖
2
F +

η1
2

∥∥∥∥XB−U+
Λ1

η1

∥∥∥∥
2

F

. (21)

The solution to this optimization problem relies on handling

the decimation operation, S. USST can be seen as an element-

wise multiplication DSST on U:

USST = U ◦DSST , (22)

as shown in Fig. 5 [44]. Thus, the method based on the

element-wise division can efficiently solve the U-sub-problem:

Uk+1 :=
2YST + η1X

k+1B+Λ1
k

2DSST + η11
. (23)

C. Hi-sub-problem

For Hi-sub-problems, the optimization problem can be

formalized as follows:

min
Hi

ηi+1

2

∥∥∥∥∇iX−Hi +
Λi+1

ηi+1

∥∥∥∥
2

F

+ βi ‖Hi‖
2
1 . (24)

The above problem can be solved by the soft-thresholding

strategy [51]. Thus, we have that:

Hk+1
i = Soft

(
Xk+1 +

Λk
i+1

ηi+1
,

βi

ηi+1

)
, (25)

where Soft (a, b) := sign(a) ·max(|a| − b, 0), i =1,2,3.
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D. Updating Multipliers

Finally, the multipliers Λ1, Λ2, Λ3, and Λ4 are updated as

follows:



Λk+1
1

Λk+1
2

Λk+1
3

Λk+1
4


 :=




Λk
1

Λk
2

Λk
3

Λk
4


+




η1
(
Xk+1B−Uk+1

)

η2
(
∇1X

k+1 −Hk+1
1

)

η3
(
∇2X

k+1 −Hk+1
2

)

η4
(
∇3X

k+1 −Hk+1
3

)


 .

(26)

The reconstructed model, i.e., (14), is convex for each variable

satisfying the hypotheses under the convergence theorem in

[42]. Therefore, the convergence of the whole algorithm can be

guaranteed. The relative change (RelCha) and the number of

iterations are used as termination conditions of the algorithm.

The RelCha is defined as:

RelCha =
∥∥Xk+1 −Xk

∥∥
F
/
∥∥Xk

∥∥
F
. (27)

The whole optimization algorithm can be summarized in

Algorithm 2, where kmit denotes the maximum iteration, r is

the scale ratio between MS and PAN images, ε is a tolerance

value, and Ψ denotes the bicubic interpolation.

V. EXPERIMENTAL RESULTS

This section is devoted to the demonstration of the effec-

tiveness of the proposed algorithm. We compare the proposed

method with some state-of-the-art methods on data coming

from different sensors, i.e., IKONOS, QuickBird, Pléiades,

WorldView-2, and WorldView-3. To make the experimental

analysis more representative, we chose methods from different

pansharpening classes. Two assessment procedures, i.e., at

reduced resolution and at full resolution, are considered in this

paper to show the high performance of the proposed approach.

All the methods in the benchmark are run on the same

software and hardware platforms, i.e., MATLAB (R2016b)

and a computer of 16Gb RAM with AMD Ryzen7-4800H,

NVIDIA GeForce GTX 1650, and Radeon Graphics 2.90 GHz.

The procedure to adjust the parameters is also described in

this section together with an ablation study in the discussions

section, even comparing the proposed approach with the direct

estimation and the equivalent methodology based on patches.

It is worth to be remarked that kmit, r, and ε are set to 100,

4, and 2× 10−5, respectively, in all the experiments.

A. Quality Metrics

There are many metrics to quantitatively measure the perfor-

mance at reduced resolution and at full resolution. We use the

peak signal-to-noise ratio (PSNR) [52], the structural similarity

index (SSIM) [52], the spectral angle mapper (SAM) [53], the

spatial correlation coefficient (SCC) [54], the erreur relative

globale adimensionnelle de synthèse (ERGAS) [55], and the

Q2n index [56], [57] (i.e., the Q4 for 4-bands MS images

or the Q8 for 8-bands MS data) for the assessment at reduced

resolution. Instead, at full resolution, where no reference image

is available for validation, the quality with no reference (QNR)

[58] index consisting of a spectral quality index, Dλ, and a

spatial quality index, Ds, is adopted.

B. Benchmark

We compare the proposed technique with some state-of-the-

art pansharpening approaches. For CS methods, we choose

for comparison the partial replacement adaptive component

substitution (PRACS) [9], the robust band-dependent spatial

detail (RBDSD) [49]. The generalized Laplacian Pyramid

(GLP) framework is a widely used approach for MRA meth-

ods. In this class, the context-based GLP (C-GLP) [59] and

the GLP with a full scale regression model (GLP-Reg-FS)

[43] are considered. Moreover, the compared methods also

include the VO method with local gradient constraints (LGC)

[37], the high-quality Bayesian pansharpening (HQBP) [60],

the pansharpening neural network (PNN) [19] and its target-

adaptive version (TPNN) [61]. It is worth to be noted that we

used the PNN and the TPNN distributed in [1] with parameters

shared by authors. All compared methods are summarized as

follows:

• CS methods: PRACS [9] and RBDSD [49].

• MRA methods: C-GLP [59] and GLP-Reg-FS [43].

• VO methods: LGC [37] and HQBP [60].

• ML methods: PNN [19] and TPNN [61].

C. The Reduced Resolution Assessment

This section is devoted to the comparison of the proposed

method with the adopted benchmark on data at reduced

resolution.

1) The Pléiades Test Case: The Pléiades dataset consists of

two images (the PAN image and the four-band MS image with

a spatial resolution of 0.5 m and 2 m, respectively) acquired

by the Pléiades satellite mission. The results are shown in

Fig. 6. The images in Figs. 6 (a), (e), and (g) introduce some

spatial artifacts. Moreover, the images in Figs. 6 (b), (h), and

(i), especially the one obtained by the proposed method, can

effectively alleviate the spectral and spatial distortions. The

residual images are depicted in Figs. 6 (k)-(t). It is easy to

see that the proposed method gets the best results compared

with the other approaches (see Fig. 6(s)). Tab. II reports

the quantitative comparison for the different methods. These

results corroborate the above-mentioned analysis showing that

the proposed method gets the best index values with respect

to the techniques in the proposed benchmark.

2) The QuickBird Test Case: The QuickBird dataset con-

sists of a PAN image (spatial resolution of 0.7 m) and four MS

bands (spatial resolution of 2.8 m) captured in the visible near-

infrared spectrum. Fig. 7 depicts the fused results obtained

by the compared approaches. Figs. 7 (a), (e), and (f) are

fuzzier than the others and characterized by an evident spatial

distortion. Instead, Fig. 7 (g) has a greater spatial accuracy,

but paying it with a relevant spectral distortion. Figs. 7 (b),

(h), and (i) have a better visual appearance compared with the

other images. By observing the small red box in the upper-left

corner of the picture, the proposed method can better represent

the edges of the houses. Moreover, the residuals in Fig. 7 point

out the superiority of the proposed method. The best result is

shown in Fig. 7 (s), especially having a look at the upper-left

area of the image. Finally, Tab. III reports the quantitative

comparison among the methods in the benchmark. Again,
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(a) PRACS [9] (b) RBDSD [49] (c) C-GLP [59] (d) GLP-Reg-FS [43] (e) LGC [37]

(f) HQBP [60] (g) PNN [19] (h) TPNN [61] (i) Proposed (j) GT

(k) PRACS [9] (l) RBDSD [49] (m) C-GLP [59] (n) GLP-Reg-FS [43] (o) LGC [37]

(p) HQBP [60] (q) PNN [19] (r) TPNN [61] (s) Proposed (t) GT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 6. Fusion results with close-ups for the compared approaches on the four-band Pléiades dataset at reduced resolution (size of the PAN image: 256 ×

256). (a)-(j) Visual results in true colors of PRACS [9], RBDSD [49], C-GLP [59], GLP-Reg-FS [43], LGC [37], HQBP [60], PNN [19], TPNN [61], the
proposed method, and the ground-truth (GT), respectively. (k)-(t) Residual images for the displayed red band.

TABLE II
QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 6. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Time(s)

PRACS [9] 33.36 0.926 4.106 0.968 3.167 0.890 0.046

RBDSD [49] 36.16 0.960 3.276 0.975 2.409 0.941 0.044

C-GLP [59] 34.33 0.937 4.456 0.963 2.980 0.958 0.336

GLP-Reg-FS [43] 35.14 0.954 3.411 0.970 2.582 0.914 0.038

LGC [37] 31.98 0.910 3.897 0.958 3.595 0.918 7.722

HQBP [60] 33.62 0.918 4.456 0.965 3.055 0.946 13.38

PNN [19] 35.36 0.952 3.245 0.973 2.505 0.969 12.04

TPNN [61] 35.24 0.950 3.292 0.973 2.511 0.968 0.065(G)

Proposed 37.35 0.965 2.884 0.981 2.040 0.978 13.44

Ideal value +∞ 1 0 1 0 1 -

it corroborates the previous analysis. Indeed, the proposed

method shows the best indexes in Tab. III.

3) The IKONOS Toulouse Test Case: The IKONOS

Toulouse dataset consists of a PAN image (spatial resolution

of 1 m) and a four-band MS image (spatial resolution of 4 m)

acquired by the IKONOS sensor in the visible near-infrared

spectrum over the city of Toulouse, France. The visual results

are shown in Fig. 8. Figs. 8 (c) and (e) suffer from spectral

distortions and Figs. 8 (e), (f), and (h) are affected by spatial

distortions. Instead, in Figs. 8 (b) and (i), the best results are

shown. Tab. IV reports the quantitative results pointing out

that the proposed approach is always in the first two positions

in the ranking.

4) The WorldView-3 Test Case: The WorldView-3 dataset

consists of two images: a PAN image with a spatial resolu-

tion of 0.31 m and an eight-band MS image with a spatial

resolution of 1.24 m acquired by the WorldView-3 sensor in

the visible near-infrared spectrum. Figs. 9 (a)-(j) show the

true colors images of the fused products. It is clear to see

that the proposed method obtains more details than the other

approaches. In Figs. 9 (a), (c), (f), and (g), some spatial details
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(a) PRACS [9] (b) RBDSD [49] (c) C-GLP [59] (d) GLP-Reg-FS [43] (e) LGC [37]

(f) HQBP [60] (g) PNN [19] (h) TPNN [61] (i) Proposed (j) GT

(k) PRACS [9] (l) RBDSD [49] (m) C-GLP [59] (n) GLP-Reg-FS [43] (o) LGC [37]

(p) HQBP [60] (q) PNN [19] (r) TPNN [61] (s) Proposed (t) GT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. Fusion results with close-ups for the compared approaches on the four-band QuickBird dataset at reduced resolution (size of the PAN image: 256 ×

256). (a)-(j) Visual results in true colors of PRACS [9], RBDSD [49], C-GLP [59], GLP-Reg-FS [43], LGC [37], HQBP [60], PNN [19], TPNN [61], the
proposed method, and the GT, respectively. (k)-(t) Residual images for the displayed red band.

TABLE III
QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 7. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Time(s)

PRACS [9] 29.51 0.797 7.964 0.885 8.701 0.758 0.071

RBDSD [49] 30.46 0.814 8.150 0.898 7.795 0.778 0.064

C-GLP [59] 30.20 0.815 7.246 0.892 8.040 0.805 0.800

GLP-Reg-FS [43] 30.43 0.821 7.774 0.901 7.799 0.784 0.075

LGC [37] 29.52 0.788 7.659 0.884 8.737 0.761 9.797

HQBP [60] 30.23 0.795 8.807 0.897 7.994 0.768 13.35

PNN [19] 30.78 0.840 7.843 0.910 7.452 0.798 0.281

TPNN [61] 31.12 0.845 7.326 0.914 7.246 0.828 0.138(G)

Proposed 31.54 0.852 6.792 0.922 6.896 0.849 12.60

Ideal value +∞ 1 0 1 0 1 -

are missing, as shown by the related close-ups in the figures.

Instead, Figs. 9 (b), (e), and (h) depict some spatial artifacts

in the vegetated area. Comparing the fused products with

the ground-truth, we can observe that the proposed method

achieves the good results. Residual images can better visualize

the differences among the compared approaches, see Figs.

9 (k)-(t). It is easy to see that the edges of the houses in

the scenario under test make several problems among the

compared approaches. However, the proposed method still

shows better results than the others, as further testified by the

numerical results in Tab. V.

D. The Full Resolution Assessment

We conduct some experiments on data at full resolution to

further assess the proposed method.

1) The IKONOS Sichuan Test Case: The IKONOS Sichuan

dataset consists of a PAN image and a 4-bands MS image

acquired by the IKONOS sensor over the Sichuan region in

China. The size of the PAN image is 512×576. The results

of the methods in the benchmark are displayed in Fig. 10.

The proposed method is still valid for these 4-bands data at
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(a) PRACS [9] (b) RBDSD [49] (c) C-GLP [59] (d) GLP-Reg-FS [43] (e) LGC [37]

(f) HQBP [60] (g) PNN [19] (h) TPNN [61] (i) Proposed (j) GT

(k) PRACS [9] (l) RBDSD [49] (m) C-GLP [59] (n) GLP-Reg-FS [43] (o) LGC [37]

(p) HQBP [60] (q) PNN [19] (r) TPNN [61] (s) Proposed (t) GT

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Fig. 8. Fusion results with close-ups for the compared approaches on the four-band IKONOS Toulouse dataset at reduced resolution (size of the PAN image:
512×512). (a)-(j) Visual results in true colors of PRACS [9], RBDSD [49], C-GLP [59], GLP-Reg-FS [43], LGC [37], HQBP [60], PNN [19], TPNN [61],
the proposed method, and the GT, respectively. (k)-(t) Residual images for the displayed red band.

full resolution. Because of the absence of a GT image, the

QNR index is calculated. As shown in Tab. VI, the proposed

method can get the best overall accuracy, as measured by the

QNR index.

2) The WorldView-2 Test Case: The WorldView-2 dataset

is a full resolution set of data consisting of a PAN and an 8-

bands MS data acquired by the WorldView-2 sensor. The MS

image is acquired in the visible near-infrared with a spatial

resolution of 1.85 m and the PAN image (depicted in Fig. 11)

has a spatial resolution of 0.46 m. The size of the PAN image

is 256×256. The fusion results are displayed in Fig. 11. The

proposed method gets better results than the others. Indeed,

by comparing it with the PAN image, the spatial details are

well preserved. About the quantitative results, our approach

gets the best values for all the considered metrics, as shown

in Tab. VII.

TABLE IV
QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 8. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Time(s)

PRACS [9] 38.98 0.935 3.476 0.922 3.833 0.851 0.347

RBDSD [49] 40.08 0.954 2.598 0.930 2.988 0.909 0.234

C-GLP [59] 38.14 0.924 3.275 0.896 3.976 0.818 2.815

GLP-Reg-FS [43] 39.66 0.950 2.848 0.924 3.177 0.896 0.182

LGC [37] 37.69 0.916 3.375 0.899 4.261 0.784 47.67

HQBP [60] 38.18 0.925 3.486 0.896 3.989 0.835 41.96

PNN [19] 39.50 0.953 3.204 0.934 3.357 0.912 0.443

TPNN [61] 38.10 0.929 3.390 0.887 4.054 0.842 0.090(G)

Proposed 40.47 0.956 2.589 0.937 2.964 0.907 47.27

Ideal value +∞ 1 0 1 0 1 -
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(a) PRACS [9] (b) RBDSD [49] (c) C-GLP [59] (d) GLP-Reg-FS [43] (e) LGC [37]

(f) HQBP [60] (g) PNN [19] (h) TPNN [61] (i) Proposed (j) GT

(k) PRACS [9] (l) RBDSD [49] (m) C-GLP [59] (n) GLP-Reg-FS [43] (o) LGC [37]

(p) HQBP [60] (q) PNN [19] (r) TPNN [61] (s) Proposed (t) GT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 9. Fusion results with close-ups for the compared approaches on the eight-band WorldView-3 dataset at reduced resolution (size of the PAN image: 256
× 256). (a)-(j) Visual results in true colors of PRACS [9], RBDSD [49], C-GLP [59], GLP-Reg-FS [43], LGC [37], HQBP [60], PNN [19], TPNN [61], the
proposed method, and the GT, respectively. (k)-(t) Residual images for the displayed red band.

TABLE V
QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG.9. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q8 Time(s)

PRACS [9] 31.55 0.837 8.547 0.927 5.677 0.929 0.157

RBDSD [49] 32.24 0.858 8.540 0.936 5.214 0.907 0.103

C-GLP [59] 32.16 0.861 7.624 0.938 5.230 0.865 1.207

GLP-Reg-FS [43] 31.89 0.845 8.385 0.932 5.479 0.876 0.132

LGC [37] 31.24 0.845 7.082 0.930 5.713 0.832 17.24

HQBP [60] 30.79 0.808 7.924 0.918 6.117 0.819 24.47

PNN [19] 30.80 0.876 9.184 0.941 5.546 0.849 0.190

TPNN [61] 32.50 0.885 6.520 0.945 4.852 0.872 0.139(G)

Proposed 33.30 0.896 6.538 0.951 4.558 0.899 28.97

Ideal value +∞ 1 0 1 0 1 -

E. Discussions

1) Analysis of Parameters: In this section, we analyze the

parameters used in the proposed approach. Although there

are many parameters, some similarities between the spatial

dimensions of the TV regularization can be found. We can

assume β1 = β2 and η2 = η3 for fine-tuning the parameters

in an easier way. For a better visualization, the metrics are

normalized by (metric−Mean(metric))/Std(metric), where

Mean(·) denotes the averaging operation and Std(·) denotes

the standard deviation operation. We only adjust one parameter

at a time, thus having all the others fixed. The test is performed

by using the Pléiades dataset. As shown in Fig. 12, the

parameters λ and η1 are more sensitive than the others. Thus,

we can fine-tune first the parameters λ and η1, then adjusting

the others. The parameters can be quickly fixed in this way,

even if we have 8 parameters in our model. Considering the

best point to balance all the different metrics, we selected the

following set of parameters to be used in our experimental

analysis: λ = 5× 10−5, η1 = 1× 10−4, β1 = β2 = 1× 10−7,

η2 = η3 = 1× 10−3, β3 = 1× 10−5, and η4 = 5× 10−8.

2) The Ablation Study: The proposed model consists of

the CDIF, the spectral fidelity term, and the conventional TV
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(a) PRACS [9] (b) RBDSD [49] (c) C-GLP [59] (d) GLP-Reg-FS [43] (e) LGC [37]

(f) HQBP [60] (g) PNN [19] (h) TPNN [61] (i) Proposed (j) PAN

Fig. 10. Fusion results with close-ups for the compared approaches on the four-band IKONOS Sichuan dataset at full resolution (size of the PAN image: 512
× 576). (a)-(j) Visual results in true colors of PRACS [9], RBDSD [49], C-GLP [59], GLP-Reg-FS [43], LGC [37], HQBP [60], PNN [19], TPNN [61], the
proposed method, and the PAN image, respectively.

(a) PRACS [9] (b) RBDSD [49] (c) C-GLP [59] (d) GLP-Reg-FS [43] (e) LGC [37]

(f) HQBP [60] (g) PNN [19] (h) TPNN [61] (i) Proposed (j) PAN

Fig. 11. Fusion results with close-ups for the compared approaches on the eight-band WorldView-2 dataset at full resolution (size of the PAN image: 256
× 256). (a)-(j) Visual results in true colors of PRACS [9], RBDSD [49], C-GLP [59], GLP-Reg-FS [43], LGC [37], HQBP [60], PNN [19], TPNN [61], the
proposed method, and the PAN image, respectively.

regularization. To analyze the role of these three different

parts, the following three sub-models are considered:

Sub-model-I:

min
X

‖∇X−G ◦ ∇P‖
2
F

+ β1 ‖∇1X‖
2
1 + β2 ‖∇2X‖

2
1 + β3 ‖∇3X‖

2
1 ,

(28)

Sub-model-II:

min
X

‖XBS−Y‖
2
F + β1 ‖∇1X‖

2
1 + β2 ‖∇2X‖

2
1

+ β3 ‖∇3X‖
2
1 ,

(29)

Sub-model-III:

min
X

‖XBS−Y‖
2
F + λ ‖∇X−G ◦ ∇P‖

2
F . (30)

We compared the three sub-models with the proposed model

on the Pléiades dataset. As shown in Tab. VIII, all the three

terms are necessary to get the highest performance and the

importance of the two fidelity terms (i.e., the CDIF and the

spectral fidelity term) is evident.

3) Analysis About the Context-aware Strategy: In this pa-

per, we proposed the CDIF to extract spatial information in

an effective way. Specifically, we estimated different adaptive

coefficients, G, for different context regions. As shown by
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TABLE VI
QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 10. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method Dλ Ds QNR Time(s)

PRACS [9] 0.029 0.249 0.730 0.419

RBDSD [49] 0.086 0.396 0.552 0.285

C-GLP [59] 0.032 0.076 0.895 3.948

GLP-Reg-FS [43] 0.096 0.274 0.656 0.184

LGC [37] 0.008 0.157 0.837 60.57

HQBP [60] 0.063 0.106 0.838 68.77

PNN [19] 0.094 0.267 0.663 0.332

TPNN [61] 0.012 0.026 0.963 0.125(G)

Proposed 0.020 0.010 0.970 54.76

Ideal value 0 0 1 -

TABLE VII
QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 11. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method Dλ Ds QNR Time(s)

PRACS [9] 0.012 0.091 0.898 0.395

RBDSD [49] 0.028 0.041 0.932 0.325

C-GLP [59] 0.025 0.090 0.887 1.386

GLP-Reg-FS [43] 0.070 0.104 0.833 0.180

LGC [37] 0.016 0.060 0.925 53.49

HQBP [60] 0.031 0.019 0.951 65.89

PNN [19] 0.121 0.047 0.839 0.323

TPNN [61] 0.041 0.029 0.931 0.164(G)

Proposed 0.011 0.014 0.975 72.80

Ideal value 0 0 1 -

TABLE VIII
QUANTITATIVE RESULTS FOR THE ABLATION STUDY ON THE PLéIADES

DATASET. (BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Time(s)

Sub-model-I 15.53 0.192 15.730 0.831 22.351 0.208 13.35

Sub-model-II 21.20 0.519 34.867 0.655 38.372 0.596 12.80

Sub-model-III 37.30 0.966 2.814 0.980 2.045 0.977 1.911

Proposed 37.35 0.965 2.884 0.981 2.040 0.978 13.44

Ideal value +∞ 1 0 1 0 1 -

(7), a direct way to estimate the adaptive coefficients is pixel-

by-pixel. Thus, the adaptive coefficients, G, can be calculated

as:

G = ∇(XB)⊘∇(PB), (31)

where ⊘ denotes the element-wise division. A second way is

by exploiting local patches. Thus, we can split the original

data in patches estimating the adaptive coefficients, G, for

each patch.

Thus, we compare the CDIF solution with the two other

methods on the Pléiades dataset, again. The quantitative results

are summarized in Tab. IX. It is easy to see that the CDIF

method shows the best performance.

4) Analysis About the Number of Clusters: The number of

clusters in a context-aware strategy using a k-means clustering

algorithm should be determined. Thus, we discuss, in this

section, about the influence on our approach of the changing
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Fig. 12. Robustness analysis (using the SAM, the SCC, the ERGAS, the Q4
as metrics) for the parameters λ, β1, β3, η1, η2, and η4 on the Pléiades
dataset.

TABLE IX
QUANTITATIVE RESULTS CONSIDERING THREE DIFFERENT STRATEGIES

TO ESTIMATE THE ADAPTIVE COEFFICIENTS, G, ON THE PLéIADES

DATASET. (BOLD: BEST; UNDERLINE: SECOND BEST)

Method PSNR SSIM SAM SCC ERGAS Q4 Time(s)

Direct 20.953 0.636 10.551 0.512 12.076 0.581 12.77

Local 34.795 0.937 3.056 0.953 2.580 0.963 12.42

Proposed 37.353 0.965 2.884 0.981 2.040 0.978 13.44

Ideal value +∞ 1 0 1 0 1 -

of the number of clusters. As shown in Fig. 13, the results

are quite stable by changing the number of clusters for the

Pléiades test case. Instead, better results can be obtained by

increasing the number of clusters for the QuickBird and the

WorldView-3 test cases. However, the better performance is

paid by an increment of the computational burden. Thus, a

good balance between the fusion accuracy and the compu-

tational burden can be found selecting a number of clusters

equal to 5.

VI. CONCLUSIONS

In this paper, we focused our attention on the CDIF with

adaptive coefficients estimation. More specifically, we applied

a clustering method to divide the pixels of an image in different

context-based regions. Afterwards, adaptive coefficients are

estimated by using a regression-based method for each region.
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Fig. 13. Robustness analysis by changing the number of clusters. The ERGAS
metric is used in (a) and (d). Instead, the Q2n is calculated in (b) and (e).
Finally, the running times are shown in (c) and (f). In the figures, WV3 and
QB stand for WorldView-3 and QuickBird, respectively.

In addition, the CDIF is combined with a conventional fidelity

term and a total variation regularization to formulate a novel

variational pansharpening model that is solved by designing an

algorithm based on the ADMM framework. The experiments

conducted both at reduced resolution and at full resolution

demonstrated the superiority of the proposed method. Fur-

thermore, some discussions have also been presented to the

readers showing how to set the parameters of our approach,

its robustness with respect to the changing of these latter, an

ablation study, and the robustness with respect to the selection

of a number of clusters in the proposed methodology. Future

developments go towards the use of fidelity terms exploring

various domains (rather than just the gradient domain) to

characterize the relationship between PAN and HRMS images.

Besides, concise and effective regularizers can be developed

to significantly enhance the capabilities of fidelity terms.
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