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AbstractÐMachine learning is influencing the literature in sev-
eral research fields, often proposing state-of-the-art approaches.
In the last years, machine learning has been explored even for
pansharpening, i.e., an image fusion technique based on the
combination of a multispectral image, which is characterized by
its medium/low spatial resolution, and a higher spatial resolution
panchromatic data. Thus, machine learning for pansharpening
represents an emerging research line that deserves further
investigations. In this work, we go through some powerful and
widely used machine learning-based approaches for pansharpen-
ing recently proposed in the related literature. Eight approaches
have been extensively compared. Implementations of these eight
methods exploiting a common software platform and machine
learning library are developed for comparison purposes. The
machine learning framework for pansharpening will be freely
distributed to the scientific community. Experimental results
using data acquired by five commonly used sensors for pansharp-
ening and well-established protocols for performance assessment
(both at reduced resolution and at full resolution) are shown.
The machine learning-based approaches are compared with a
benchmark consisting of classical and variational optimization-
based methods. The pros and the cons of each pansharpening
technique based on the training by examples philosophy are
reported together with a broad computational analysis.
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I. INTRODUCTION

Pansharpening is the process of combining a multispectral

(MS) image with a panchromatic (PAN) image to produce

an output that holds the same spatial resolution as the PAN

image and the same spectral resolution as the MS image. To

date, several techniques dealing with this problem have been

proposed. With the development of new hardware and software

solutions, machine learning (ML) approaches, especially deep

learning-based (DL) frameworks, have been significantly de-

veloped. However, a fair comparison among these techniques

(including, for instance, their development under the same

software platform using same libraries, testing on datasets

simulated in a conventional way, and so forth) is still an open

issue. To this aim, in this article, we will go through from

shallow to deep networks based on widely used and powerful

ML-based pansharpening approaches. Besides, traditional ap-

proaches, belonging to component substitution (CS), multires-

olution analysis (MRA), and variational optimization-based

(VO), will also be compared and discussed. A quantitative and

qualitative assessment will be presented in the experimental

section, exploiting protocols both at reduced resolution and at

full resolution. All the compared ML-based techniques have

been implemented using Pytorch. The source codes will be

freely distributed to the Community1. The ML framework for

pansharpening uses an uniform programming style to facilitate

the interpretability for users.

A. Background & Related Works

Recently, some books [1] and review articles [2]±[4] about

pansharpening have been published attesting to the key role

in the field of remote sensing image fusion. Besides, in recent

years, some other surveys have been published, such as [5]±

[7], confirming the increased interest in this area.

Many techniques have been applied to the task of remote

sensing pansharpening. They are usually divided into four

classes [4], i.e., CS, MRA, VO, and ML. In the paper, we

consider the first three classes as traditional methods since

the first approaches have been proposed long time ago. In the

meanwhile, several works in the related literature, such as,

[2], [4], have deeply analyzed these categories. The remaining

methods, belonging to the ML class, will be further investi-

gated in this article. In the rest of this section, we will go

through the four main categories of pansharpening algorithms

introducing the related literature.

1Project page: The link will be added after the paper acceptance.
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1) CS: CS approaches (also called spectral methods) rely

on the projection into a transformed domain of the original

MS image to separate its spatial information and substitut-

ing it with the PAN image. Many pioneering pansharpening

techniques belong to the CS class thanks to their easy imple-

mentations. Two examples of CS approaches proposed in the

early 1990s are the intensity-hue-saturation (IHS) [8], [9] and

the principal component analysis (PCA) [10], [11].

By considering the various image transformations, a variety

of techniques for incorporating PAN spatial information into

the original MS data have been developed. These methods are

usually viewed as the second generation of CS techniques,

mainly improving the injection rules by investigating the

relationship between the pixel values of the PAN image and

those of the MS channels. Representative approaches are the

Gram-Schmidt (GS) [12] and its adaptive version [13], the

nonlinear PCA [14], and the partial replacement adaptive CS

(PRACS) method [15].

Beyond the above-mentioned CS strategies, some other

recent approaches are based on i) the local application of CS

algorithms and ii) the joint estimation of both detail injection

and estimation coefficients. The former subclass is mainly

about sliding widow-based methods [13] or approaches relied

upon clustering and segmentation [16], whereas the latter one

includes band-dependent spatial-detail (BDSD) methods (see,

e.g., the BDSD [17] and its robust version [18]).

2) MRA: MRA methods apply a multiscale decomposition

to the PAN image to extract its spatial components. This class

is also referred to as spatial methods as they work into the

spatial domain. General-purpose decompositions have been

considered in the pansharpening literature, including, for in-

stance, Laplacian pyramids [19], wavelets [20], curvelets [21],

and contourlets [22]. MRA-based fusion techniques present

interesting features, such as, temporal coherence [23], spectral

consistency [2], and robustness to aliasing [24], thus deserving

further investigations in subsequent years.

Recently, researchers have considered various decompo-

sition schemes and several ways to optimize the injection

model to improve MRA-based methods. Due to its superior

performance in other image processing fields, nonlinear meth-

ods have also been introduced into pansharpening; typical

examples are least-squares support vector machines [25] and

morphological filters (MF) [26]. Moreover, thanks to an in-

depth analysis of the relationship between the obtained im-

ages [27], [28] and the influence of the atmosphere on the

collected signals, a series of advanced injection models has

been designed [27], [29], [30]. A further crucial step forward

has been the introduction of information about the acquisition

sensors, thus driving the decomposition phase [24], [31]. This

symbolized the beginning of the second generation for MRA-

based pansharpening. The application of adaptive techniques

has been proposed to deal with unknown or hardly predictable

features about acquisition sensors [32], [33] and to address the

peculiarities of some target images [34].

Hybrid technologies, combining MRA and CS methods,

see e.g., [4], have also been proposed. They can be regarded

as MRA methods [24]. Within this category, two attempts

have been considered, i.e., ªMRA+CSº (MRA followed by

CS) [35] and ªCS+MRAº (CS followed by MRA) [27], [36].

Other notable examples in this subclass include the use of

independent component analysis in combination with curvelets

[37] and the use of PCA with contourlets [38] or guided filters

[39].

3) VO: The class of VO methods focuses on the solution of

optimization models. In recent years, they have become more

and more popular thanks to the advances in convex optimiza-

tion and inverse problems, such as multispectral pansharpening

[40]±[44] and hyperspectral image fusion [45]±[47]. Most of

VO methods focus on the relationship between the input PAN

image, the low spatial resolution MS (LRMS) image, and the

desired high spatial resolution MS (HRMS) image to generate

the corresponding model. However, the problem to be solved is

clearly ill-posed, thus requiring some regularizers introducing

prior information about the solution (i.e., the HRMS). The

target image is usually estimated under the assumption of

proper co-registered PAN and LRMS images. Anyway, some

papers, see, e.g., [48], have been proposed to deal with

registration issues.

The timeline of VO techniques starts from 2006, with the

so-called P+XS method [49]. Inspired by P+XS, researchers

have proposed various regularization terms [50], [51] and new

fidelity terms [52]±[54]. In [55], authors indirectly model the

relationship between PAN and HRMS images by considering

the spectral low-rank relationship between them.

Apart from P+XS-like methods, other kinds of approaches

belonging to the VO class mainly include Bayesian methods

[56]±[59] and sparse representations [60]±[67].

4) ML: ML-based methods have shown a great ability in

fusing MS and PAN data thanks to the recent advances in

computer hardware and algorithms. Classical ML approaches

mainly include dictionary learning methods [62]±[65] and

compressive sensing techniques [60], [61]. Compressed sens-

ing is about acquiring and reconstructing a signal by efficiently

solving underdetermined linear systems. The sparsity of a

signal can be utilized to recover the signal through proper

optimization, even with considerably fewer samples than the

ones required by the Nyquist-Shannon sampling theorem. The

main stream based on compressive sensing pansharpening

views the linear observation models (both the one about the

LRMS and the one related to the PAN) as a measurement

process in compressive sensing theory, then building effective

and efficient algorithms to solve the related models under the

sparsity assumption. Dictionary learning, a special represen-

tation strategy, is mainly based on sparse coding to find a

sparse linear representation from the input data, forming a so-

called dictionary matrix and the corresponding coefficients.

The main idea of dictionary learning for pansharpening is to

calculate (trained or not trained) dictionaries of LRMS and

PAN images, then reconstructing the final HRMS pansharp-

ened image by investigating the relation between dictionaries

and the corresponding coefficients.

Recently, DL techniques have swept over almost all the

applications in remote sensing image, even including mul-

tispectral pansharpening [68]±[83] and some closely related

tasks like remote sensing image super-resolution [84]±[86] or

hyperspectral image fusion [87]±[89]. The first work using
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a DL technique for pansharpening dates back to 2015 by

Huang et al. [68], in which the autoencoder scheme inspired

by the sparse denoising task was employed and modified. In

2016, Masi et al. [69] built and trained the first fully convo-

lutional neural network (CNN) for pansharpening, also called

pansharpening neural network (PNN). The architecture mainly

consists of three convolutional layers, which is inspired by the

super-resolution CNN [90] whose task was about the single

image super-resolution problem. In the meanwhile, Zhong

et al. [70] in 2016 also proposed a new CS pansharpening

method based on the GS transform, in which a commercially

available super-resolution CNN was exploited to upsample the

MS component. After these pioneering approaches, this topic

has received the interest of many researchers, as testified by a

lots of publications, such as, [72], [76], [77], [81]±[83]. Thus,

the use of CNNs has become a common choice for DL-based

pansharpening. Unlike the PNN that has a simple network

architecture, the subsequent pansharpening architectures have

been deepened and widen, getting more and more complex

structures with many parameters to fit during the training

phase to obtain superior performance. These methods can be

found in [71], [75], [79]. Besides, another research line using

residual learning has been developed to effectively alleviate the

phenomenon of gradient vanishing and explosion, thus accel-

erating the network convergence. Hence, the residual learning

has been widely applied to pansharpening, see e.g., [73], [91],

[92]. A weak generalization ability of ML-based approaches

can easily be observed representing a key issue. Therefore,

another research line is going towards the development and

the designing of new network architectures or pre-processing

operators aiming to improve the generalization ability, see e.g.,

[73], [74].

Except for the above-mentioned DL methods, some hybrid

methods to combine traditional techniques (e.g., CS, MRA

and VO methods) and ML methods have recently become a

promising direction in the field of remote sensing pansharpen-

ing, see e.g., [47], [92]±[100]. For example, in [92], motivated

by avoiding linear injection models and replacing the details

injection phases in both CS and MRA methods, Deng et al.

design a deep convolutional neural network, inspired by the

CS and MRA schemes, to effectively manage the nonlinear

mapping and extract image features, thus yielding favorable

performance. In addition, with the development of DL and

VO techniques, the literature is also presenting combinations

of these two classes. Three strategies have been developed: the

unfolding VO model [97], the plug-and-play operator [93], and

the VO+Net mixed model [47], [96], which can also be viewed

as belonging to the VO class. The outcomes of these latter

approaches can benefit of both the advantages of DL and VO

classes, e.g., the good generalization ability of VO methods

and the high performance of DL approaches. Specifically,

in [94], Shen et al. incorporate the pansharpened outcomes

learned from the DL model into a VO framework. This strategy

is simple but quite effective in practical applications. Besides,

Xie et al. in [95] also take the similar strategy as [94] for the

task of hyperspectral pansharpening, still producing promising

outcomes. Different from the strategy in [94], [95], new DL

network architectures propose to unfold traditional VO models.

In [97], Feng et al. present first a two-step optimization

model based on spatial detail decomposition, then unfolding

the given model under the gradient descent framework to

further construct the corresponding end-to-end CNN architec-

ture. Similarly to [97], Xu et al. in [98] propose a model-

driven deep pansharpening network by gradient projection.

Specifically, two optimization problems regularized by the

deep prior are formulated. The two problems are solved by

a gradient projection algorithm, in which the iterative steps

are constructed by two network blocks that will be effectively

trained in an end-to-end manner. Moreover, Cao et al. in [99]

and Yin et al. in [100] present sparse coding based strategies

to unfold the optimization models into subproblems which are

replaced by learnable networks.

Recently, unsupervised learning strategy is introduced to the

field of pansharpening, see e.g., [101]±[103]. Unsupervised

learning explores hidden patterns and features without any

labeled data, which means that there is no need to simulate

datasets with labels for training. It is a direct way for the

network training but strongly dependent on the effectiveness

of the loss function. In [101], Ma et al. propose a novel

unsupervised pansharpening approach that can avoid the de-

grading effect of downsampling high-resolution MS images.

Also, it considers the GAN strategy getting excellent results,

in particular, on full-resolution data. Furthermore, Qu et al. in

[103] present a self-attention mechanism-based unsupervised

learning technique for pansharpening. This method can address

some challenges, e.g., poor performance on full-resolution

images and wide presence of mixed pixels. In [104], leveraging

on the target-adaptive strategy introduced in [74], Ciotola et

al. present an unsupervised full-resolution training framework,

demonstrating its effectiveness on different CNN architectures

[71], [73], [74].

Moreover, the generative adversarial network (GAN) tech-

niques [105] have recently been applied to the field of image

processing. GAN is mainly about learning generative models

via an adversarial process; thus, two models are required to be

trained simultaneously, i.e., generative models to capture data

distribution and adversarial models to compute the probability

of a sample to belong to training data or not. Especially, GANs

have also been applied to the task of pansharpening, see e.g.,

[78], [101], [106]±[110]. In [78], Liu et al. utilize first a GAN

to address the task of remote sensing pansharpening, called

PSGAN. This method mainly contains a two-stream fusion

architecture consisting of a generator to produce the desired

HRMS image and a discriminator to judge if the image is

real or pansharpened. Instead, in [110], to further boost the

accuracy, the authors propose a GAN-based pansharpening

framework containing two discriminators, the first one dealing

with image textures and the second one accounting for image

color.

Finally, Tab. I gives an overview about the four classes

described above focusing on some aspects, such as, the spatial

fidelity, the spectral fidelity, the generalization ability, the

running time, and the model interpretability. Just for example,

it is easy to remark that ML methods generally get the best

spatial and spectral performance, but requiring that training

and testing data have similar properties (e.g., a similar geo-
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TABLE I: An overview about the pros and the cons of the

four pansharpening classes. Weak: ⋆; Moderate: ⋆⋆; Strong:

⋆⋆⋆.

graphic area and acquisition time).

B. Contribution

This paper is focused on a deep analysis of the emerging

class of pansharpening algorithms based on ML paradigms. A

complete review of the related literature has been presented.

Afterwards, the paper will rely upon the critical comparison

among state-of-the-art approaches belonging to the ML class.

To this aim, a toolbox exploiting a common software platform

and open-source ML library for all the ML approaches has

been developed. We would like to stress that this is the only

way to get a critical comparison of ML approaches. In fact,

by changing software platforms and/or ML libraries (e.g.,

Tensorflow or Caffe), we have different build-in functions,

thus getting different behaviors (e.g., a different initialization

of the weights of the network) of the same algorithm coded

in a different environment.

To overcome this limitation, a Python toolbox based on

the Pytorch ML library (widely used for applications such

as computer vision and natural language processing) has

been developed. The toolbox will be freely distributed to

the scientific community related to ML and pansharpening.

Eight state-of-the-art approaches have been selected and im-

plemented in the common framework following the original

implementations proposed in the related papers. A tuning

phase to ensure the highest performance for each approach

has been performed. This latter represents a mandatory step to

have a fair comparison because the eight approaches have been

originally developed on different software platforms and/or

using different ML libraries. A broad experimental analysis,

exploiting different test cases, has been conducted with the

aim of assessing the performance of each ML-based state-of-

the-art approach. Widely used sensors for pansharpening have

been involved (i.e., WorldView-2, WorldView-3, WorldView-

4, QuickBird, and IKONOS). The assessments both at reduced

resolution and at full resolution have been exploited. Two

test cases at reduced resolution have been considered. The

first test is about the use of a part of the training set not

used to this aim. However, by taking into account a testing

area very close to the ones used in the training phase, we

have a sort of coupling among data (e.g., sharing features

with the training samples like the atmospheric composition

and conditions). Thus, to test the ability of the networks

to work in a real scenario, we consider a second test case

where the images are acquired by the same sensor but on

a different area and at a different time with respect to the

data used for the training. The comparison among ML-based

approaches has also been enlarged to state-of-the-art meth-

ods belonging to different paradigms (i.e., CS, MRA, and

VO) exploiting standard implementations [4]. Finally, a wide

computational analysis is presented to the readers. Execution

times for training and testing, convergence analysis, number

of parameters, and so forth have been highlighted. Moreover,

the generalization ability of the networks with respect to the

change of the acquisition sensor has also been discussed.

C. Notation & Organization

The notation is as follows. Vectors are indicated in bold

lowercase (e.g., x) with the i-th element indicated as xi. Two-

and three-dimensional arrays are expressed in bold uppercase

(e.g., X). An MS image X = {Xk}k=1,...,N is a three

dimensional array composed by N bands indexed by the

subscript k = 1, . . . , N ; accordingly, Xk indicates the k-th

band of X. The PAN image is a 2-D matrix and will be

indicated as P. MS is the MS image, M̃S is the MS image

upsampled to the PAN scale, and M̂S is the fused image. The

other symbols will be defined within the paper upon need.

The rest of the paper is organized as follows. Sect. II shows

a brief overview of CS, MRA, and VO approaches detailing

the ones exploited in this paper. Sect. III is about the ML-based

methods belonging to the developed toolbox and compared in

this work. Finally, experimental results showing performance

on several datasets acquired by some of the most used sensors

for pansharpening are reported in Sect. IV together with a

computational analysis and some final remarks. Concluding

remarks are instead drawn in Sect. V.

II. CS, MRA, AND VO: A BRIEF OVERVIEW

In this section, we will go through the component sub-

stitution (CS), the multi-resolution analysis (MRA), and the

variational optimization-based (VO) categories providing a

brief overview for each class together with some instances of

methods that have been exploited in this paper for comparison

purposes.

The methods belonging to the CS class rely upon the

projection of the MS image into a new space, where the spatial

structure is separated from the spectral information [111].

Afterwards, the transformed MS image can be sharpened

by substituting the spatial component with the PAN image.

Finally, the sharpening process is completed by the inverse

transformation to come back to the original space. CS methods

get high fidelity in rendering details. Moreover, they are

usually easy to implement and with a limited computational

burden [2], [4].

Under the hypotheses of linear transformation and the

substitution of a unique component, the CS fusion process

can be simplified obtaining a faster implementation described

by the following formulation [112]

M̂Sk = M̃Sk +Gk · (P− IL) , (1)

in which M̂Sk is the k-th fused band, M̃Sk is the upsampled

image to the PAN scale, P is the PAN image, Gk is the injec-

tion gain matrix, the matrix multiplication is meant pointwise,
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Fig. 1: Flowchart of CS-based methods.

and IL is the so-called intensity component obtained by a

weighted average of the MS spectral bands with weights wk.

Fig. 1 shows a flowchart describing the general fusion

process for CS-based approaches. We can note blocks about

the upsampling, the computation of IL, the spectral matching

between P and IL, and the detail injection according to (1).

Setting the injection gains in (1) as the pixel-wise division

between M̃Sk and IL, we have a multiplicative injection

scheme (the widely known Brovey transform [113]) [114]. An

interpretation of the Brovey transform in terms of the radiative

transfer model led to the development of a haze-corrected

version, called BT-H, recently proposed in [30]. The Gram-

Schmidt (GS) orthogonalization procedure has also been used

for pansharpening [115]. This procedure exploits the intensity

component, IL, as the first vector of the new orthogonal

basis. Pansharpening is obtained thanks to the substitution of

IL with the PAN image before inverting the transformation.

Several versions of GS are achieved by varying IL. The

context-adaptive GSA (C-GSA) is obtained by applying an

adaptive GS (where the IL is got by a weighted average

of the MS bands using proper weights [116]) separately to

each cluster [16]. The band dependent spatial detail (BDSD)

framework, proposed for pansharpening in [17], exploits an

extended version of (1) optimizing the minimum mean squared

error (MMSE) for jointly estimating the weights and the scalar

gains [17]. A physically constrained optimization (i.e., the

BDSD-PC) has recently been proposed in [117].

MRA methods extract the PAN details exploiting the dif-

ference between P and its low-pass spatial version, PL. The

fused image is obtained as follows

M̂Sk = M̃Sk +Gk · (P−PL) . (2)

These different approaches are characterized by the way in

which they calculate PL and to estimate the injection gains

Gk. In a very general setting, PL is achieved through an

iterative decomposition scheme, called MRA.

MS

Interpolation
to PAN scale

P

Equivalent
Filter

PL

↓R↑R

+•

+

Computation of
Injection Gains

M̂S

M̃Sk

P+Gk

M̂Sk

−

(optional)

Fig. 2: Flowchart of MRA-based methods. Some MRA ap-

proaches skip the dashed box.

The general fusion scheme is depicted in Fig. 2. We can

remark blocks devoted to the upsampling, the calculation of

the low-pass version PL of the PAN image based on the

resolution ratio R, and the computation of the injection gains

Gk. MRA algorithms reduce the spectral distortion but often

paying it with a greater spatial distortion [2], [4]. Among all

the MRA approaches, one subcategory very debated is the

one based on the generalized Laplacian pyramid (GLP). In

this case, PL can be performed with multiple fractional steps

utilizing Gaussian low-pass filters to carry out the analysis

steps [19]. The corresponding differential representation is

called Laplacian pyramid. However, high performance can

be obtained with a single Gaussian low-pass filter (tuned to

closely match the MS sensor’s modulation transfer function

(MTF) [31]) with a cut frequency equal to 1/R (where R is

the resolution ratio between PAN and MS) and decimating by

R [4]. In the literature, many instances of GLP approaches,

relying upon filters that exploit the MS sensor’s MTF, have

been proposed by changing the way to estimate the injection

coefficients. We will exploit in this paper the high-pass mod-

ulation (HPM) injection [114], i.e., setting the injection gains

as the pixel-wise division between M̃Sk and PL, adopting a

spectral matching procedure based on the multivariate linear

regression between each MS band and a low-pass version of

the PAN image, i.e., the MTF-GLP-HPM-R [118]. Moreover,

we will also consider the MTF-GLP-FS that is based on an

at full scale (FS) fusion rule, thus removing the hypothesis of

invariance among scales for the coefficient injection estimation

phase [119].

The methods in the VO category relied upon the definition

of an optimization model. We will exploit two instances of

techniques belonging to the concepts of sparse representation

and total variation. In [66], an example of sparse representa-

tion for pansharpening is provided. In particular, the authors

propose to generate the spatial details by using a dictionary of

patches. Specifically, the dictionary Dh at full scale is com-

posed of patches representing high spatial resolution details.
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The coefficients α of the linear combination are estimated by

solving a sparse regression problem. Under the hypothesis of

scale invariance, the coefficients can be estimated thanks to a

reference image. The problem to solve is as follows

α̂ = arg min ||α||0 such that y = Dl
α, (3)

where y is a patch, ||·||0 is the l0 norm, and Dl is a dictionary

of details at reduced resolution. The estimated coefficients will

be used for the representation of the full resolution details (i.e.,

yh = Dh
α).

The cost function for the total variation (TV) pansharpening

method in [50] is given by the following TV-regularized least

squares problem

J(x) = ∥y −Mx∥2 + λTV(x), (4)

where y = [yT
MS ,y

T
PAN ], yMS and yPAN are the MS in

matrix format and the PAN in vector, M = [MT
1 ,M

T
2 ], M1

is a decimation matrix, M2 reflecting that the PAN image

is assumed to be a linear combination of the MS bands, λ
is a weight, and TV(·) is an isotropic TV regularizer. The

pansharpened image x is obtained by minimizing the convex

cost function in (4).

III. A BENCHMARK RELIED UPON RECENT ADVANCES IN

ML FOR PANSHARPENING

ML for pansharpening is mainly about the DL philosophy,

as already pointed out in Sect. I-A. The approaches in this

class strongly depend on the reduced resolution training set

(or the full resolution one if belonging to the unsupervised

paradigm). The testing datasets are exploited to get the net-

work outcomes by using the trained models. In what follows,

we chose eight representative supervised ML pansharpening

approaches, i.e., deep CNN architecture for pansharpening

(PanNet) [73], deep residual neural network for pansharpening

(DRPNN) [71], multiscale and multidepth CNN architecture

for pansharpening (MSDCNN) [75], bidirectional pansharpen-

ing network (BDPN) [79], detail injection based convolutional

neural network (DiCNN) [91], pansharpening neural network

(PNN) [69], advanced PNN using fine-tuning (A-PNN-FT)

[74], and pansharpening by combining ML and traditional

fusion schemes (FusionNet) [92], for a fair and critical com-

parison under the same training and testing data. It is worth

to be remarked that we did not select unsupervised learning

or GAN-based methods for comparison purposes since they

can require different training datasets (with respect to the use

ones) invalidating the fair comparison.

A. PanNet

In [73], Yang et al. design a deep CNN architecture,

called PanNet, for the task of pansharpening relying on

the high-frequency information inputs from LRMS and PAN

images. The given PanNet architecture considers domain-

specific knowledge and mainly focuses on preserving spectral

and spatial information in remote sensing images. Overall,

the network architecture of the PanNet upsamples first the

LRMS image to the PAN scale aiming to keep the spectral

information. Besides, a deep residual network is employed

to learn spatial mapping to get the spatial details for the

fused image. Specifically, the deep residual network mainly

contains a pre-processing convolutional layer that increases

the feature channels and a post-processing convolutional layer

that reduces the channels to the spectral bands. Furthermore,

four ResNet blocks [120] with a skip connection are employed

to deepen the network depth for a better feature extraction.

Especially, the high-frequency spatial information of LRMS

and PAN images, which is obtained by using simple high-pass

filters, is concatenated and exploited into the deep residual

network for its training. With this step, we can learn accurate

spatial details that will be added to the LRMS to yield the final

HRMS product. The output of the network is then compared

with the GT image using an ℓ2 loss function. By Adam

optimizer with momentum, the weights on all the layers can

be suitably updated. This strategy focusing on high-frequency

content is valid, even getting a good generalization ability.

The details about the PanNet (including architecture, hyper-

parameter setting, and so forth) are described in Fig. 3.

The idea of the PanNet is to design the network architecture

on the high-pass domain rather than the image domain that

is commonly used for most of DL-based techniques. The

domain-specific high-pass strategy can foster the network

generalization capability since images obtained from different

sensors have similar distributions for high-frequency informa-

tion. Also, since most of high-pass details are close to zero,

there is a reduction of the mapping space leading to an easier

training of the network. In summary, the PanNet demonstrates

that the training and generalization abilities of a network can

be improved focusing on a specific domain, i.e., the high-pass

domain, instead of the original one.

B. DRPNN

Wei et al. [71] proposed a deep residual neural network

named DRPNN to address the task of pansharpening as shown

in Fig. 4. They believed that a deeper CNN with more filtering

layers tends to extract more abstract and representative fea-

tures, and thus a higher prediction accuracy is expected. How-

ever, due to the gradient vanishing problem, weights of shal-

low layers cannot be optimized via backpropagation, which

prevents the deep network from being fully learned. Deep

residual learning [120] is an advanced method for solving

this problem, in which the transformation F(X) ≈ CNN(X)
is replaced with F(X) − X ≈ RES(X) by setting a skip

connection between the separate layers, which allows them to

add more layers to the network and boost its performance.

In DRPNN, they built a deep residual skip before and after

the convolutional filtering framework contains ten layers with

all the kernel sizes set to 7 × 7. Multispectral bands to be

fused are interpolated to the PAN scale and then concatenated

with the PAN image to form an input cube. After the deep

residual feature extraction, a restoration layer with N groups

of convolutional filters is employed to obtain the fused images.

The outcome is used to calculate the ℓ2 loss with the GT,

and then the stochastic gradient descent (SGD) algorithm is

utilized to train the DRPNN, which costs 300 epochs. Besides,

they set different learning rates for the first ten layers and the
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Fig. 3: Flowchart of the PanNet exploiting the ℓ2 loss function. Note that (3× 3, 64) means that the size of the convolutional

kernel is 3× 3 with 64 channels, and ReLU is the activation function, i.e., rectified linear unit. The notations c⃝ and +⃝ stand

for the concatenation and summation, respectively. The Php and MShp are the high-pass filtered versions of the P and MS

images, respectively. The Conv. block represents a convolutional layer. The upsampling is done using a 23-tap polynomial

interpolator [121]. The definitions and notations in the subsequent network architectures are the same as those ones, thus we

will not introduce them once again.

last layer, which are 0.05 and 0.005, respectively, while the

momentum is fixed at 0.95. Note that after every 60 epochs,

the learning rate would fall by half.

The deep residual skip ensures that the model learns the

difference between input and output, leading to quick and

accurate training. The strategy of the skip connection is also

used in the PanNet, published in the same period as DRPNN.

DRPNN can get competitive outcomes thanks to its usage of

convolution kernels with larger size, i.e., 7×7, which can cover

a larger area. However, due to these larger kernels, DRPNN

has a relative high parameter amount.

C. MSDCNN

In [75], Yuan et al. proposed a multiscale and multi-depth

CNN, called MSDCNN, for pansharpening. As shown in

Fig. 5, MSDCNN extracts deep and shallow features using

different convolutional filters with receptive fields of multiple

scales and finally integrates them to yield a better estimation.

In pansharpening, the coarse structures and texture details are

both of great importance for ideal restoration. At the same

time, the sizes of the ground objects vary from very small

neighborhoods to large regions containing thousands of pixels,

and a ground scene can cover many objects with various

sizes. Recalling that multiscale features differently response

to convolutional filters with different sizes, they proposed a

multiscale block containing three parallel convolutional layers

with kernel sizes of 3, 5, and 7. Furthermore, they employed a

short skip connection for each multiscale block, which forms

the multiscale residual block (MSResB in Fig. 5). Passing the

input image cube through the deep extraction branch, the deep

features CNNd can be extracted, which have been reduced

to the same spectral dimensionality as the ideal multispectral

images. On the other hand, the shallow features CNNs are

yielded by a shallow network branch with three convolutional

layers, where the kernel sizes are 9, 1, and 5, respectively.

Furthermore, the output feature numbers of the convolutional

layers in both the branches are reduced as the depth increases.

The MSDCNN is also trained for 300 epochs using the ℓ2
loss function with the SGD optimization algorithm, where the

momentum µ is equal to 0.9 and the learning rate ϵ is 0.1.

Overall, the MSDCNN benefits from several features ob-

tained by convolving one feature with kernels having different

sizes (called multiscaled operation). By this strategy, different

features with various receptive fields are concatenated to im-

prove the feature extraction. Beyond the multiscaled operation

in the so-called deep branch, the other branch conducts three

plain convolutions to get the so-called shallow features. We

think the plain convolution layers in the shallow branch could

not be necessary since they make the network outputs from

the two branches too flexible, resulting in an uncertainty in

learning deep and shallow features.

D. BDPN

In traditional MRA-based pansharpening methods, multi-

scale details of the PAN image are used to improve the

resolution of the MS image. The accuracy of multiscale

details is directly related to the quality of the pansharpened

image. Insufficient details lead to blurring effects. Instead,

excessive details result in artifacts and spectral distortions. To

more accurately extract the multiscale details of the HRMS

image, Zhang et al. [79] propose a two-stream network for

pansharpening, which is called BDPN. The network adopts a

bidirectional pyramid structure to separately process the MS

image and the PAN image, following the general idea of mul-

tiresolution analysis. Multilevel details are extracted from the

PAN image and injected into the MS image to reconstruct the

pansharpened image. The detail extraction branch uses stacked

ResBlocks to extract details while the image reconstruction

branch uses subpixel convolutional layers to upsample the MS

image. The multiscale structure helps the network to extract
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Fig. 5: Flowchart of the MSDCNN using the ℓ2 loss function, in which MSResB is the multi-scale residual block. Besides,

CNNd and CNNs stand for deep and shallow features, respectively.

multiscale details from the PAN image. It allows part of the

computation to be located at reduced resolution features, thus

reducing the computation burden. In the network’s training,

a multiscale loss function is used to accelerate the rate of

convergence. At the beginning, reconstructed images at all the

scales are supervised. As the training continues, the weight of

the low resolution scales gradually declines. Readers can find

the detailed flowchart of the BDPN in Fig. 6.

Although the idea of a bidirectional structure has been

proposed in other multi-resolution fusion applications, such

as, the deep image super-resolution (SR) [122], the BDPN

used it first for pansharpening. However, because of the usage

of too many multiscaled convolution layers, the BDPN has

a large number of parameters, similarly to the DRPNN. This

disadvantage can be alleviated by exploiting more effective

convolutions.

E. DiCNN

He et al. [91] proposed a new detail injection procedure

based on DL end-to-end architectures to learn the MS details

whilst enhancing the physical interpretability of the pansharp-

ening process. Two detail injection-based CNN models are

implemented following the three-layer architecture for super-

resolution proposed by Dong et al. [90]. Fig. 7 provides a

graphical overview of the network used in this work based on

the first proposed model in [91].

The adopted DiCNN receives as input the concatenation

along the spectral dimension of the PAN image, P, and the

MS image upsampled to the PAN scale, M̃S. As a result,

the volume G ∈ R
H×W×N+1 = (M̃S,P) is obtained as

input, where H × W indicates the spatial dimensions and

N the number of spectral bands of the MS plus the PAN

image. This input volume G is processed by a stack of three

3 × 3 convolution layers, where the first and second layers

are followed by the non-linear activation function ReLU to

explore the non-linearities of the data. In this regard, the

stack of convolution layers exploits the relations between

the upsampled MS and PAN images to obtain those MS

details that can enhance the original MS data, involving the

mapping function D̂(G;θ) that obtains the details of the MS

fused image from the inputs G with θ representing the set

of the learnable parameters of the convolutions. Moreover,

the DiCNN employs residual learning to enhance the feature

extraction process by propagating only the upsampled MS

image through a shortcut connection. This not only maintains

the same number of spectral bands between the shortcut data

and the obtained details (avoiding the implementation of an

auxiliary convolution within the shortcut), but it also provides

an explicit physical interpretation. Indeed, in contrast to other

deep models that work as black boxes, the DiCNN introduces

a domain-specific structure with a meaningful interpretation.

As a result, the output D̂(G;θ) can be directly exploited

to enhance the upsampled MS image to produce the desired

HRMS image. In this sense, the main goal of the DiCNN is to

minimize the loss function l(θ) defined by (5), with the aim

of appropriately adjusting the network parameters that best fit
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the data:

l(θ) =∥ D̂(G;θ) + M̃S−Y ∥2F

=
1

Np

Np∑

i=1

∥ D̂(i)(G(i);θ) + M̃S
(i)

−Y(i) ∥2F ,
(5)

where Y denotes the ground-truth image, Np is the number of

the total input patches, i is the index of the current patch, and

∥ · ∥F is the Frobenius norm. This guarantees that the DiCNN

approach can directly learn the details of the MS data.

Overall, the strategy of the skip connection, as for PanNet,

DRPNN, and MSDCNN, is employed again in the DiCNN

to have a fast convergence with an accurate computation.

Thanks to the use of only three convolution layers, DiCNN

involves significantly fewer network parameters (see also Tab.

XIX), in the meanwhile holding competitive pansharpened

performance.

F. PNN

The pansharpening convolutional neural network model by

Masi et al. [69], called PNN, is among the first pansharpening

solutions based on CNNs. Inspired by the super-resolution

network for natural images proposed in [90], PNN is a very

simple three-layer fully-convolutional model. Tab. III reports

the main hyper-parameters related to the PNN implementation

for the proposed toolbox where, differently from the original

version, they have been set equal for all sensors, with the

obvious exception for the number of input and output channels

of the whole network that are related to the number of the

spectral bands of the MS image. The three convolutional layers

are interleaved by rectified linear unit (ReLU) activations.

Prior to feed the network, the input MS component is upscaled

to the PAN size via 23-tap polynomial interpolation and

concatenated with the PAN to form a single input data cube.

Although the PNN exploits the CNN architecture for single

image SR in [90], just extending it to the pansharpening task,

this approach holds a quite important role in the DL-based

pansharpening community. In fact, it is the first attempt to

address the pansharpening issue using a fully convolutional

neural network, resulting in an important benchmark for

subsequently developed DL-based pansharpening techniques.

Since the main structure of the PNN only involves three simple

convolution layers without any skip connection, its parameters

are not significant getting a relatively slow convergence.

G. A-PNN-FT

Two years later, Scarpa et al. [74] proposed an advanced

version of PNN which presents three main innovations: resid-

ual learning, ℓ1-loss, and a fine-tuning for target adaptation.

Hereinafter, this solution will be referred to as A-PNN-FT.

Residual learning [120] is an important innovation in deep

learning, introduced with the primary purpose of speeding-up

the training process for very deep networks, as it helps prevent-

ing vanishing gradient problems. However, it has soon demon-

strated to be a natural choice for resolution enhancement [123].

In fact, the desired super-resolved image can be viewed as
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composed of its low and high-frequency components, the

former being essentially the input low-resolution image, the

latter being the missing (or residual) part to be actually

restored. Residual schemes naturally address super-resolution

or pansharpening problems in light of this partition, avoiding

the unnecessary reconstruction of the whole desired output

and reducing the risk of altering the low-frequency content

of the image (i.e., spectral distortion). As a matter of fact,

the majority of the recent DL pansharpening models embed

residual modules [71], [73], [74], [76], [78], [79]. Specifically

for A-PNN/-FT, a single input-output skip connection added

to the PNN model converts it in a global residual module as

highlighted by the semitransparent blocks of Fig. 8, where it

is summarized the overall A-PNN-FT algorithm. Solid line

connections refer to the fine-tuning phase. Differently from

the usual training where data samples do not come from the

test images, in fine tuning the same test image is used for

parameters update as shown in figure. This makes perfectly

sense thanks to the self-supervised learning allowed by the

resolution downgrade process that generates labeled samples

from the input itself. Further details about the training (pre-

training for A-PNN-FT) of all the toolbox models will be

later provided in a dedicated section. When fine-tuning starts,

the model parameters Φ0 correspond to those computed in

pre-training and they are associated to what is referred to as

A-PNN. After a prefixed number of tuning iterations (50 by

default) on the target (rescaled) test image, the parameters are

frozen (say Φ∞) and eventually (follow dashed lines) the full-

resolution test image can be pansharpened using the ªrefinedº

A-PNN, that is A-PNN-FT.

H. FusionNet

The traditional approaches such as CS and MRA have

achieved competitive outcomes in pansharpening. Neverthe-

less, these traditional methods are under the assumption of

linear injection models, which can be unsuitable according

to the real spectral responses for sensors typically used in

pansharpening. This motivates utilizing nonlinear approaches

such as ML to avoid the limitation of the above-mentioned

linear injection models. In [92], Deng et al. exploit the

combination of ML techniques and traditional fusion schemes,

i.e., CS and MRA, to address the task of pansharpening. The

overall network architecture, called FusionNet, estimates the

nonlinear injection models that rule the combination of the

upsampled LRMS image and the extracted details exploiting

the two philosophies. In particular, the extracted details can

be calculated by directly inputting the difference between the

duplicated PAN image and the upsampled LRMS image into

a deep residual network. This strategy of directly differencing

the duplicated PAN and the upsampled LRMS images is

simple. However, it can preserve the latent spatial and spec-

tral information from PAN and LRMS images, respectively.

Besides, the extracted details are taken into account in a pre-

processing convolutional layer to increase the feature channels

and then passing four ResNet blocks to deepen the network

depth for a better feature extraction. The generated features are

convoluted by a post-processing layer to get the HRMS details

MS
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to MS scale
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Fig. 8: Top-level flowchart of the A-PNN-FT. Reduced reso-

lution adaptation (solid lines) and full resolution test (dashed)

phases. The core A-PNN model is highlighted by opaque

blocks and differs from PNN for the introduction of a skip

connection (red lines) and the ℓ1 loss which replaces an ℓ2.

The symbol ↓ indicates a resolution downgraded version of

the image where applied.

consisting of the same LRMS spectral band number. Moreover,

the learned HRMS details are directly added to the upsampled

LRMS to yield the HRMS outcome. FusionNet exploits an

Adam optimizer with momentum and a fixed learning rate to

train the network. The conventional ℓ2 function is selected

as loss function to measure the distance between the HRMS

outcome and the GT image. Readers can refer to Fig. 9 for

further details about the FusionNet approach.

Thanks to the combination of ML techniques and traditional

fusion schemes to design the network architecture, FusionNet

can have a better and faster regression between inputs and

labels getting competitive results when training and testing

datasets have similar structures. However, since FusionNet is

also built by plain convolution layers like PNN and DiCNN

(even with skip connection), its network generalization is

weaker than PanNet and A-PNN-FT, which are based on

specific operations, such as, learning in the high-pass domain

and fine-tuning.

IV. EXPERIMENTAL RESULTS

This section is devoted to the description of the experimen-

tal results. The quality assessment protocols will be briefly

detailed together with the datasets and the benchmark used

for comparison purposes. Afterwards, the generation of the

training data and the parameters tuning will be provided.

Finally, the results both at reduced and full resolutions will

be summed up including a discussion about computational

burden, convergence, and other peculiarities of ML-based

approaches.
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A. Quality Assessment of Fusion Products

Quality assessment of pansharpening methods and data

products is a very debated problem. Wald’s protocol [124]

gives an answer to this issue by introducing two main proper-

ties (i.e., consistency and synthesis) that a fused product should

satisfy.

To verify the synthesis property, a reduced resolution assess-

ment is considered. Thus, the original MS and PAN images are

degrading by spatially filtering them to a reduced resolution.

Then, the pansharpening algorithm is applied to these data and

the outcome is compared with the original MS data playing the

role of the reference image. The more the similarity between

the fused and the reference images, the higher the performance

of the pansharpening approach. Clearly, the choice of the filters

to spatially degrade the MS and PAN products could bias the

assessment. Generally, spatial filters matching the MS sensor’s

modulation transfer functions (MTFs) are exploited to degrade

the MS image. Instead, ideal filters are adopted to reduce the

resolution of the PAN image [4]. The similarity between the

fused and the reference images is measured by exploiting

the following multidimensional indexes: the spectral angle

mapper (SAM) [125], the relative dimensionless global error

in synthesis (ERGAS) [126], and the multi-band extension of

the universal image quality index, Q2n [127]. The ideal results

are 0 for SAM and ERGAS and 1 for Q2n.

Unfortunately, the sole reduced resolution assessment is not

enough to state the superiority of a pansharpening algorithm.

Indeed, an implicit hypothesis of ªinvariance among scalesº

is performed when working at reduced resolution. Thus, even

though this assessment is very accurate, it is based on the

validity of the above-mentioned assumption. To this aim, the

full resolution assessment is also considered. In this case, no

hypothesis is done, but the lack of a reference image reduces

the accuracy in the performance assessment. In this paper, the

hybrid quality with no reference (HQNR) index is used. This

latter borrows the spatial distortion index, DS , from the quality

with no reference (QNR) [128], and the spectral distortion

index, Dλ, from Khan’s protocol [129]. The two distortions

are combined as follows:

HQNR = (1−Dλ)
α (1−DS)

β , (6)

where α = β = 1. Ideal values for the DS and the Dλ indexes

are 0, thus we have that the optimal value for the HQNR is 1.

B. Datasets

Several different test cases acquired by five widely used

sensors for pansharpening are considered. For all the sensors,

both the assessment at reduced resolution (RR) and at full

resolution (FR), following the indications drawn in Sect. IV-A,

are provided. The characteristics of the employed datasets are

detailed as follows.

a) WorldView-2 datasets: These data were acquired by

the WorldView-2 (WV2) sensor, which works in the visible

and near infrared spectrum range. The multispectral sensor

is characterized by eight spectral bands (coastal, blue, green,

yellow, red, red edge, NIR1, and NIR2), and also, a panchro-

matic channel is available. The spatial sampling interval (SSI)

is 1.84 m for MS and 0.46 m for PAN, respectively. The

resolution ratio R is equal to 4. The radiometric resolution

is 11 bits.

Three datasets are exploited: i) WV2 Washington repre-

senting a mixed area in the surroundings of Washington,

USA, characterized by an elevate presence of high buildings,

vegetated areas, and a river (the size of an MS spectral band

is 6248 × 5964), see Fig. 10; ii) WV2 Stockholm depicts a

mixed zone showing several water bodies in the urban area

of Stockholm, Sweden (the size of an MS spectral band is

1684 × 2176), see Fig. 10; iii) WV2 Rio instead shows a

mixed area of the city of Rio de Janeiro, Brazil, characterized

by vegetated and urban features and a small portion of sea in

the top right side of the image (the size of an MS spectral band

is 512× 512), see Fig. 11. i) and ii) are used for training and

testing the networks at reduced resolution following Wald’s

protocol as in Sect. IV-A. Instead, iii) is exploited to test the

ability of the networks to work in real conditions, namely with

a quite different dataset because of an acquisition of the same

sensor but over a different area of the world and in a different

time, thus showing different features such as atmospheric

conditions, haze, landscapes, solar elevation angle, and so

forth. In this latter case, both a reduced and a full resolution

assessment are performed.
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Fig. 10: Datasets used for training ML approaches (selected bands: red, green, and blue). Note that the images related to the

datasets are intensity stretched to aid the visual inspection.

Fig. 11: Datasets used for testing ML approaches (selected bands: red, green, and blue). Note that the images related to the

datasets are intensity stretched to aid the visual inspection.

b) WorldView-3 datasets: These data were acquired by

the WorldView-3 (WV3) sensor, which works in the visible

and near infrared spectrum range. The multispectral sensor is

characterized by eight spectral bands (the same as the WV2

MS sensor), and also, a panchromatic channel is available. The

SSI is 1.2 m for MS and 0.3 m for PAN, respectively. R is

equal to 4. The radiometric resolution is 11 bits.

Three datasets are exploited: i) WV3 Tripoli representing

an urban area of Tripoli, a coastal town in Libya (the size of

an MS spectral band is 1800 × 1956), see Fig. 10; ii) WV3

Rio that is a mixed dataset showing both vegetated and man-

made structures in the surroundings of Rio de Janeiro, Brazil

(the size of an MS spectral band is 2380×3376), see Fig. 10,

again; iii) WV3 New York instead depicts an urban area of

the city of New York (USA) with a more relevant presence of

high buildings with respect to European urban scenarios (the

size of an MS spectral band is 512×512), see Fig. 11. Again,

i) and ii) are used for training and testing the networks at

reduced resolution following Wald’s protocol. Instead, the real

test cases (both at reduced resolution and at full resolution)

are performed by exploiting iii).

c) WorldView-4 datasets: These data were acquired by

the WorldView-4 (WV4) sensor, which works in the visible

and near infrared spectrum range. The multispectral sensor

is characterized by four spectral bands (blue, green, red, and

NIR), and also, a panchromatic channel is available. The SSI

is 1.24 m for MS and 0.31 m for PAN, respectively. R is equal

to 4. The radiometric resolution is 11 bits.

Two datasets are exploited: i) WV4 Acapulco representing a

mixed area with sea, land, and urban areas in the surroundings

of the city of Acapulco, Mexico (the size of an MS spectral

band is 4096 × 4096), see Fig. 10; ii) WV4 Alice that is a

mixed dataset mainly showing urban and bare soil features

related to the city of Alice Springs, Australia (the size of an

MS spectral band is 512 × 512), see Fig. 11. Again, i) is

used for training and testing the networks at reduced resolution

following Wald’s protocol. Instead, the real test cases (both at

reduced resolution and at full resolution) are performed by
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exploiting ii).
d) QuickBird datasets: These data were acquired by

the QuickBird (QB) sensor, which works in the visible and

near infrared spectrum range. The multispectral sensor is

characterized by four spectral bands (blue, green, red, and

NIR). Also, a panchromatic channel is available. The SSI is

2.44 m for MS and 0.61 m for PAN, respectively. R is equal

to 4. The radiometric resolution is 11 bits.

Two datasets are exploited: i) QB Indianapolis representing

a mixed area with the high presence of man-made structures,

but with also water bodies and green areas captured over the

city of Indianapolis, USA (the size of an MS spectral band is

3624× 4064), see Fig. 10; ii) QB San Francisco is an urban

area of San Francisco, USA (the size of an MS spectral band

is 512× 512), see Fig. 11. Again, i) is used for training and

testing the networks at reduced resolution following Wald’s

protocol. Instead, the real test cases (both at reduced resolution

and at full resolution) are performed by exploiting ii).
e) IKONOS dataset: This dataset represents an urban

area of the city of Toulouse, France. It was acquired by the

IKONOS sensor, which works in the visible and near infrared

spectrum range. The multispectral sensor is characterized by

four spectral bands as for the QB sensor, and also a panchro-

matic channel is available. The resolution cell is 4 m × 4 m

for the MS bands and 1 m × 1 m for the PAN channel. R
is, therefore, equal to 4. The radiometric resolution is 11
bits. The size of an MS spectral band is 512 × 512 pixels,

see Fig. 11. This dataset is used to assess the generalization

ability of the networks with respect to the changing of both

acquisition sensor and captured scenario. In particular, we

exploited networks trained on the QB training set, but showing

the performance on this IKONOS dataset.

C. Benchmark

Several state-of-the-art algorithms are employed for com-

parison purposes:

• EXP: MS image interpolation using a polynomial kernel

with 23 coefficients;

• CS methods

± BT-H: optimized Brovey transform with haze correc-

tion [30];

± BDSD-PC: band-dependent spatial-detail with phys-

ical constraints [117];

± C-GSA: context-based Gram-Schmidt adaptive with

local parameter estimation exploiting clustering [16];

• MRA methods

± MTF-GLP-FS: generalized Laplacian Pyramid

(GLP) with MTF-matched filters with a full scale

(FS) regression-based injection model [119];

± MTF-GLP-HPM-R: GLP with MTF-matched fil-

ters and high-pass modulation injection model with

a preliminary regression-based spectral matching

phase [118];

• VO methods

± SR-D: pansharpening based on sparse representation

of injected details [66];

± TV: pansharpening based on total variation [50];

• ML methods

± PanNet: deep CNN architecture for pansharpen-

ing [73];

± DRPNN: deep residual neural network for pansharp-

ening [71];

± MSDCNN: multiscale and multidepth CNN architec-

ture for pansharpening [75];

± BDPN: bidirectional pansharpening network [79];

± DiCNN: detail injection based convolutional neural

network [91];

± PNN: pansharpening neural network [69];

± A-PNN-FT: advanced pansharpening neural network

using an adaptive tuning scheme [74];

± FusionNet: pansharpening by combining ML and

traditional fusion schemes [92].

A more detailed description of the methods can be found

in Sects. II and III and in the related references.

D. Generation of Training Data

The building of the training set is a crucial step for ML-

based pansharpening approaches. Although in the literature

there are plenty of state-of-the-art ML-based methods, the

way of generating training sets is often different leading to

an unfair comparison among them. This section is devoted to

the illustration of the whole procedure of generating training

samples for ML-based pansharpening. Moreover, the MAT-

LAB code for simulating training sets will be distributed to

the community.

The overall procedure of generating training samples is

depicted in Fig. 12, which follows three main steps:

1) Data download. Because of license limitations, we are

not permitted to share the original data. Readers can

directly download them from commercial websites2.

2) Data simulation. After downloading the source im-

ages, we can read the original PAN and MS images.

Afterwards, according to Wald’s protocol, we filter the

original MS image matching the corresponding sensor’s

modulation transfer function (MTF)3 and the original

PAN image using an almost ideal filter, then down-

grading the filtered images by the nearest neighbor

interpolation with a scale factor of 4. Furthermore, the

downsampled MS image will be upsampled to the PAN

scale by a 23-tap polynomial interpolator. Hence, we

will exploit in the training phase: i) the downsampled

PAN image; ii) the downsampled MS image; iii) the

original MS image as GT; iv) the upsampled version

of the downsampled MS image (denoted as UMS from

hereon). Refer to Fig. 12 and Tab. II for more details

about the simulation process and the data used in this

work, respectively.

3) Data patching. The simulated images in step 2 are

too big (considering the limited storage capabilities

2For WorldView data, the interesting readers can refer to https://resources.
maxar.com/

3The MATLAB code about filtering using MTF can be found at the
following link: The link will be added after the paper acceptance.
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Fig. 12: The generation process of training samples by Wald’s protocol. Note that the names highlighted in red are about

the generated training data used to feed the networks, i.e., the GT, the low spatial resolution MS image, the PAN, and the

upsampled MS image (here denoted as UMS).

TABLE II: Details about the training and testing datasets used in this work (see also Figs. 10 and 11). ªres.º means resolution.

of the graphics processing units, GPUs) to feed the

pansharpening networks. Thus, we need to crop these

simulated images in the step 2 into small patches. Hence,

we segment the GT, the UMS, the PAN, and the MS

images into several small patches with sizes 64×64×8
(with an overlap of 16 spatial pixels), 64×64×8 (with an

overlap of 16 spatial pixels), 64×64×1 (with an overlap

of 16 spatial pixels), and 16× 16× 8 (correspondingly,

with an overlap of 4 spatial pixels due to the scale

factor of 4), respectively4. We finally have 9000 training

samples (i.e., 9000 patch images) and 1000 validation

samples for WV3, WV4 and QB datasets, and 14496

training samples and 1611 validation samples for the

WV2 dataset, which can avoid overfitting during the

training phase. Please, refer to Fig. 12 for more details,

again.

4The MATLAB code for patching the training datasets can be found at the
following link: The link will be added after the paper acceptance.
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TABLE III: Optimal parameters for the eight compared ML-based methods. Notation: Epo. # (epoch number), Bs (mini-batch size), Algo
(optimization algorithm), Initi. Lr (initial learning rate), Lr Tun. (tuning strategy of learning rate), Fs (filter size for each layer), Filt. #
(filter number for each layer), Loss Ty. (type of loss function), and Ly. # (number of layers). The WV3 dataset is here used as an exemplary
case. The training dataset consists of 10000 WV3 samples with size 64× 64× 8.

Para. PNN A-PNN-FT DRPNN MSDCNN PanNet DiCNN BDPN FusionNet

Epo. # 12,000 10,000 500 500 450 1000 1,000 400

Bs 64 64 64 64 32 64 8 32

Algo SGD SGD Adam Adam Adam Adam Adam Adam

Initi. Lr 0.0289*bands 0.0289*bands 2 × 10−4 1 × 10−4 0.001 2 × 10−4 0.0001 0.0003

Lr Tun. fixed initi. Lr (FIL) FIL ×0.5 per 60 Epos. ×0.5 per 60 Epos. FIL ×0.5 per 200 Epos. ×0.8 per 100 Epos. FIL

Fs 9 × 9, 5 × 5 9 × 9, 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

Filt. # 64, 32 64, 32 32 32 64 32 64 32

Loss Ty. ℓ2 ℓ1 ℓ2 ℓ2 ℓ2 Frobenius Charbonnier ℓ2

Ly. # 3 3 11 12 10 3 43 10

E. Parameters Tuning

This section shows the parameter settings for all the

compared ML-based pansharpening methods, including in-

formation about epoch number, learning rate, optimization

algorithm, loss function, and so forth. These details can be

found in Tab. III. Note that some ML-based methods were

originally implemented on other platforms (e.g., Tensorflow

or MatConv). When we migrated the codes to Pytorch, the

original parameters have been tuned again accounting for a

different behavior of build-in functions (e.g., a different weight

initialization) in the adopted software platform.

F. Assessment on WV2 Data

In this section, we will analyze the outcomes obtained on

some WV2 test cases. Multiple reduced resolution testing

datasets are evaluated first. Then, another dataset is used to

assess the performance both at reduced resolution and at full

resolution.

1) Performance on 12 Reduced Resolution Testing

Datasets: We evaluate first the quantitative performance of

all the compared pansharpening methods on 12 WV2 reduced

resolution testing datasets acquired over Stockholm, i.e., the

testing data in Tab. II (A) (see also the WV2 Stockholm

dataset in Fig. 10). Note that the multiple testing samples

are captured over a similar area at same time as those of

the training dataset, but exploiting different cuts. By looking

at the quantitative performance displayed in Tab. IV, it is

easy to see that the ML-based approaches get better average

indicators than those of traditional techniques, also showing

a smaller standard derivations (stds) indicating a better

robustness. Specifically, FusionNet outperforms the other

compared approaches on these testing data. Besides, PanNet,

DRPNN, and DiCNN also have competitive performance.

Overall, because the training dataset has similar properties

as those of the testing samples, the outcomes of ML-based

methods show a clear superiority with respect to traditional

techniques. This corroborates the ability of the networks

during the training phase to properly fit their weights, thus

easily solving similar problems as the ones proposed in this

testing phase.

TABLE IV: Average results for the approaches belonging to the
benchmark on the reduced resolution WV2 Stockholm testing dataset,
i.e., on the 12 WV2 testing datasets in Tab. II (A). Bold: the best
among all the compared methods; Underline: the best among all the
ML-based methods.

Q8 (± std) SAM (± std) ERGAS (± std)

CS/MRA/VO

GT 1.0000±0.0000 0.0000±0.0000 0.0000±0.0000

EXP 0.5812±0.0569 7.4936±1.2394 7.0288±0.8265

BT-H 0.8501±0.0410 6.5042±1.3519 4.1552±0.5579

BDSD-PC 0.8430±0.0477 7.1664±1.2654 4.3242±0.5203

C-GSA 0.8323±0.0442 7.8657±1.3074 4.6591±0.4554

SR-D 0.8321±0.0457 6.6042±1.3383 4.3915±0.6267

MTF-GLP-HPM-R 0.8356±0.0446 7.3204±2.0298 5.0992±2.3204

MTF-GLP-FS 0.8347±0.0391 7.4497±1.6581 4.5257±0.6078

TV 0.7940±0.0834 7.2902±0.9685 4.8400±0.3226

ML

PanNet 0.9130±0.0551 4.4143±0.6642 2.7713±0.3156

DRPNN 0.9109±0.0528 4.4730±0.6906 2.8552±0.3393

MSDCNN 0.9079±0.0540 4.5698±0.7250 2.9078±0.3469

BDPN 0.8924±0.0578 5.1381±0.8587 3.2144±0.3781

DiCNN 0.9111±0.0528 4.4857±0.7061 2.8411±0.3365

PNN 0.9043±0.0573 4.6774±0.7064 2.9374±0.3369

A-PNN-FT 0.8991±0.0519 4.9263±0.8348 3.1363±0.3887

FusionNet 0.9169±0.0532 4.2632±0.6336 2.6911±0.3115

2) Performance on the Reduced Resolution WV2 Rio

Dataset: This section evaluates the performance of all the

compared methods on a single reduced resolution WV2 test

case. Differently from the reduced resolution WV2 Stockholm

testing samples in Sect. IV-F1, in this case, the single WV2

testing dataset is acquired in a different time over the city of

Rio, which represents another area of the world with respect

to the ones of the training set. Readers can have a look at

the WV2 Rio testing image in Fig. 11. Specifically, Fig. 13

depicts that most of the traditional methods have a better visual

appealing than ML-based approaches. Generally speaking,

only small differences among the compared techniques can
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be identified. One exception is represented by the outcome

provided by the PNN that has a high spectral distortion. A-

PNN-FT (which is an extension of the PNN) instead gets com-

petitive visual performance with a high spectral preservation,

thus demonstrating the effectiveness of using the fine-tuning

strategy for PNN-based approaches.

The quantitative results are reported in Tab. V. From the

table, the differences among all the compared methods are eas-

ily remarked. Most of the traditional state-of-the-art methods

achieve very high indicators, thus demonstrating their spatio-

spectral preservation ability. BT-H method gets the highest Q8

indicator and MTF-GLP-HPM-R obtains the lowest ERGAS

among all the compared methods. In contrast, we can observe

that the results of the ML-based methods are quite different

among each other. Some ML-based approaches, e.g., PanNet,

A-PNN-FT, DRPNN, MSDCNN, still have promising results,

whereas some other methods, such as PNN, BDPNN, and

DiCNN, get a significant reduction of the performance. The

possible reason for this phenomenon is that the testing dataset

used here is quite different with respect to the training data,

e.g., different acquiring area and time. Generally speaking,

the more the parameters to be trained, the greater the amount

of the data required to estimate them. Moreover, to improve

the generalization ability, the training set should consist of

samples acquired in several areas and in different conditions

to allow to pass to the network a complete knowledge of

the problem at hand. In absence of a huge and variegated

training set, this kind of analysis will reward just networks

designed with a higher generalization ability or networks,

such as, the A-PNN-FT, which exploit mechanisms like the

fine-tuning that allows the adaptation of the network to the

specific problem presented during the testing phase. Thus, A-

PNN-FT gets the lowest SAM metric, which indicates the

better spectral preservation. Overall, among all the ML-based

methods, PanNet gets promising outcomes, but its performance

is still lower than most of the compared traditional approaches.

More conclusions about the compared ML-based methods can

be found seeing the best ML-based methods underlined in Tab.

V for each quality metric.

3) Performance on the Full Resolution WV2 Rio Dataset:

Apart from the evaluation of the reduced resolution datasets,

an assessment at full resolution is also needed. To this aim, an

original full resolution WV2 Rio dataset is used, see Fig. 11.

Note that the full resolution WV2 Rio data is also acquired

over a different area and in a different time comparing it with

the WV2 training data. Especially, since there is no GT image,

we exploit proper indexes with no reference. We selected the

HQNR (consisting in the combination of Dλ and DS) to have

a quantitative evaluation of the performance, as introduced

in Sect. IV-A. Tab. VI reports the quantitative results. It is

easy to observe that most of traditional state-of-the-art ap-

proaches get high performance (even comparing them with the

ones of the ML-based methods). In particular, two traditional

methods, i.e., SR-D and TV, rank first and third among all

the sixteen compared techniques. Instead, the PanNet is the

best ML-based approach and gets the second position in the

overall ranking, showing its good network generalization. The

reason could be the network training conducted on only high-

TABLE V: Quantitative comparison of the outcomes of the bench-
mark on the reduced resolution WV2 Rio dataset, see also Fig. 11.
Bold: the best among all the compared methods; Underline: the best
among all the ML-based methods.

Q8 SAM ERGAS

CS/MRA/VO

GT 1.0000 0.0000 0.0000

EXP 0.7283 4.8597 6.7878

BT-H 0.9441 3.5368 3.3027

BDSD-PC 0.9316 4.0320 3.7105

C-GSA 0.9407 3.8848 3.3972

SR-D 0.9375 3.7881 3.3127

MTF-GLP-HPM-R 0.9436 3.8778 3.2173

MTF-GLP-FS 0.9426 3.8129 3.2578

TV 0.9341 4.1811 3.7521

ML

PanNet 0.9329 4.2582 3.8532

DRPNN 0.9301 5.0920 4.1910

MSDCNN 0.9200 5.4779 3.8565

BDPN 0.8888 5.9709 5.5306

DiCNN 0.8925 5.6765 5.4202

PNN 0.8866 9.4634 6.5718

A-PNN-FT 0.9374 3.5300 3.3032

FusionNet 0.9069 5.1220 4.1184

frequency information. Moreover, some ML-based approaches

yield lower indexes than traditional methods because the ML-

based methods are practically trained on different training

samples (as underlined in the previous section), but, in this

case, also on reduced resolution samples showing data with

a lower spatial resolution than the full resolution ones (this

is the main drawback of training ML-based approaches in a

supervised manner). This conclusion is also referred to the

PNN that obtains the worst HQNR among all the techniques,

not only because of its relatively small size but most likely

for the lack of residual modules (skip connections), which

makes the network prone to spectral distortion on new datasets.

Whereas, after the introduction of a skip connection (A-PNN)

and conducting a fine-tuning strategy, the network (i.e., the A-

PNN-FT) can get better results (reaching the fourth position

in the ranking), thus corroborating the generalization ability

of the adaptive fine-tuning combined with the robustness

provided by properly set residual skip connections.

G. Assessment on WV3 Data

In this section, we repeat the same three tests as in Sect.

IV-F, but involving WV3 data. Multiple reduced resolution

testing datasets are evaluated first. Then, another dataset is

used to assess the performance both at reduced resolution and

at full resolution.

1) Performance on 4 Reduced Resolution Testing Datasets:

This section will evaluate first all the compared pansharpening

methods on 4 reduced resolution WV3 Rio testing datasets

sharing a similar geographic area and the same acquiring time

as that of one of the datasets used for the training (see the

testing data in Tab. II (B) and the WV3 Rio image in Fig.
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(a) PAN (b) EXP (c) BT-H (d) BDSD-PC (e) C-GSA (f) SR-D

(g) MTF-GLP-HPM-R (h) MTF-GLP-FS (i) TV (j) PanNet (k) DRPNN (l) MSDCNN

(m) BDPN (n) DiCNN (o) PNN (p) A-PNN-FT (q) FusionNet (r) GT

Fig. 13: Visual comparisons in natural colors of the compared approaches on the reduced resolution WV2 Rio dataset, see

also Fig. 11.

10). Tab. VII reports the average numerical results of all the

sixteen compared state-of-the-art pansharpening methods on

the 4 reduced resolution WV3 Rio testing datasets. From the

table, it is clear that all the ML-based approaches outperform

traditional methods on all the related three reduced resolution

indicators, i.e., Q8, SAM and ERGAS. Note that FusionNet

gets the best Q8, SAM, and ERGAS metrics (and also most

of the best stds), showing its promising ability on the testing

data that are acquired over similar geographic areas as those of

the ones represented in the training data. Among all the ML-

based methods, PanNet, DRPNN, MSDCNN, and DiCNN can

be grouped in a second-best class. Indeed, the performance is

slightly worse than FusionNet and A-PNN-FT but better than

BDPN and PNN. Among traditional methods, BT-H outper-

forms the others. Besides, TV gets the worst Q8 and ERGAS

indicators. The main reason of the outstanding performance

of ML-based methods is the same as in Sect. IV-F1, i.e., the

similarity between training and testing datasets.

2) Performance on the Reduced Resolution WV3 New York

Dataset: We evaluate the quantitative performance of all the

compared pansharpening methods on a new reduced resolution

WV3 dataset used only for testing purposes acquired over the

city of New York and shown in Fig. 11. The testing dataset

shows a different geographical area captured in a different time

comparing with the training dataset. By looking at Tab. VIII,

the traditional approaches outperform most of the ML-based

methods on all the quality metrics. BDSD-PC, belonging to

the class of traditional methods, gets two best indicators, i.e.,

Q8 and ERGAS, while another traditional technique, i.e., the

BT-H, gets the lowest SAM. Nevertheless, some ML-based

approaches, such as PanNet, DRPNN, BDPN, and A-PNN-

FT, also obtain competitive outcomes representing the second-

best class among all the compared methods. In contrast, the

other three ML-based methods, such as, DiCNN, PNN, and

FusionNet, get the worst performance. Especially, PNN shows

the largest SAM (almost 5 degrees more than the second-

worst method), indicating a higher spectral distortion than the

other methods. The reason why the mentioned three ML-based

methods are worse than the other ML-based methods is be-

cause their simpler network architecture with less parameters,

which could not fit well the problem’s non-linearities.

3) Performance on the Full Resolution WV3 New York

Dataset: Similar to Sect. IV-F3, this section will compare the

qualitative and quantitative performance of all the methods on

the full resolution WV3 New York dataset, see Fig. 11. This

full resolution testing dataset is acquired over the city of New

York showing a different geographical area and acquisition

time comparing them with the ones of the training data.

Again, the HQNR is used for performance assessment. Tab.

IX shows that the traditional techniques outperform most of
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TABLE VI: Quantitative comparison of the outcomes of the bench-
mark on the full resolution WV2 Rio dataset, see also Fig. 11. Bold:
the best among all the compared methods; Underline: the best among
all the ML-based methods.

Dλ DS HQNR

CS/MRA/VO

EXP 0.0374 0.0717 0.8936

BT-H 0.0601 0.0710 0.8732

BDSD-PC 0.0653 0.0435 0.8940

C-GSA 0.0664 0.0653 0.8727

SR-D 0.0153 0.0286 0.9566

MTF-GLP-HPM-R 0.0260 0.0594 0.9161

MTF-GLP-FS 0.0269 0.0652 0.9097

TV 0.0332 0.0269 0.9407

ML

PanNet 0.0292 0.0171 0.9542

DRPNN 0.0629 0.0311 0.9080

MSDCNN 0.0872 0.0498 0.8674

BDPN 0.0909 0.0486 0.8649

DiCNN 0.1043 0.0478 0.8529

PNN 0.1678 0.0510 0.7897

A-PNN-FT 0.0379 0.0396 0.9240

FusionNet 0.0647 0.0179 0.9185

TABLE VII: Average results for the approaches belonging to the
benchmark on the reduced resolution WV3 Rio testing dataset, i.e.,
on the 4 WV3 testing datasets in Tab. II (B). Bold: the best among all
the compared methods; Underline: the best among all the ML-based
methods.

Q8 (± std) SAM (± std) ERGAS (± std)

CS/MRA/VO

GT 1.0000±0.0000 0.0000±0.0000 0.0000±0.0000

EXP 0.5974±0.0571 9.2031±0.7655 9.3369±0.4756

BT-H 0.8898±0.0323 7.6700±0.7613 4.6132±0.1695

BDSD-PC 0.8454±0.0608 8.9376±0.8568 5.0893±0.2015

C-GSA 0.8695±0.0436 8.8042±0.8652 5.0183±0.1327

SR-D 0.8693±0.0320 7.9449±0.4946 5.0739±0.2807

MTF-GLP-HPM-R 0.8625±0.0499 9.4911±1.1386 5.2141±0.2881

MTF-GLP-FS 0.8533±0.0526 9.1442±0.9443 5.2496±0.2077

TV 0.8031±0.0929 8.9863±0.8592 5.3569±0.1948

ML

PanNet 0.9232±0.0324 5.1447±0.3995 3.1906±0.2192

DRPNN 0.9203±0.0323 5.1492±0.3500 3.2171±0.2067

MSDCNN 0.9154±0.0351 5.5887±0.3471 3.3978±0.1715

BDPN 0.9137±0.0327 6.0121±0.4713 3.6072±0.2425

DiCNN 0.9265±0.0283 5.1285±0.3217 3.1894±0.2106

PNN 0.9068±0.0425 5.9259±0.4544 3.4998±0.1341

A-PNN-FT 0.9327±0.0255 4.9125±0.3794 3.0880±0.2312

FusionNet 0.9327±0.0272 4.6482±0.3508 2.9028±0.1967

the ML-based methods. The best results are reported by the

TV. Instead, the SR-D got the third position in the ranking.

Considering all the methods, the traditional MTF-GLP-HPM-

R and MTF-GLP-FS techniques also show superior perfor-

TABLE VIII: Quantitative comparison of the outcomes of the
benchmark on the reduced resolution WV3 New York dataset, see
also Fig. 11. Bold: the best among all the compared methods;
Underline: the best among all the ML-based methods.

Q8 SAM ERGAS

CS/MRA/VO

GT 1.0000 0.0000 0.0000

EXP 0.6513 7.2118 8.1106

BT-H 0.9241 6.4530 3.9714

BDSD-PC 0.9327 6.8388 3.8905

C-GSA 0.9213 6.6966 4.0503

SR-D 0.9113 6.6269 4.3472

MTF-GLP-HPM-R 0.9228 7.0038 4.0692

MTF-GLP-FS 0.9228 6.7650 4.0434

TV 0.9277 6.6213 4.0630

ML

PanNet 0.9238 6.9050 4.2365

DRPNN 0.9205 7.3887 4.2504

MSDCNN 0.9087 7.5139 4.4214

BDPN 0.9180 7.7148 4.4522

DiCNN 0.8567 8.0256 5.5124

PNN 0.8849 12.6019 6.7233

A-PNN-FT 0.9132 7.6201 4.4536

FusionNet 0.8499 8.3823 6.0458

mance than the ML-based approaches except for the PanNet

and the A-PNN-FT, which obtained the second and the fourth

positions, respectively. Among all the ML-based techniques,

the PanNet and the A-PNN-FT got the first two positions

thanks to their competitive generalization abilities. Moreover,

some ML-based methods, including MSDCNN, DiCNN, and

PNN, have relatively large gaps comparing them with the

PanNet and the A-PNN-FT methods. The rest of the ML-based

methods, such as DRPNN, BDPN, and FusionNet, achieve

a similar performance than the traditional methods as BT-

H, BDSD-PC, and C-GSA . Additionally, Fig. 14 displays

the visual comparison of all the compared methods on the

full resolution WV3 New York testing dataset. By having a

look at this figure, the traditional TV method getting the best

HQNR has not the most clear fused image comparing it with

the ML-based ones, see the blue and green close-ups. BDSD-

PC seems to have a blur effect and a clear spectral distortion

(mainly due to a color contrast changing). A relevant spectral

distortion also happens in the case of the pansharpened SR-

D product. Furthermore, BH-T seems to get precise spatial

details even though its quantitative outcomes are not so

promising. The visual products of the ML-based techniques

are quite competitive without showing a significant spectral

distortion. However, some methods, such as, the DiCNN and

the PNN, generate significant blur effects and artifacts (like

outliers) indicating a weak visual appearance. Finally, BDPN

shows the clearest spatial details without any artifact. Note that

the rest of the ML-based approaches practically yield similar

visual performance, showing clear spatial details and a good

spectral preservation.
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(a) EXP (b) BT-H (c) BDSD-PC (d) C-GSA

(e) SR-D (f) MTF-GLP-HPM-R (g) MTF-GLP-FS (h) TV

(i) PanNet (j) DRPNN (k) MSDCNN (l) BDPN

(m) DiCNN (n) PNN (o) A-PNN-FT (p) FusionNet

Fig. 14: Visual comparisons in natural colors of the compared approaches on the full resolution WV3 New York dataset, see

also Fig. 11.

H. Assessment on WV4 Data

In this section, we repeat the same three tests as in Sect.

IV-F, but involving WV4 data. Multiple reduced resolution

testing datasets are evaluated first. Then, another dataset is

used to assess the performance both at reduced resolution and



20

TABLE IX: Quantitative comparison of the outcomes of the bench-
mark on the full resolution WV3 New York dataset, see also Fig. 11.
Bold: the best among all the compared methods; Underline: the best
among all the ML-based methods.

Dλ DS HQNR

CS/MRA/VO

EXP 0.0562 0.1561 0.7964

BT-H 0.0983 0.0829 0.8269

BDSD-PC 0.1554 0.0251 0.8234

C-GSA 0.1022 0.0747 0.8307

SR-D 0.0199 0.0369 0.9440

MTF-GLP-HPM-R 0.0356 0.0679 0.8989

MTF-GLP-FS 0.0347 0.0740 0.8939

TV 0.0234 0.0252 0.9520

ML

PanNet 0.0376 0.0162 0.9468

DRPNN 0.1207 0.0392 0.8449

MSDCNN 0.1583 0.0557 0.7948

BDPN 0.1338 0.0563 0.8175

DiCNN 0.1023 0.0979 0.8098

PNN 0.1465 0.0835 0.7823

A-PNN-FT 0.0510 0.0198 0.9302

FusionNet 0.0941 0.0882 0.8260

at full resolution.

1) Performance on 8 Reduced Resolution Testing Datasets:

After evaluating the performance of the 8-band WV2 and

WV3 datasets, this section mainly focuses on comparing the

performance of the 4-band WV4 dataset acquired over the

city of Acapulco, Mexico. Although we have a different

spectral band number with respect to the 8-band datasets in

Sects. IV-F and IV-G, the whole testing procedure follows the

same direction as in the previous two sections. Indeed, all

the compared pansharpening methods will be evaluated on 8

reduced resolution samples extracted from the WV4 Acapulco

testing dataset shown in Tab. II (C) and Fig.10. These testing

datasets share similar features with the training data, again.

Tab. X reports the quantitative comparison showing that the

compared ML-based approaches yield better performance than

that of the traditional techniques. PanNet, belonging to the

ML class, gets the best indicators among all the methods.

Besides, the rest of ML-based methods, i.e., DRPNN, MS-

DCNN, BDPN, DiCNN, PNN, A-PNN-FT, and FusionNet,

get similar performance, yielding small gaps among the three

metrics exploited at reduced resolution. DRPNN obtained the

second-best Q4 and ERGAS indicators. Instead, FusionNet got

the second-best SAM. Among all the traditional approaches,

MTF-GLP-HPM-R obtained the best Q4 and SR-D got the

best SAM and ERGAS. Moreover, the same conclusion as in

Sect. IV-F1 about the relationship between the performance of

ML-based approaches and traditional methods can be drawn.

2) Performance on the Reduced Resolution WV4 Alice

Springs Dataset: This section still investigates on the per-

formance of all the methods on a different reduced resolution

WV4 dataset acquired over the city of Alice Springs, another

area of the world with respect to the training dataset. Readers

TABLE X: Average results for the approaches belonging to the
benchmark on the reduced resolution WV4 Acapulco testing dataset,
i.e., on the 8 WV4 testing datasets in Tab. II (C). Bold: the best
among all the compared methods; Underline: the best among all the
ML-based methods.

Q4 (± std) SAM (± std) ERGAS (± std)

CS/MRA/VO

GT 1.0000±0.0000 0.0000±0.0000 0.0000±0.0000

EXP 0.2638±0.1579 3.9822±0.5496 4.7990±0.9197

BT-H 0.6499±0.0734 4.3582±0.5607 4.6330±0.8555

BDSD-PC 0.6512±0.0680 3.6968±0.5468 4.1906±0.9251

C-GSA 0.6528±0.0638 3.7530±0.5137 4.4599±0.8186

SR-D 0.6564±0.0895 3.6514±0.4579 3.9887±0.7342

MTF-GLP-HPM-R 0.6698±0.0606 3.7980±0.6864 4.2282±0.8625

MTF-GLP-FS 0.6666±0.0598 3.7776±0.6527 4.2159±0.8816

TV 0.5125±0.1459 4.0344±0.5386 4.2600±0.6768

ML

PanNet 0.6963±0.0842 3.3710±0.4221 3.6088±0.6313

DRPNN 0.6810±0.0845 3.4778±0.4499 3.6706±0.6433

MSDCNN 0.6739±0.0849 3.4837±0.4601 3.7052±0.6661

BDPN 0.6535±0.0834 3.5222±0.4612 3.8269±0.7144

DiCNN 0.6767±0.0832 3.4555±0.4453 3.7087±0.6629

PNN 0.6793±0.0822 3.4777±0.4589 3.6894±0.6613

A-PNN-FT 0.6787±0.0820 3.4271±0.4425 3.6995±0.6705

FusionNet 0.6759±0.0805 3.3979±0.4442 3.6842±0.6760

can refer to Fig. 11. By having a look at Tab. XI, the ML-

based methods, i.e., DRPNN and PanNet, get the best Q4 and

SAM, respectively, while the traditional SR-D method has the

best ERGAS. Overall, the quantitative performance of all the

methods is similar among each other. No approach obtains

the best outcomes on all the indexes. For example, some ML-

based methods, e.g., A-PNN-FT, PanNet, and PNN, get better

SAM than several traditional methods, e.g., BDSD-PC, C-

GSA, and MTF-GLP-FS, whereas some traditional methods,

e.g., BT-H and SR-D, obtain better SAM than some ML-based

methods, such as, DRPNN, DiCNN, and FusionNet. Among

the ML-based methods, although DRPNN achieves the best

Q4, its SAM value is significantly lower than those of the

PanNet and the A-PNN-FT. Besides, FusionNet yields the

worst metrics among all the ML-based methods. Fig. 15 shows

the visual comparison of all the pansharpening approaches

showing that all the methods obtain excellent results with

high spatial fidelity on the urban area. In particular, traditional

methods, such as, BT-H, C-GSA, MTF-GLP-HPM-R, and

MTF-GLP-FS display products with clearer spatial details than

the ML-based methods, see the close-ups in Fig. 15. Moreover,

some other traditional methods, such as, SR-D and TV, show

a significant blur, see the blur and green close-ups in Fig. 15.

3) Performance on the Full Resolution WV4 Alice Springs

Dataset: Tab. XII reports the quantitative results on the WV4

Alice Spring dataset using data at the original (full) resolution,

see Fig. 11. Note that due to the absence of GT image, we

employ the no reference indicators, such as, the HQNR, the

Dλ, and the DS to evaluate the quantitative performance.
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(a) PAN (b) EXP (c) BT-H (d) BDSD-PC (e) C-GSA (f) SR-D

(g) MTF-GLP-HPM-R (h) MTF-GLP-FS (i) TV (j) PanNet (k) DRPNN (l) MSDCNN

(m) BDPN (n) DiCNN (o) PNN (p) A-PNN-FT (q) FusionNet (r) GT

Fig. 15: Visual comparisons in natural colors of the compared approaches on the reduced resolution WV4 Alice Springs dataset,

see also Fig. 11.

From the table, it is clear that some traditional and ML-

based methods, such as SR-D, TV, and A-PNN-FT, achieve

the highest values of the HQNR index. Moreover, most of

the ML-based approaches get better indexes than the rest

of the traditional techniques, i.e., BT-H, BDSD-PC, and C-

GSA. Among all the ML-based methods, the A-PNN-FT,

the PanNet, and the DRPNN belong to the best performance

class. Moreover, the MSDCNN, the BDPN, and the DiCNN

represent the second-best class, while the rest of the ML-based

approaches (i.e., the PNN and the FusionNet) get the lowest

performance. Finally, the A-PNN-FT obtains the best ML-

based quantitative outcome corroborating the effectiveness of

the use of the fine-tuning strategy.

I. Assessment on QB Data

This section investigates first the performance on both

reduced resolution and full resolution testing sets, similarly

as the analysis conducted before. Then, we also evaluate the

ability of the compared networks to generalize with respect

to the acquisition sensor. Indeed, we will exploit ML-based

methods trained on the QB training set, but evaluating them

on another 4-band dataset acquired by the IKONOS sensor.

1) Performance on 7 Reduced Resolution Testing Datasets:

This section focuses on the testing on 7 reduced resolution

QB Indianapolis datasets that can be found in Fig. 10. Again,

these testing datasets have a similar area and the same ac-

quisition time as that of the training dataset (see the data

1⃝ in Tab. II). Due to this reason, the outcomes of the ML-

based approaches get better quantitative results than that of

the compared traditional methods, see Tab. XIII. FusionNet

gets the best Q4, SAM, and ERGAS indicators, and PanNet,

DRPNN, MSDCNN, DiCNN, and A-PNN-FT represent the

second-best class. Besides, comparing the mentioned ML-

based approaches, BDPN gets relatively lower performance

than the other ML-based methods, but still outperforming the

traditional techniques.

2) Performance on the Reduced Resolution QB San Fran-

cisco Dataset: These results are about the assessment of all the

methods on another reduced resolution dataset acquired by the

QB sensor over the city of San Francisco (USA), see Fig. 11.

In Tab. XIV, we can note that the traditional approaches have

better quantitative results than those of the ML-based methods

(except for the PanNet). Besides, C-GSA and BT-H methods

get the lowest and the second-lowest ERGAS, respectively.

Among the ML-based methods, PanNet has the best Q4,

SAM, and ERGAS indicators, even better than those of all

the traditional approaches. For the other ML-based methods,

none generates the best outcomes on all the indexes. The

quantitative results for the rest of the ML-based approaches

are not stable. For instance, DRPNN yields the second-best
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TABLE XI: Quantitative comparison of the outcomes of the bench-
mark on the reduced resolution WV4 Alice Springs dataset, see also
Fig. 11. Bold: the best among all the compared methods; Underline:
the best among all the ML-based methods.

Q4 SAM ERGAS

CS/MRA/VO

GT 1.0000 0.0000 0.0000

EXP 0.7901 4.5880 5.8077

BT-H 0.9444 4.1988 3.2757

BDSD-PC 0.9431 4.7527 3.2996

C-GSA 0.9417 4.8812 3.3223

SR-D 0.9493 4.1597 3.0647

MTF-GLP-HPM-R 0.9432 5.1721 3.2724

MTF-GLP-FS 0.9432 4.9296 3.2437

TV 0.9250 4.7857 3.6899

ML

PanNet 0.9486 3.8737 3.4154

DRPNN 0.9521 4.7059 3.2533

MSDCNN 0.9266 4.5170 3.9181

BDPN 0.9439 4.4687 3.5570

DiCNN 0.9347 4.8219 3.6978

PNN 0.9364 4.4324 3.5983

A-PNN-FT 0.9511 3.9217 3.1598

FusionNet 0.9261 4.9779 3.9561

TABLE XII: Quantitative comparison of the outcomes of the
benchmark on the full resolution WV4 Alice Springs dataset, see also
Fig. 11. Bold: the best among all the compared methods; Underline:
the best among all the ML-based methods.

Dλ DS HQNR

CS/MRA/VO

EXP 0.0362 0.0322 0.9328

BT-H 0.0585 0.0625 0.8826

BDSD-PC 0.0644 0.0435 0.8950

C-GSA 0.0668 0.0796 0.8589

SR-D 0.0109 0.0331 0.9564

MTF-GLP-HPM-R 0.0229 0.0608 0.9177

MTF-GLP-FS 0.0230 0.0623 0.9161

TV 0.0251 0.0237 0.9518

ML

PanNet 0.0120 0.0429 0.9456

DRPNN 0.0223 0.0333 0.9452

MSDCNN 0.0221 0.0641 0.9152

BDPN 0.0260 0.0498 0.9255

DiCNN 0.0455 0.0358 0.9203

PNN 0.0195 0.0722 0.9097

A-PNN-FT 0.0195 0.0306 0.9505

FusionNet 0.0668 0.0274 0.9076

Q4 among all the ML-based methods, but its SAM value is

clearly larger than that of the FusionNet.

3) Performance on the Full Resolution QB San Francisco

Dataset: The QB San Francisco dataset shown in Fig. 11

is also used at full resolution. From Tab. XV, reporting all

TABLE XIII: Average results for the approaches belonging to the
benchmark on the reduced resolution QB Indianapolis testing dataset,
i.e., on the 7 QB testing datasets in Tab. II (D). Bold: the best among
all the compared methods; Underline: the best among all the ML-
based methods.

Q4 (± std) SAM (± std) ERGAS (± std)

CS/MRA/VO

GT 1.0000±0.0000 0.0000±0.0000 0.0000±0.0000

EXP 0.7490±0.0170 4.5865±0.4136 4.0991±0.1660

BT-H 0.8729±0.0102 3.7376±0.4094 3.0172±0.1599

BDSD-PC 0.8643±0.0107 4.0724±0.5258 3.2261±0.1212

C-GSA 0.8307±0.0367 4.4207±0.7011 3.5343±0.4436

SR-D 0.8789±0.0091 3.6989±0.3694 2.9774±0.1687

MTF-GLP-HPM-R 0.8628±0.0151 3.9175±0.7783 3.2746±0.4262

MTF-GLP-FS 0.8513±0.0152 4.0604±0.7747 3.3176±0.1050

TV 0.8049±0.0371 4.8419±0.3162 3.9387±0.4611

ML

PanNet 0.9575±0.0072 1.9853±0.1919 1.7365±0.0880

DRPNN 0.9510±0.0086 2.0873±0.1875 1.8378±0.0916

MSDCNN 0.9509±0.0088 2.0771±0.1810 1.8565±0.1025

BDPN 0.9238±0.0113 2.5859±0.1981 2.3305±0.1474

DiCNN 0.9510±0.0088 2.0704±0.1793 1.8764±0.1086

PNN 0.9487±0.0085 2.1556±0.1850 1.9054±0.1048

A-PNN-FT 0.9585±0.0074 1.8825±0.1676 1.7086±0.0963

FusionNet 0.9600±0.0082 1.8298±0.1391 1.6470±0.0918

TABLE XIV: Quantitative comparison of the outcomes of the
benchmark on the reduced resolution QB San Francisco dataset,
see also Fig. 11. Bold: the best among all the compared methods;
Underline: the best among all the ML-based methods.

Q4 SAM ERGAS

CS/MRA/VO

GT 1.0000 0.0000 0.0000

EXP 0.5759 9.1351 10.9039

BT-H 0.8942 7.5545 5.2697

BDSD-PC 0.8788 8.7450 5.7536

C-GSA 0.8961 7.4711 5.2337

SR-D 0.8831 7.8766 5.5558

MTF-GLP-HPM-R 0.8919 8.4890 5.4754

MTF-GLP-FS 0.8770 8.7026 5.7855

TV 0.8802 8.4317 6.0476

ML

PanNet 0.9074 6.9841 5.3314

DRPNN 0.8969 8.2530 5.9467

MSDCNN 0.8768 7.5988 5.6965

BDPN 0.8830 8.4378 5.9962

DiCNN 0.8062 11.2110 8.7013

PNN 0.8301 10.1118 6.8375

A-PNN-FT 0.8586 7.8767 6.2049

FusionNet 0.8614 7.3459 6.3420

the no reference indexes, it is easy to see that the PanNet

method obtains the best no reference index, i.e., the HQNR,

which means the best quantitative outcome. Moreover, the
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TABLE XV: Quantitative comparison of the outcomes of the
benchmark on the full resolution QB San Francisco dataset, see also
Fig. 11. Bold: the best among all the compared methods; Underline:
the best among all the ML-based methods.

Dλ DS HQNR

CS/MRA/VO

EXP 0.0470 0.1571 0.8033

BT-H 0.0925 0.0925 0.8236

BDSD-PC 0.1383 0.0476 0.8207

C-GSA 0.0818 0.1114 0.8159

SR-D 0.0144 0.0362 0.9499

MTF-GLP-HPM-R 0.0343 0.1126 0.8570

MTF-GLP-FS 0.0372 0.1323 0.8354

TV 0.0269 0.0513 0.9233

ML

PanNet 0.0224 0.0264 0.9518

DRPNN 0.0662 0.0210 0.9142

MSDCNN 0.0771 0.0268 0.8982

BDPN 0.0621 0.0708 0.8715

DiCNN 0.0939 0.1244 0.7933

PNN 0.1071 0.0671 0.8330

A-PNN-FT 0.0364 0.0303 0.9344

FusionNet 0.0388 0.0139 0.9479

traditional method SR-D and the ML-based method FusionNet

rank the second and the third places, respectively. Overall,

the traditional methods (except for the SR-D and the TV)

obtain lower performance than most of the ML-based methods.

The HQNR got by the DiCNN method is the lowest one

demonstrating that the learned weights of the DiCNN network

cannot fit the problem presented during the testing phase. In

addition, Fig. 16 exhibits the visual comparison of all the

compared methods on the full resolution QB San Francisco

dataset. From the figure, the ML-based methods, i.e., PanNet

and FusionNet, retain the clearest details, consistently with the

HQNR performance in Tab. XV. Moreover, most of the other

ML-based methods, such as, DRPNN, MSDCNN, BDPN,

and A-PNN-FT, preserve the spatial content. Only DiCNN

and PNN seem to have relatively noticeable blur effects and

artifacts. Among the traditional methods, BDSD-PC shows

a significant spectral distortion. Instead, the two MTF-based

techniques, i.e., MTF-GLP-HPM-R and MTF-GLP-FS, get a

high spatial fidelity, although they fail to get promising HQNR

values. Finally, the TV and the SR-D get a similar spatial

preservation as that of the A-PNN-FT.

4) Sensor Generalization Ability Assessed on the Reduced

Resolution IKONOS Dataset: This section evaluates the net-

work generalization ability for all the compared ML-based

methods. The latter are trained on the 4-band QB training set

used in the above-mentioned sections. Then, we directly test

the ML-based approaches running them on a 4-band IKONOS

dataset acquired over the city of Toulouse, France. Besides,

we also compare the ML-based methods with some traditional

techniques. From Tab. XVI, it is clear that BT-H, TV, and SR-

D get the best Q4, SAM, and ERGAS, respectively. In contrast,

TABLE XVI: Quantitative comparison of the outcomes of the
benchmark on the reduced resolution IKONOS Toulouse dataset, see
also Fig. 11. The ML-based approaches are trained on the QB dataset.
Bold: the best among all the compared methods; Underline: the best
among all the ML-based methods.

Q4 SAM ERGAS

CS/MRA/VO

GT 1.0000 0.0000 0.0000

EXP 0.4795 5.1823 6.3953

BT-H 0.9120 3.4491 2.9962

BDSD-PC 0.9094 2.9576 2.9309

C-GSA 0.9006 2.9667 3.1751

SR-D 0.9108 2.9571 2.8708

MTF-GLP-HPM-R 0.9105 3.1454 2.9727

MTF-GLP-FS 0.9076 3.0906 3.0104

TV 0.9023 2.8455 2.9508

ML

PanNet 0.8826 3.9010 3.6584

DRPNN 0.8884 5.9745 4.2175

MSDCNN 0.8736 4.1837 3.5057

BDPN 0.8783 4.0874 3.7266

DiCNN 0.8143 6.2024 5.5863

PNN 0.8406 4.6105 3.9881

A-PNN-FT 0.8838 3.6224 3.3742

FusionNet 0.8159 4.2536 4.0710

ML-based methods have quite low performance demonstrating

a weak network generalization. Overall, traditional methods

outperform all the ML-based approaches. Among the ML-

based techniques, PanNet and A-PNN-FT yield the best quan-

titative results on the three quality metrics. The other ML-

based methods obtain lower performance. Fig. 17 depicts the

fused products showing competitive performance for some

traditional methods, i.e., the BT-H, the C-GSA, the MTF-GLP-

HPM-R, and the MTF-GLP-FS. Although the SR-D has the

best ERGAS, some artifacts appear in the related outcome

(see the blue close-up in Fig. 17). Among the ML-based

methods, all the compared approaches have similar spatial

details. However, some of them, such as, DRPNN, DiCNN,

and FusionNet, have a significant spectral distortion (see the

color of the river in Fig. 17). This is also corroborated by the

SAM values in Tab. XVI.

5) Sensor Generalization Ability Assessed on the Full Res-

olution IKONOS Dataset: The same analysis as in Sect.

IV-I4 is performed at full resolution exploiting the IKONOS

Toulouse dataset, again. The A-PNN-FT yields the best overall

performance, see Tab. XVII. Indeed, thanks to the use of

the fine-tuning strategy, A-PNN-FT has a better network

generalization ability than the other ML techniques. This

is a good hint for future developments that could include

this strategy to increase the generalization ability. Another

ML approach getting competitive performance with respect

to traditional methods is the PanNet. About the traditional

methods, the SR-D obtains the highest performance. Moreover,

other two traditional approaches, i.e., C-GSA and TV, also

achieve promising results. Finally, it is worth to be pointed out
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(a) EXP (b) BT-H (c) BDSD-PC (d) C-GSA

(e) SR-D (f) MTF-GLP-HPM-R (g) MTF-GLP-FS (h) TV

(i) PanNet (j) DRPNN (k) MSDCNN (l) BDPN

(m) DiCNN (n) PNN (o) A-PNN-FT (p) FusionNet

Fig. 16: Visual comparisons in natural colors of the compared approaches on the full resolution San Francisco dataset, see

also Fig. 11.

that despite of the HQNR index represents a state-of-the-art

quality index, more research is still needed about this topic [4].

Indeed, the difficult in ranking approaches belonging to very

different philosophies (e.g., classical against ML methods) is
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(a) PAN (b) EXP (c) BT-H (d) BDSD-PC (e) C-GSA (f) SR-D

(g) MTF-GLP-HPM-R (h) MTF-GLP-FS (i) TV (j) PanNet (k) DRPNN (l) MSDCNN

(m) BDPN (n) DiCNN (o) PNN (p) A-PNN-FT (q) FusionNet (r) GT

Fig. 17: Visual comparisons in natural colors of the compared approaches on the reduced resolution IKONOS Toulouse dataset,

see also Fig. 11.

evident. Thus, results at reduced and full resolution can hardly

be compared when referring to methods in different classes.

J. Discussions

This section is devoted to some final discussions about the

ML-based approaches. Some aspects as convergence, testing

and training times, amount of parameters, and so forth will be

detailed in the following.

1) Convergence: Fig. 18 exhibits the training loss and

validation loss of all the compared ML-based approaches.

The goal of this analysis is to show that the ML approaches

converge but avoiding the overfitting phenomenon. Observing

the curves depicted in Fig. 18, we can state that the goal is

achieved by all the compared methods.

2) Testing Time: To evaluate the testing time of all the com-

pared pansharpening methods, we employ 4 reduced resolution

WV3 testing datasets, see Sect. IV-G1 for more details. Tab.

XVIII reports the average testing time for all the compared

methods. Note that the traditional approaches are implemented

on the CPU, while the ML-based methods instead exploit the

GPU. From the table, it is easy to note that some traditional

methods, such as, BT-H, BDSD-PC, MTF-GLP-HPM-R, and

MTF-GLP-FS, run very fast, even though these methods are

tested on the CPU. Other traditional approaches, i.e., SR-D

and TV, instead take more time (in particular, the TV). The

testing times of the ML-based methods are quite close (less

than 1 second) to the very fast traditional techniques. This

is because ML approaches take advantages of the use of the

GPU.

3) Training Time, Parameter Amount, and GFLOPs: We

also investigate the training times of all the ML-based methods

to evaluate the cost of the training. From the first row in

Tab. XIX, it is clear that the slowest method, i.e., BDPN,

needs almost one day to train the network on the WV3

training dataset, while the fastest approach, i.e., PanNet, can

complete the training phase in two hours. Looking at the

parameter amount (second row in Tab. XIX), BDPN has the

highest value, instead, DiCNN gets the lowest one. Finally,

by evaluating the giga floating point operations per second

(GFlops), BDPN and DiCNN show the extreme values, again.

4) Histogram Comparison of Error Maps: Fig. 19 shows

the histograms of the errors between each fused image and

the GT evaluated on 4 reduced resolution WV3 datasets, also

used in Sect. IV-G1. From the figure, we can see that the stan-

dard deviations of the A-PNN-FT and the FusionNet get the

smaller results showing better overall results for this test case.

Moreover, the range proportion (RP) within [−0.02, 0.02] (the

larger RP, the better performance) has also been reported in

Fig. 19. Again, the best values are obtained by the FusionNet

and the A-PNN-FT.
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(a) PanNet (b) DRPNN (c) MSDCNN (d) BDPN

(e) DiCNN (f) PNN (g) A-PNN-FT (h) FusionNet

Fig. 18: The convergence curves for all the compared ML-based methods. The corresponding loss functions are reported in

Tab. III.

(a) PanNet (std/RP=0.019/0.827) (b) DRPNN (0.019/0.829) (c) MSDCNN (0.020/0.818) (d) BDPN (0.022/0.804)

(e) DiCNN (0.019/0.831) (f) PNN (0.021/0.807) (g) A-PNN-FT (0.018/0.836) (h) FusionNet (0.017/0.849)

Fig. 19: The comparison of the error histogram for all the ML-based methods. The error is computed between each fused

image and the GT on 4 reduced resolution WV3 datasets, also used in Sect. IV-G1. Synthetic indexes as the standard deviation

(std) and the range proportion (RP) are reported. Best results are in boldface.

5) Performance Vs. Parameter Amount: Fig. 20 investi-

gates the relationship between quantitative performance and

parameter amount, aiming to illustrate the effectiveness of

the compared ML-based methods. Again, 4 reduced resolution

datasets acquired by the WV3 sensor, also used in Sect. IV-G1,

have been exploited. The quality is measured using the three

quality indexes at reduced resolution (i.e., the Q8, the ERGAS,

and the SAM). Optimal results are plotted in the top-left area

for the Q8, which means getting high values of the Q8 with

few parameters. Instead, for the ERGAS and the SAM, the

optimal area is located in the bottom-left part of the plot. The

more the methods are close to the optimal areas, the better the

trade-off between quality and computational burden. Having

a look at Fig. 20, we can note that the A-PNN-FT and the

FusionNet get excellent performance on the data used in this

analysis for all the three quality metrics.

V. CONCLUDING REMARKS

In this paper, we presented the first critical comparison

among pansharpening approaches based on the ML paradigm.

A complete review of the ML literature has been proposed

first. Then, eight state-of-the-art solutions for sharpening MS

images using PAN data have been compared. To this aim,

a toolbox exploiting a common software platform and open-

source ML library for all the ML approaches has been de-

veloped. All the ML approaches have been reimplemented
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Fig. 20: The comparison of quantitative performance Vs. parameter amount on 4 reduced resolution WV3 datasets, also used

in Sect. IV-G1.

TABLE XVII: Quantitative comparison of the outcomes of the
benchmark on the full resolution IKONOS Toulouse dataset, see also
Fig. 11. The ML-based approaches are trained on the QB dataset.
Bold: the best among all the compared methods; Underline: the best
among all the ML-based methods.

Dλ DS HQNR

CS/MRA/VO

EXP 0.0560 0.1723 0.7813

BT-H 0.0690 0.0812 0.8554

BDSD-PC 0.0880 0.0617 0.8557

C-GSA 0.0641 0.0371 0.9012

SR-D 0.0163 0.0522 0.9323

MTF-GLP-HPM-R 0.0275 0.0853 0.8896

MTF-GLP-FS 0.0285 0.0908 0.8834

TV 0.0472 0.0307 0.9235

ML

PanNet 0.0239 0.0344 0.9425

DRPNN 0.0723 0.0197 0.9095

MSDCNN 0.0830 0.0261 0.8930

BDPN 0.0699 0.0405 0.8924

DiCNN 0.1507 0.0156 0.8361

PNN 0.0823 0.0453 0.8761

A-PNN-FT 0.0282 0.0194 0.9529

FusionNet 0.0662 0.0263 0.9093

exploiting the common software platform (we selected Pytorch

to this aim). The developed toolbox will be freely distributed to

the community. A careful tuning phase has been performed to

ensure the highest performance for each one of the compared

approaches. A broad experimental analysis, exploiting differ-

ent test cases, has been conducted with the aim of assessing

the performance of each ML-based state-of-the-art approach.

Widely used sensors for pansharpening have been involved

(i.e., WorldView-2, WorldView-3, WorldView-4, QuickBird,

and IKONOS). The assessments both at reduced resolution

and at full resolution have been considered. The comparison

among ML-based approaches has also been enlarged to state-

of-the-art methods belonging to different paradigms (i.e., CS,

MRA, and VO). The generalization ability of the networks

with respect to the changes of the acquisition sensor and

scenario has also been reported. Finally, a wide computational

analysis has been presented in the discussions section of the

paper.

ML-based approaches have demonstrated their outstanding

performance in scenarios close to the ones presented during

the training phase. Instead, reduced performance (in particular,

in comparison with recent state-of-the-art traditional methods)

has been remarked when a completely different scenario is

used in the testing phase, thus showing a limited generalization

ability of these approaches. However, the fine-tuning strategy

has proven its ability in contrasting the above-mentioned issue,

guaranteeing high performance even in these challenging test

cases. The computational burden, measured during the testing

phase, of the compared ML approaches can be considered

adequate, even in comparison with the fastest traditional

methods. Anyway, the training phase is still time consuming

for several approaches requiring even one day (see the BDPN

case) for the training with a relative small amount of samples.

Finally, we want to draw some guidelines for the devel-

opments of new ML-based pansharpening approaches. In-

deed, focusing on the analyzed ML-based pansharpening ap-

proaches, it can be remarked that the skip connection operation

can help ML-based methods in getting a faster convergence.

Instead, the design of multiscaled architectures (even including

the bidirectional structure) can support a better extraction and

learning of the features. Furthermore, the fine-tuning technique

and the learning in a specific domain (i.e., not in the original

image domain) can increase the generalization ability of the

networks.

However, some challenges still exist representing room for

improvement for researches in the next future. Specifically, as

already pointed out above, the computational burden is still an

open issue pushing researchers in developing networks with a

reduced parameters amount (even getting a fast convergence)

while taking care of the network’s effectiveness. Moreover,

the generalization ability is limited for most of the new

developments in ML for pansharpening. This is a crucial point

to be addressed to move towards the use of machine learning

products for remote sensing image fusion in a commercial

environment. Finally, the original idea of working at reduced
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TABLE XVIII: The comparison of testing times (seconds) for all the compared methods. Note that the traditional methods (first row) are
implemented on CPU and the ML-based approaches (second row) instead exploit the GPU. The times are computed on 4 reduced resolution
WV3 testing datasets.

EXP BT-H BDSD-PC C-GSA SR-D MTF-GLP-HPM-R MTF-GLP-FS TV

Testing Time 0.007 0.092 0.234 1.305 7.138 0.246 0.314 31.232

PanNet DRPNN MSDCNN BDPN DiCNN PNN A-PNN-FT FusionNet

Testing Time 0.339 0.337 0.442 0.493 0.370 0.456 0.921 0.376

TABLE XIX: The comparison of training times (Hours: Minutes), parameter amount, and GFlops for all the compared ML-based methods.
The WV3 training dataset is used as reference for this evaluation.

PanNet DRPNN MSDCNN BDPN DiCNN PNN A-PNN-FT FusionNet

Train. Time 1:46 4:42 3:08 23:22 8:21 8:40 7:55 3:01

Para. # 78,504 433,465 228,556 1,484,412 47,369 104,360 104,360 76,308

GFlops 0.32 1.78 0.91 3.80 0.19 0.29 0.22 0.32

resolution to get labels to train networks is helpful. However,

it is based on the hypothesis of ªinvariance among scalesº

that could not be valid. Thus, as already pointed out in our

literature review in Sect. I, new (unsupervised) approaches

based on loss functions measuring similarities at full resolution

have been developed. This is an interesting research line but

future developments are still required, even considering the

need of new studies about more accurate quality metrics at

full resolution.
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