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Abstract
For the pansharpening problem, previous convo-
lutional neural networks (CNNs) mainly concate-
nate high-resolution panchromatic (PAN) images
and low-resolution multispectral (LR-MS) images
in their architectures, which ignores the distinctive
attributes of different sources. In this paper, we pro-
pose a convolution network with source-adaptive
discriminative kernels, called ADKNet, for the pan-
sharpening task. Those kernels consist of spatial
kernels generated from PAN images containing rich
spatial details and spectral kernels generated from
LR-MS images containing abundant spectral infor-
mation. The kernel generating process is specially
designed to extract information discriminately and
effectively. Furthermore, the kernels are learned in
a pixel-by-pixel manner to characterize different in-
formation in distinct areas. Extensive experimental
results indicate that ADKNet outperforms current
state-of-the-art (SOTA) pansharpening methods in
both quantitative and qualitative assessments, in the
meanwhile only with about 60,000 network param-
eters. Also, the proposed network is extended to
the hyperspectral image super-resolution (HSISR)
problem, still yields SOTA performance, proving
the universality of our model. The code is available
at http://github.com/liangjiandeng/ADKNet.

1 Introduction
Because of hardware limitations, sensors of satellites can-
not capture images of both spectral and high spatial reso-
lution. Only low-resolution multispectral (LR-MS) images
and high-resolution panchromatic (PAN) images are captured
respectively by satellites like IKONOS, WorldView-2, and
WorldView-3. Thus, pansharpening, which aims to fuse a
PAN image and an LR-MS image to obtain a high-resolution
multispectral image (HR-MS), becomes a fundamental tech-
nique in the field of remote sensing image processing. In ad-
dition, the task of pansharpening is proved to be popular by
the contest in 2006 [Alparone et al., 2007], and the increasing
number of review papers published recently.
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Figure 1: The comparison between most representative CNN-based
methods and the proposed method. Note that the former concate-
nates different sources and applies standard convolution to them.
The latter generates kernels discriminately from different sources
and applies adaptive convolution to one source.

The traditional methods of pansharpening can be classi-
fied into three categories [Meng et al., 2018], i.e., component
substitution (CS) methods, multi-resolution analysis (MRA)
approaches, and variational optimization-based (VO) tech-
niques. With the rapid growth of deep learning, methods
based on convolutional neural networks (CNNs) [Zhang et
al., 2019; Fu et al., 2021; Deng et al., 2021] have been widely
applied to the problem of pansharpening. Thanks to CNNs’
excellent non-linear mapping and feature extraction capabili-
ties, such methods yield satisfactory results.

In the field of pansharpening, since PAN images con-
tain rich spatial details, while LR-MS images contain abun-
dant spectral information, they are supposed to be processed
discriminately. As shown in supplementary, most CNN-
based methods simply concatenate PAN and LR-MS im-
ages, and throw them directly into meticulously designed net-
works, without considering the distinctive attributes of differ-
ent sources. Thus, they may not extract features effectively,

http://github.com/liangjiandeng/ADKNet
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Figure 2: Schematic diagram of source-adaptive discriminative kernels generator (ADKG).

which may cause some network parameters to be wasted.
Additionally, these methods apply standard convolution to
achieve image fusion. In standard convolution, static kernels
with the same weights are applied to different areas of given
images, which is called content-agnostic [Su et al., 2019].
Previous studies indicate that standard convolution may not
be optimal to capture features in some computer vision tasks
[Wu et al., 2018]. Therefore, it is necessary to design adap-
tive kernels which dynamically change with the input.

To tackle the problems mentioned above, we propose a
so-called ADKNet for pansharpening, which is composed
of source-adaptive discriminative kernels generator (ADKG)
modules in series. The spatial kernels and spectral kernels
generated are combined through element-wise multiplication
to form source-adaptive discriminative kernels, which are
then applied to inject detailed information into the LR-MS
image as shown in Fig. 1. Our contributions are as follows:

1. A novel ADKG for the task of pansharpening is de-
signed to extract and process information from different
sources discriminately and effectively, which guarantees
the generalization ability and fewer parameters.

2. The source-adaptive discriminative kernels are gener-
ated in a pixel-by-pixel manner to characterize different
information in distinct areas, which is proved to be opti-
mal in capturing features for computer vision tasks.

3. Our network yields state-of-the-art (SOTA) outcomes on
several datasets of pansharpening. Also, due to the ef-
fectiveness of ADKG, our ADKNet only costs about
60,000 network parameters for pansharpening.

2 Related Works
2.1 CNN-based Methods
With the rapid growth of deep learning, more and more CNN-
based methods have emerged in the field of pansharpening,
achieving competitive results. The initial work is the pan-
sharpening neural network (PNN) by [Giuseppe et al., 2016],
which fuses PAN and LR-MS images through three layers of

standard convolution. After that, subsequent works, e.g., Pan-
Net by [Yang et al., 2017], DMDNet by [Fu et al., 2021], and
FusionNet by [Deng et al., 2021], further prove the potential
of the CNNs by yielding remarkable results. However, most
existing works do not fully consider the differences between
spatial and spectral features as they simply concatenate PAN
images and LR-MS images, and send them directly into the
CNNs. Such a process cannot extract information discrimi-
nately and effectively, which may cause the waste of network
parameters and the loss of generalization ability.

2.2 Adaptive Convolution
In standard convolution, static kernels with the same weights
are shared across various areas of different images, leading
to sub-optimal feature extraction and the loss of flexibility.
Adaptive convolution replaces static kernels with adaptive
ones generated from the input. Pioneering work is the dy-
namic filter networks (DFN) by [Jia et al., 2016], where ker-
nels are generated directly from input contents by a sepa-
rate network branch. Thus, kernel weights vary as data in-
put to the network. With the development of attention mech-
anisms in deep learning, this strategy is introduced to gen-
erate adaptive kernels [Wu et al., 2018], which allows ker-
nels to be learned from multiple neighboring areas of im-
ages. Later works, e.g., pixel-adaptive CNNs (PAC) by [Su et
al., 2019], and decoupled dynamic filter networks (DDF) by
[Zhou et al., 2021], further prove the superiority of adaptive
convolution. It’s notable that the above-mentioned adaptive
convolutions are never used in the field of multi-source im-
age fusion, e.g., pansharpening, hyperspectral image super-
resolution (HSISR), etc. Considering the advantages of adap-
tive convolution, we introduce it to the task of remote sensing
pansharpening, by designing a generator that can extract fea-
tures of distinct areas.

2.3 Motivation
For pansharpening, PAN images contain rich spatial details,
while LR-MS images contain abundant spectral information.
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Figure 3: The architecture of source-adaptive discriminative kernels based network (ADKNet).

However, most existing CNN-based methods overlook the
differences between spatial and spectral features that they
treat PAN and LR-MS images equally, which may cause weak
capability of feature representation and the loss of general-
ization ability. Thus more network parameters are needed
to reach considerable performance. Though adaptive con-
volution has been proved optimal in other computer vision
tasks, regrettably, it has not been fully applied to the field of
pansharpening. To alleviate the problems above, we propose
ADKNet, which extracts features through specially designed
ADKG and injects details into LR-MS images in a pixel-by-
pixel manner, aiming to obtain better generalization ability
while reducing network parameters.

3 The Proposed Method
3.1 Notations
The LR-MS image obtained directly from a remote sensing
satellite is denoted asM ∈ RC×h×w, where C, h, w repre-
sents spectral band, height and weight. P ∈ RH×W denotes
the PAN image, in which H = 4h, W = 4w because the scal-
ing factor is generally 4 in pansharpening. The up-sampled
LR-MS, the desired HR-MS and the ground-truth (GT) im-
age are defined asMU ,O,X ∈ RC×H×W , respectively.

3.2 ADKG
To extract and process information discriminately while be-
ing lightweight, we carefully design ADKG, shown in Fig. 2,
for the task of pansharpening. ADKG is generally composed
of two branches, i.e., spatial branch, and spectral branch. The
former learns spatial details of various areas from PAN im-
ages, forming spatial kernels. And the latter extracts spectral
information among different channels of LR-MS images to
form spectral kernels.

For the spatial branch, we first apply a 1× 1 standard con-
volution layer to alter the number of input channels. Then, we
learn in-depth spatial features via 3× 3 standard convolution
layers. After that, we transpose the feature maps to the size
of H ×W × k2 (k is the kernel size) and reshape them into
spatial kernels in a pixel-by-pixel organized manner. Given
the input spatial feature representation Fspa ∈ RS×H×W (S

is the channel number of input feature maps), the formation
of spatial kernels can be simply represented as:

Kspa = Bspa(Fspa), (1)

where Bspa(·) denotes the operation of spatial branch in Fig.
2, and Kspa ∈ RH×W×k×k denotes the spatial kernels. The
formed spatial kernels can be seen as a group of convolution
kernels with the size of k×k, and each kernel corresponds to
a pixel of a distinct position.

As for the spectral branch, global average pooling is first
used to aggregate spectral information, while dislodging use-
less spatial details. Then, fully connected layers are applied
to further extract spectral features of higher levels. After that,
the feature maps are reshaped to the size of S × k × k and
transposed to the spectral kernels. Given the input spectral
feature representation Fspe ∈ RS×H×W , the formation of
spectral kernels can be simply presented as:

Kspe = Bspe(Fspe), (2)

where Bspe(·) denotes the operation of spectral branch in
Fig. 2, and Kspe ∈ RS×k×k denotes spectral kernels.

To obtain source-adaptive discriminative kernels, we first
duplicate the produced spatial kernels and spectral kernels
Kspa and Kspe, forming Kspa′, Kspe′ ∈ RS×H×W×k×k, re-
spectively. Then we operate element-wise product between
Kspa′ and Kspe′ to combine them, producing kernels of rich
spatial details and abundant spectral information, which can
be represented as:

Kad = Kspa
′
�Kspe

′
, (3)

where Kad ∈ RS×H×W×k×k denotes the desired source-
adaptive discriminative kernels, and � denotes element-wise
product.

Since the generated kernels may contain extremely large or
small values, the normalization method in [Zhou et al., 2021]
is applied to enhance the stability of training.

3.3 Adaptive Convolution for Pansharpening
Standard convolution. In standard convolution, given F =
F(1) ∈ RS×N (N = H ×W ) that denotes the mode-1 un-
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Figure 4: Visual comparisons in natural colors of the most representative methods on Rio dataset of WV3.
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Figure 5: Absolute error maps of Fig. 4.

folding1 of input feature maps F ∈ RS×H×W , the ith pixel
of the unfolded output feature maps can be written as a com-
bination of input features:

F ′(·,i) =
∑
j∈Ω(i)

W[pi − pj ]F(·,j) + b, (4)

in which F(·,j) ∈ RS denotes the input feature vector at the
jth pixel, and F ′(·,i) ∈ RS′

(S′ is the channel number of out-
put feature maps) represents the ith pixel of the output feature
vector. b ∈ RS′

defines the bias vector. Ω(i) is a k × k con-
volution window around the ith pixel, andW ∈ RS′×S×k×k

is a bank of static kernels with the size of k × k. Since pi
denotes 2D pixel coordinates, [pi − pj ] represents indexing
of the spatial dimensions of an array with 2D offsets, which
makesW[pi − pj ] ∈ RS′×S the kernels at position offset be-
tween the ith and jth pixels. Thus, the same bank of kernels
is shared across various areas of different images in standard
convolution, leading to sub-optimal feature extraction.
Adaptive convolution. To alleviate the limitation of stan-
dard convolution, we apply adaptive convolution on spectral

1The mode-1 unfolding of a tensor X ∈ Rn1×n2×n3 can be
defined as a matrix X ∈ Rn1×n2n3 , where the tensor’s (i, j, k)-th
element maps to the matrix’s (i, l)-th element satisfying l = (j −
1)n2 + k.

feature maps with kernels generated by ADKG for pansharp-
ening, which can be written as:

F spe(r,i)

′
=

∑
j∈Ω(i)

Kad(r,i)[pi − pj ]F
spe
(r,j), (5)

where F spe(r,j) ∈ R denotes the value at the jth pixel of the
rth channel of the unfolded input spectral feature maps, and
F spe(r,i)

′ ∈ R denotes the output one. Kad(r,i) ∈ Rk×k defines a
single kernel at the ith pixel-wise position of the rth channel
of the unfolded Kad. Thus, the kernels applied in adaptive
convolution are element-wise generated from the input, con-
sidering the spatial details and spectral information.

3.4 ADKNet
To prove the effectiveness of ADKG and adaptive convolu-
tion for pansharpening, the ADKNet, as shown in Fig. 3, is
designed to be a simple series network architecture with a
skip connection.

Firstly, we apply the basic forward propagation section
to process P and M, obtaining Fspa and Fspe. Then, the
acquired feature maps are sent into ADKG to form source-
adaptive discriminative kernels in a pixel-by-pixel manner.
The generated kernels are utilized to apply adaptive convo-
lution on Fspe, delivering spatial and spectral information.



Method SAM ERGAS SCC Q8 QAVE Parameters

GS 5.70±2.01 5.28±2.19 0.873±0.071 0.766±0.139 0.768±0.146 /
SFIM 5.45±1.90 5.20±6.57 0.866±0.067 0.798±0.122 0.811±0.130 /
BDSD 7.00±2.85 5.17±2.25 0.871±0.080 0.813±0.123 0.817±0.126 /
BDSD-PC 5.43±1.97 4.25±1.86 0.891±0.069 0.853±0.116 0.852±0.124 /
PRACS 5.59±1.98 4.69±1.85 0.866±0.081 0.813±0.129 0.811±0.137 /
GLP-CBD 5.29±1.96 4.16±1.78 0.890±0.070 0.854±0.114 0.849±0.123 /
GLP-HPM 5.60±1.97 4.76±1.94 0.873±0.065 0.817±0.128 0.810±0.139 /

PNN 4.00±1.33 2.73±1.00 0.952±0.046 0.908±0.112 0.911±0.114 1.0×105

PanNet 4.09±1.27 2.95±0.98 0.949±0.046 0.894±0.117 0.907±0.118 0.8×105

DiCNN 3.98±1.32 2.74±1.02 0.952±0.046 0.910±0.112 0.911±0.115 0.6×105

DMDNet 3.97±1.25 2.86±0.97 0.953±0.045 0.900±0.114 0.913±0.115 1.1×105

FusionNet 3.74±1.23 2.57±0.99 0.958±0.045 0.914±0.112 0.914±0.117 0.8×105

ADKNet 3.56±1.22 2.43±0.93 0.962±0.043 0.921±0.108 0.920±0.112 0.6×105

Ideal value 0 0 1 1 1 0

Table 1: Quality assessment of the most representative methods on
1258 reduced-resolution samples of WV3. Best results are in bold.

We called the procedure above an adaptive convolution layer.
In our network, the layer number is set as 7, which preferably
simulates a physical process of keeping injecting detailed in-
formation of different levels into maps with insufficient fea-
tures. After these layers, we restore the shape of output fea-
ture maps and add them withMU derived through operating
deconvolution onM, obtainingO which contains rich spatial
details and abundant spectral information.

3.5 Loss Function
To further verify the effectiveness of our network, we choose
the simple mean square error (MSE) as the loss function:

Loss =
1

M

M∑
m=1

‖fΘ(M{m},P{m})−X {m}‖22, (6)

whereM{m}, P{m} and X {m} denote the mth LR-MS and
PAN training pair, and GT image, respectively. fΘ(·) rep-
resents our network and Θ defines the involved model pa-
rameters. M is the number of training examples, and ‖ · ‖2
indicates the `2 norm.

4 Experiments
In this section, we measure the performance of the pro-
posed method by comparing it with some recent state-of-
the-art (SOTA) pansharpening approaches belonging to the
CS-based, MRA-based, and CNN-based methods through
a series of experiments on various datasets acquired by
WorldView-3 (WV3) and WorldView-2 (WV2) satellites.

4.1 Experiment Settings
Datasets. In this work, we mainly conduct our experiments
on WV3 with a spatial resolution of about 0.3 m for the PAN
and 1.2 m for the LR-MS images. The spatial resolution ratio
is equal to 4 and the radiometric resolution is 11 bits. The
MS bands are composed of four standard colors (RGB and
near-infrared) and four new bands (coastal, yellow, red edge,
and near-infrared). The dataset is downloaded from the pub-
lic website2, which contains 12580 samples. We process the
dataset to PAN/LR-MS/GT image pairs (70%/20%/10% as
training/validation/testing dataset) with the size of 64 × 64,

2https://resources.maxar.com/

Method SAM ERGAS SCC Q8 QAVE

GS 4.061 3.896 0.897 0.866 0.867
SFIM 3.913 3.563 0.888 0.885 0.890
BDSD 3.957 2.849 0.907 0.936 0.936
BDSD-PC 3.807 2.849 0.906 0.936 0.935
PRACS 4.026 3.250 0.897 0.906 0.899
GLP-CBD 3.707 2.773 0.909 0.935 0.934
GLP-HPM 4.135 3.492 0.882 0.894 0.891
PNN 3.073 1.908 0.961 0.969 0.970
PanNet 3.005 1.951 0.964 0.965 0.969
DiCNN 3.025 1.912 0.963 0.969 0.970
DMDNet 2.936 1.812 0.970 0.969 0.973
FusionNet 2.834 1.751 0.971 0.973 0.974
ADKNet 2.713 1.533 0.980 0.977 0.978

Ideal value 0 0 1 1 1

Table 2: Quality assessment on Rio dataset of WV3.

Method QNR Dλ Ds

GS 0.896±0.067 0.021±0.032 0.085±0.046
SFIM 0.932±0.058 0.024±0.033 0.045±0.033
BDSD 0.941±0.055 0.016±0.014 0.044±0.045
BDSD-PC 0.915±0.063 0.020±0.026 0.066±0.046
PRACS 0.912±0.070 0.019±0.030 0.071±0.050
GLP-CBD 0.916±0.074 0.031±0.039 0.055±0.049
PNN 0.957±0.035 0.016±0.020 0.026±0.018
PanNet 0.961±0.026 0.019±0.013 0.019±0.015
DiCNN 0.942±0.056 0.017±0.026 0.041±0.036
DMDNet 0.963±0.019 0.016±0.010 0.020±0.010
FusionNet 0.951±0.038 0.018±0.019 0.031±0.022
ADKNet 0.972±0.012 0.010±0.006 0.018±0.007

Ideal value 1 0 0

Table 3: Quality assessment on 30 full-resolution samples of WV3.

64 × 64 × 8 and 16 × 16 × 8 following Wald’s protocol by
[Wald et al., 1997], same as FusionNet by [Deng et al., 2021].
Benchmarks. We compare our method with several state-of-
the-art (SOTA) approaches consist of four CS-based meth-
ods: GS by [Laben and Brower, 2000], BDSD by [Garzelli
et al., 2008], BDSD-PC by [Vivone, 2019] and PRACS by
[Choi et al., 2010]; three MRA-based methods: SFIM by
[Liu, 2000], GLP-HPM by [Vivone et al., 2014], and GLP-
CBD by [Alparone et al., 2007]; and five CNN-based meth-
ods: PNN by [Giuseppe et al., 2016], PanNet by [Yang et al.,
2017], DiCNN by [He et al., 2019], DMDNet by [Fu et al.,
2021] and FusionNet by [Deng et al., 2021]. For a fair com-
parison, all CNN-based approaches are trained on the same
Nvidia GPU-2080Ti and Pytorch environments.
Evaluation Metrics. According to the pansharpening re-
search standard, we choose five quality indexes for the re-
duced resolution, including SAM, ERGAS [Wald, 2002],
SCC [Zhou et al., 1998], QAVE [Wang and Bovik, 2002] and
Q8 [Garzelli and Nencini, 2009]. And we apply QNR, Dλ

and Ds indexes [Vivone et al., 2015] for the full resolution.
Parameters Tuning. In our ADKNet, we set the initial learn-
ing rate, epoch, and batch size as 0.003, 1000, and 32, respec-
tively. Thus, the number of iterations is 2.5 × 105. In addi-
tion, the learning rate is reduced by half every 100 epochs and
Adam is used as the optimizer. In particular, for the setting
of other compared CNN-based methods, we apply the default
asset in related papers and codes.

https://resources.maxar.com/


Method SAM ERGAS SCC Q8 QAVE

GS 7.730 7.364 0.844 0.808 0.818
SFIM 7.115 6.957 0.856 0.843 0.848
BDSD 7.182 6.377 0.860 0.879 0.881
BDSD-PC 7.095 6.323 0.857 0.881 0.883
PRACS 7.589 7.408 0.812 0.831 0.826
GLP-CBD 7.110 6.543 0.845 0.875 0.873
GLP-HPM 7.299 6.997 0.835 0.852 0.850
PNN 6.862 5.626 0.884 0.894 0.903
PanNet 6.348 5.683 0.879 0.893 0.899
DiCNN 6.816 5.977 0.880 0.880 0.890
DMDNet 6.199 5.369 0.890 0.906 0.910
FusionNet 7.536 6.392 0.840 0.875 0.880
ADKNet 6.000 4.935 0.909 0.924 0.927

Ideal value 0 0 1 1 1

Table 4: Quality assessment on Stockholm dataset of WV2.

Method SAM ERGAS SCC Q8 QAVE Parameters

ConvNet 7.169 5.760 0.869 0.895 0.905 2.5×105

AKNet 7.827 6.853 0.804 0.855 0.858 0.6×105

ADKNet 6.000 4.935 0.909 0.924 0.927 0.6×105

Ideal value 0 0 1 1 1 0

Table 5: Ablation study for ADKNet on Stockholm dataset of WV2.

4.2 Reduced Resolution Assessment
We train our network and other CNN-based methods on the
training dataset acquired by the WV3 satellite. Then, we
evaluate the most representative methods on 1258 reduced-
resolution images. The quantitative assessment results are
presented in Tab. 1 which shows our ADKNet obtains the
best average quantitative performance for all the quality in-
dexes with the fewest network parameters.

We further implement the test on a new dataset acquired
by WV3 named Rio with the size of 256 × 256 for a PAN
image. The quantitative assessment results are presented in
Tab. 2, which proves the priority of our network. Besides, we
present the qualitative assessment results in Fig. 4 and Fig. 5.
The darker the absolute error map, the better, indicating our
ADKNet outperforms other methods.

4.3 Full Resolution Assessment
To demonstrate the application value of our proposed method,
we perform experiments on 30 full-resolution samples on
WV3 with the size of 256×256 for PAN images. The quanti-
tative assessment results are shown in Tab. 3. Obviously, the
ADKNet performs the best on all three indexes, which firmly
indicates the superiority of our method.

4.4 Generalization
One significant problem of CNN-based methods for pan-
sharpening is the generalization ability. Once the testing
dataset varies a lot, some CNN-based approaches may not
perform well. Owing to the distinctive features extraction
process, our ADKNet possesses a stronger generalization
ability over other CNN-based methods. We verify this by
applying models trained on the dataset of WV3 to another
dataset named Stockholm acquired by WV2, with the size of
256 × 256 for PAN image. The quantitative assessment re-
sults are shown in Tab. 4, from which we can observe that the
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Figure 6: Networks designed for ablation study.

ADKNet far exceeds the performance of other methods on all
five indexes, which strongly proves the superior generaliza-
tion ability of our network. More relevant visual results can
be found in the supplementary material.

4.5 Ablation Study
To prove the effectiveness of our ADKNet, we design two
networks in Fig. 6 to carry out the ablation study.

For the first network (called ConvNet), we concatenate
PAN and LR-MS images and throw them into seven stan-
dard convolution layers with the kernel size of 3 × 3. As
for the second network (called AKNet), the concatenation of
the PAN and LR-MS images is thrown into both spatial and
spectral branches of ADKG, ignoring the distinction between
spatial and spectral features.

ConvNet is designed to verify the superior of adaptive
convolution for pansharpening, while AKNet is designed to
prove the correctness of processing different sources discrim-
inately. We train ConvNet and AKNet on WV3 and test on
WV2. The results are shown in Tab. 5. It is obvious that the
ADKNet achieves far better performance than ConvNet and
AKNet, which proves that our strategy can greatly improve
the performance for pansharpening.

5 Conclusion
In this work, we proposed a novel scheme named ADKNet,
which consists of ADKG modules in series. Through ADKG
block, spatial details from PAN images and spectral informa-
tion from LR-MS images can be extracted effectively, thereby
forming source-adaptive discriminative kernels which can in-
ject detailed information into LR-MS images in a pixel-by-
pixel manner. ADKNet yields state-of-the-art (SOTA) out-
comes on various datasets of remote sensing pansharpening
with the fewest network parameters, proving the strong fea-
ture learning ability of the proposed method. In addition, the
excellent generalization capability of ADKNet indicates that
it is more reliable and robust than other advanced methods.
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