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Abstract
Pansharpening is a critical yet challenging low-level vision
task that aims to obtain a higher-resolution image by fusing
a multispectral (MS) image and a panchromatic (PAN) im-
age. While most pansharpening methods are based on con-
volutional neural network (CNN) architectures with stan-
dard convolution operations, few attempts have been made
with context-adaptive/dynamic convolution, which delivers
impressive results on high-level vision tasks. In this paper, we
propose a novel strategy to generate local-context adaptive
(LCA) convolution kernels and introduce a new global har-
monic (GH) bias mechanism, exploiting image local speci-
ficity as well as integrating global information, dubbed LAG-
Conv. The proposed LAGConv can replace the standard con-
volution that is context-agnostic to fully perceive the par-
ticularity of each pixel for the task of remote sensing pan-
sharpening. Furthermore, by applying the LAGConv, we pro-
vide an image fusion network architecture, which is more
effective than conventional CNN-based pansharpening ap-
proaches. The superiority of the proposed method is demon-
strated by extensive experiments implemented on a wide
range of datasets compared with state-of-the-art pansharp-
ening methods. Besides, more discussions testify that the
proposed LAGConv outperforms recent adaptive convolu-
tion techniques for pansharpening. The code is available at
https://github.com/liangjiandeng/LAGConv.

Introduction
Pansharpening aims to fuse a low-resolution multispectral
image (LR-MSI) and a high-resolution panchromatic image
(HR-PANI) to make up for the deficiencies of certain kinds
of remote sensing data, even promoting the applicability of
remote sensing image for higher-level processing, such as
classification (Cao et al. 2020), land monitoring (Du et al.
2013) and detection (Ying et al. 2017). Recently, there has
been a considerable improvement for pansharpening thanks
to new and complex CNN architectures, which are mainly
based on the standard convolution operations (Vivone et al.
2021; Guo, Zhuang, and Guo 2020).
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Figure 1: A toy example to motivate the use of the LAG-
Conv. Left: The standard convolution operation, by which
all the pixels in the image/feature map are convolved by the
same kernel K; Right: The LAGConv operation, by which
all the pixels in the feature map are convolved by local-
context adaptive (LCA) kernels K̃. The blue line indicates
the classical convolution operation, and the orange line is
the dot product between the kernel K and the weights adap-
tively learned from the local patches.

Standard convolution, however, is inherently limited by
its spatial-invariance property when addressing pixel-wise
tasks like image super-resolution and pansharpening. For a
specific feature map, using a uniform convolution kernel on
different locations that record different objects can lead to a
limited ability in terms of image content adaptation (Su et al.
2019). To overcome this shortcoming, many adaptive convo-
lution techniques have been designed to dynamically gener-
ate convolution kernels for different regions or pixels. They
have yielded promising performance in several high-level vi-
sion tasks (Chen et al. 2020; Yang et al. 2019; Chen et al.
2021b). Nevertheless, existing adaptive convolution meth-
ods, either only focusing on the locality of small regions (Su
et al. 2019) or full images (Yang et al. 2019), result in an
undesired redundancy or neglect the details in the image.
For this reason, they are hardly applicable to pansharpening.
This paper proposes a novel adaptive convolution operation
consisting of local-context adaptive (LCA) convolution ker-
nels and global harmonic (GH) bias, specifically applied to
remote sensing pansharpening. This method can fully ex-
tract and exploit the local and global information of the in-
volved image/features to achieve superior performance. The
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Figure 2: A comparison of the architectures of (a) the standard convolution, (b) the spatially adaptive convolution, and (c) the
proposed adaptive convolution.

main contributions of this paper can be summarized as fol-
lows:

1. We propose a novel strategy to generate LCA convolu-
tion kernels based on each pixel and its neighbors, which
not only inherits the advantages of standard convolution,
but also enhances the ability to focus on local features
and overcomes the limitation of context-agnostic.

2. An GH bias mechanism is introduced to supplement the
global information into the local features, thus mitigat-
ing the subtle distortion caused by spatial discontinuities,
further making the network more flexible and achieving
a balance between global and local relationships.

3. The standard convolution layer can be replaced by the
combination of the LCA convolution kernels and the GH
bias mechanism. We adopt the structure of the residual
block, then designing a simple network. To the best of
our knowledge, this is the first attempt of using the adap-
tive convolution to address the pansharpening task.

4. Our network is advantageous thanks to a simple im-
plementation, the end-to-end learning, and the compu-
tational efficiency. Experiments show that our model
achieves outstanding performance with respect to the
state-of-the-art methods in spite of the absence of deep
layers and a huge number of parameters.

Related Works and Motivations
In this section, we review first several state-of-the-art works
on pansharpening and adaptive convolution methods. Then,
our motivations are presented.

Pansharpening: The State of Art
Existing pansharpening approaches can be divided in model-
driven and data-driven methods. Model-driven methods
take into account the imaging mechanism, which is pre-
dictable and theoretically reasonable. Some representa-
tive instances of model-driven methods are the smooth-
ing filter-based intensity modulation (SFIM) (J. Liu 2000),
the generalized Laplacian pyramid (GLP) (Aiazzi et al.
2002) with modulation transfer function (MTF)-matched fil-
ters (Aiazzi et al. 2006), the GLP with a regression-based
injection model (GLP-CBD) (Alparone et al. 2007), and

the band-dependent spatial-detail with local parameter esti-
mation (BDSD) (Garzelli, Nencini, and Capobianco 2007).
Nonetheless, they are incapable of modeling complex non-
linear situations in an efficient way.

Several CNN-based data-driven techniques have recently
emerged, pushing the task of pansharpening to a new era
and alleviating the issues arisen by model-driven methods.
Some representative instances of works in this class are the
PNN (Masi et al. 2016), the PanNet (Yang et al. 2017), the
DiCNN1 (He et al. 2019), the DMDNet (Fu et al. 2020), and
the FusionNet (Deng et al. 2021). They have in common the
use of the uniform convolution kernel and conventional bias
for feature extraction, resulting in limited learning capabili-
ties of the network.

Adaptive Convolution Techniques
Recently, adaptive convolution techniques, in which sam-
pling locations and/or kernel values are adapted or inferred
depending on the inputs, have gained much attention in
the field of computer vision (Zhou et al. 2021; Chen et al.
2021a). Existing techniques can be classified into the fol-
lowing three categories:

Adaptive Receptive Fields: To tackle the demand for
hand-crafted modifications for receptive field sizes, a scale-
adaptive convolution method is proposed for acquiring re-
ceptive fields of variable size (Zhang et al. 2017). Moreover,
Tabernik et al. present the displaced aggregation units to
learn spatial displacements, also adapting the receptive field
sizes (Tabernik, Kristan, and Leonardis 2020). Besides, Dai
et al. provide the idea of dilating the spatial sampling loca-
tions with additionally learned offsets, thus enhancing the
geometric transformation modeling ability of the CNN (Dai
et al. 2017).

Learning Specialized Convolutional Kernels for Each
Example: In (Yang et al. 2019), researchers propose con-
ditionally parametrized convolutions (CondConv) breaking
the traditional standard convolution characteristics by calcu-
lating the convolution kernel parameters through the input
samples. Another notable work is the dynamic convolution
(DYConv) proposed in (Chen et al. 2020), which aggregates
multiple convolution kernels according to their customized



attention degree to each sample. Similar works include the
WeightNet (Ma et al. 2020) and the DYNet (Zhang et al.
2020), in which the convolution kernel is spatially shared.

Spatially Adaptive Convolution Kernel: To overcome
the context-agnostic nature of the standard convolution, a
deeply explored direction in adaptive convolution is to learn
an independent kernel at each pixel by using distinct net-
work branches as illustrated in Fig. 2 (Jia et al. 2016;
Zamora Esquivel et al. 2019; Tian, Shen, and Chen 2020),
which leads to a huge amount of parameters. Due to com-
putational limitations, these adaptive convolutions are only
used to replace a few convolutional layers or in small frame-
works. Furthermore, Sun et al. propose a pixel-adaptive con-
volutional neural network (PAC) that adjusts the filters in
a pixel-specific manner (Su et al. 2019). The PAC has a
pre-defined form. Limited by the fixed form, it is prone to
overfit when applied to pansharpening. By employing de-
coupled spatial and channel adaptive kernels, the decoupled
dynamic filter network (Zhou et al. 2021) is lightweight
even compared with the standard convolution. These spa-
tially adaptive methods abandon the kernel sharing mecha-
nism of the standard convolution. Although these spatially
adaptive methods are useful for many applications, they are
often viewed as a way to increase the kernel redundancy.

Motivations
Based on the related works, we know that standard convolu-
tion operations have the defect of context-agnostic. Differ-
ent positions in the same feature map use a uniform convo-
lution kernel for feature extraction, even if these positions
contain different semantic information. However, for pan-
sharpening, a pixel-wise convolution kernel needs to achieve
a more effective feature representation. Most of the exist-
ing pixel-by-pixel adaptive convolution kernels completely
abandon the global-sharing properties of standard convolu-
tion and directly introduce convolution kernels by design-
ing network branches, which can generate excessive calcula-
tions or redundancy problems. Therefore, we retain the stan-
dard spatial-shared convolution kernel, and, according to the
local content, we estimate their adaptive weights.

However, while focusing on local uniqueness, global in-
formation cannot be ignored. To reconcile the local and
global balance, we design a global harmonic bias mecha-
nism, thus integrating the representation of global and local
features into a convolution module to replace the standard
convolution.

Proposed Method
In this section, we introduce first the designed LAGConv.
Then, this LAGConv is further embedded into a residual
network architecture, which is able to transfer image de-
tails from shallow layers to deep layers to sharpen the low-
resolution multispectral image, see, e.g., (Yang et al. 2017).

LAGConv
In pansharpening, the value of each pixel should be accu-
rately determined and the pixel reconstruction is closely re-
lated to its neighbors. Therefore, we made a change in the

design of the convolution kernel. While retaining the stan-
dard convolution kernel, we dynamically learn the weight
for each pixel and, finally, realize the adaptive convolution
by the dot product of the standard convolution kernel and the
weight. The specific operation is detailed below.

Standard Convolution First, let us review the standard
convolution. As shown in Fig. 2, a standard convolution
without bias operates on a pixel Iij ∈ R1×1×Cin located
at spatial coordinates (i, j). Its local patch is defined as
Aij ∈ Rk×k×Cin , where Cin and k indicate the channels of
the input feature map and the patch size, respectively. Dur-
ing the standard convolution operation, all the local patches
of the input feature map use the same kernel K. Thus, the
operation can be expressed as follows:

Ôij = Aij ⊗K, (1)

where K ∈ RCin×k×k×Cout can be viewed asCout convolu-
tion kernels with size k×k×Cin on one layer,⊗ represents
the convolution operation, Ôij ∈ R1×1×Cout is the result af-
ter the convolution, with Cout denoting the channels of the
output feature map.

Local-context Adaptive Kernels Different from the stan-
dard convolution, the kernel in our LAGConv is automat-
ically adjusted depending on the local patch. Let K̃ij ∈
RCin×k×k×Cout represents the kernel that is used to per-
form the convolution on Aij . The proposed LAGConv can
be expressed as follows:

Ôij = Aij ⊗ K̃ij . (2)

In particular, the generation of K̃ij consists of the follow-
ing three steps, as shown in the top part of Fig. 3. First, Aij

is sent to the convolutional layer with the ReLU activation
function to yield its shallow feature. Second, the shallow fea-
ture is sent to the fully connected (FC) layers with ReLU
and sigmoid activations. A weight W̃ij ∈ R1×k2 is learned,
which can perceive the potential relationship between the
central pixel Iij and its neighbors. Finally, the W̃ij ∈ R1×k2

is reshaped to Wij ∈ Rk×k used as the scaling factor for ev-
ery kernel in K. The scaled kernel is denoted as K̃ij and it
can be calculated as follows:

K̃ij = WD
ij �K, (3)

where � represents the dot product and WD
ij is the dupli-

cated version of Wij along the Cin channels. The obtained
local-context adaptive kernel allows to the network to pro-
duce distinctive predictions that consider the local content
inconsistencies of the feature map.

Global Harmonic Bias Mechanism We design a global
harmonic bias mechanism for our LAGConv. The motiva-
tion of this mechanism is to impose an overall continuity of
the output feature map. The whole operation process of the
LAGConv can be expressed as follows:

Oij = Õij + D, (4)
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Figure 3: The overview of the LAGConv architecture. The upper part is the local-context adaptive kernel (LAC) and the bottom
part is the global harmonic (GH) bias mechanism. The pink block is a 2D convolutional (2D Conv) layer, where the kernel size
and padding are set to k and p, respectively, and the input channel and the output channel are Cin and Cout, respectively. For
better understanding, we take the kernel size k = 3 and the padding p = 1.

where D ∈ R1×Cout is defined as the global harmonic bias
generated by the following two steps. First, the input feature,
I, is passed through the global average pooling layer (GAP)
to obtain Ĩ ∈ R1×Cin . Second, Ĩ is sent to the FC layers
with the ReLU activation function to get the output D. This
mechanism allows the LAGConv to yield a coherent output
that considers all the pixels.

In contrast to previous works, we propose to dynamically
adapt the feature map within the network. On one hand, the
specificity of each pixel is not ignored. On other hand, since
we do not directly discard the kernel shared in the standard
convolution operation, no computational resource is wasted
in the processing of redundant information.

Local-context Adaptive Residual Network
Based on the proposed LAGConv, we construct a local-
context adaptive residual block (LCA-ResBlock) to form the
overall network as shown in Fig. 4. We denote the LR-MSI
as “LR” and the HR-PANI as “HR”. We want to develop a
simple but effective image fusion network that takes an up-
sampled “LR” (denoted as L̃R) image and an “HR” data as
input. “SR” is instead the fused image in output.

LCA-ResBlock is exactly the same as the original Res-
Block (He et al. 2016), except that the standard convolu-
tion in ResBlock is substituted by the proposed LAGConv.
In what follows, we will introduce the proposed overall ar-
chitecture. As shown in Fig. 4, the proposed network has
three steps. The first one contains a LAGConv layer and
a ReLU activation layer, then followed by several stacked
LCA-ResBlocks. The last step is also an LAGConv layer.
Specifically, the HR and the L̃R are concatenated together
to obtain a feature map M containing the two input images.
After that, M is passed through the network. Finally, the out-
put of the network is added to the L̃R to get the final SR im-
age. The whole procedure can be expressed by the following

equation:
SR = L̃R + FΘ(L̃R;HR), (5)

where FΘ(·) represents the mapping function with its pa-
rameters Θ that is updated to minimize the distance between
the SR and the ground-truth (GT) image. We chose the
simple mean square error (MSE) loss function, since it is
enough to yield good outcomes:

L(Θ) =
1

N

N∑
i=1

∥∥∥∥FΘ(L̃R
(i)

; HR(i)) + L̃R
(i)
−GT(i)

∥∥∥∥2

F

,

(6)
where N is the number of training examples and ‖·‖F rep-
resents the Frobenius norm.

Experiments
Datasets and Metrics
To benchmark the effectiveness of our network for pan-
sharpening, we adopt a wide range of datasets including 8-
band data captured by the WorldView-3 (WV3) sensor and
4-band datasets captured by the GaoFen-2 (GF2) and the
QuickBird (QB) sensors. Since ground-truth (GT) images
are not available, Wald’s protocol (B. Aiazzi and Garzelli
2002) is applied. All the source data can be downloaded
from the public websites1 2. As in the case of (Deng et al.
2021), for WV3 data, we obtain 12580 PAN/MS/GT image
pairs (70%/20%/10% as training/validation/testing datasets)
with size 64×64×1, 16×16×8, and 64×64×8, respectively;
For GF2 data, we use 10000 PAN/MS/GT image pairs
(70%/20%/10% as training/validation/testing datasets) with
size 64×64×1, 16×16×4, and 64×64×4, respectively; For
QB data, 20000 PAN/MS/GT image pairs (70%/20%/10%

1https://resources.maxar.com/
2http://www.rscloudmart.com/dataProduct/sample
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Figure 5: Qualitative comparison on the reduced resolution Rio dataset (source: WV3). The first row presents the RGB visual-
ization, while the second row displays the corresponding absolute error maps (AEMs).

as training/validation/testing datasets) with size 64×64×1,
16×16×4, and 64×64×4 are adopted.

The quality evaluation is conducted both at reduced and
full resolutions. For reduced resolution tests, the widely used
SAM (Yuhas, Goetz, and Boardman 1992), ERGAS (Wald
2002), SCC (Zhou, Civco, and Silander 1998), and Q-index
for 4-band (Q4) and 8-band data (Q8) (Garzelli and Nencini
2009) are adopted to assess the quality of the results. To eval-
uate the performance at full resolution, the QNR, the Dλ,
and the Ds (Vivone et al. 2015) indexes are considered.

Training Details and Parameters
The models are implemented with PyTorch on NVIDIA
GeForce GTX 2080Ti. For the parameters of the proposed
model, the number of the LCA-ResBlocks is set to 5, while
the channels of the LAGConv and the kernel size are 32 and
k×k (with k = 3), respectively. Besides, we set 1000 epochs
for the network training, while the learning rate is 1× 10−3

in the first 500 epochs and 1 × 10−4 in the last 500 epochs.
The FC layers used in the LAGConv consist of two dense
layers with k2 neurons, and the FC layers in the GH bias
consist of two dense layers with Cout neurons. Adam opti-

mizer is used for training with a batch size equal to 32, while
β1 and β2 are set to 0.9 and 0.999, respectively.

Comparison with State of Art

We evaluate the proposed method comparing it with sev-
eral state-of-the-art approaches, including model-driven and
data-driven methods.

Evaluation on 8-band Reduced Resolution Dataset. Ta-
ble 1 reports the average results of all the metrics for the
compared methods on the WV3 dataset. By using the same
training dataset, the proposed method overcomes the Fusion-
Net clearly getting better performance. Remarkably, the pro-
posed method achieves an elevate spatial fidelity measured
by the SCC. The visual quality comparison of the pansharp-
ening methods for the Rio dataset captured by the WV3 sen-
sor is shown in Fig. 5. We can easily see that all the model-
driven methods produce some artifacts. Data-driven meth-
ods instead get images with finer details. To aid the visual
inspection, we also show the absolute error maps (AEMs).
It can be observed that our result is the closest to the GT im-
age with cleaner edges than the other compared techniques.



Table 1: Average results on 1258 reduced resolution WV3 data and 50 full resolution WV3 images, respectively. (Bold: best;
Underline: second best)

(a) Reduced resolution WV3 dataset (b) Full resolution WV3 dataset

Method SAM ERGAS SCC Q8 QNR Dλ Ds

SFIM (J. Liu 2000) 5.452± 1.903 4.690± 6.574 0.866± 0.067 0.798± 0.122 0.9282± 0.0512 0.0254± 0.0287 0.0485± 0.0283

GLP-CBD (Alparone et al. 2007) 5.286± 1.958 4.163± 1.775 0.890± 0.070 0.854± 0.114 0.9113± 0.0671 0.0331± 0.0338 0.0590± 0.0432

BDSD (Garzelli et al. 2007) 7.000± 2.853 5.167± 2.248 0.871± 0.080 0.813± 0.123 0.9300± 0.0491 0.0177± 0.0130 0.0537± 0.0404

PanNet (Yang et al. 2017) 4.092± 1.273 2.952± 0.978 0.949± 0.046 0.894± 0.117 0.9521± 0.0219 0.0260± 0.0114 0.0226± 0.0123

DiCNN1 (He et al. 2019) 3.981± 1.318 2.737± 1.016 0.952± 0.047 0.910± 0.112 0.9436± 0.0458 0.0185± 0.0210 0.0392± 0.0299

DMDNet (Fu et al. 2020) 3.971± 1.248 2.857± 0.966 0.953± 0.045 0.913± 0.115 0.9554± 0.0200 0.0215± 0.0099 0.0237± 0.0118

FusionNet (Deng et al. 2021) 3.744± 1.226 2.568± 0.944 0.958± 0.045 0.914± 0.112 0.9556± 0.0316 0.0198± 0.0168 0.0254± 0.0183

Proposed 3.473± 1.197 2.338± 0.911 0.965± 0.043 0.923± 0.114 0.9637± 0.0119 0.0147± 0.0077 0.0220± 0.0064

Ideal value 0 0 1 1 1 0 0

EXP SFIM GLP-CBD BDSD PanNet DiCNN1 DMDNet FusionNet Proposed

Figure 6: Qualitative comparison on a full resolution WV3 dataset.

Evaluation on 8-band Full Resolution Dataset. The
goal of pansharpening is related to real-world applications.
Therefore, we further perform a full resolution experiment
on 50 WV3 examples. The quantitative results are reported
in Table 1 and the visual results are shown in Fig. 6. Again,
our method overcomes the other compared approaches both
quantitatively and qualitatively.

Evaluation on 4-band Reduced Resolution Dataset. To
prove the wide applicability of the proposed method, we also
conduct experiments on the 4-band GF2 and QB datasets.
Table 2 reports the outcomes for the whole benchmark. It is
clear to see the proposed approach gets the best results.

Ablation Study
To verify the effectiveness of the LCA kernel (LCAK) and
the GH bias, we perform a wide ablation study on the Tripoli
dataset captured by the WV3 sensor. The specific settings
for the five variants of the LAGConv are as follows: 1) only
conventional kernels (CK); 2) CK and bias; 3) CK with GH
bias; 4) only LCAK; 5) LCAK and bias. The experimen-
tal results are shown in Fig. 7 and Table 3. It is can be ob-
served that the proposed LAGConv works better than the
network with standard convolutions. Besides, the compari-
son between the conventional bias and the absence of bias
demonstrates that the conventional bias is not suitable for
this image fusion task. On other hand, the network with GH
bias clearly shows better performance supporting the fact
that the GH bias makes coherent outputs.

Comparison with Spatially Adaptive Kernels
We also compare the deployment of the LAGConv with re-
spect to some existing spatially adaptive filters for pansharp-

v1 v2 v3 v4 v5 v6 GT

0 5 10 15 20 25 30 35 40 45 50

Figure 7: Qualitative comparison of the ablation study on
the Tripoli dataset (source: WV3). The first row is about
the RGB products and the second one represents the cor-
responding AEMs.

ening on 1258 WV3 data. In particular, we compare the
proposed LAGConv with the pixel-adaptive convolutional
(PAC) (Su et al. 2019) and the decoupled dynamic filter
(DDF) (Zhou et al. 2021). Since they are not originally de-
signed for pansharpening, we replace the LAGConv in the
residual network with PAC and DDF, as well as retraining
them with the same training set. Table 4 shows the numerical
comparison. It is clear that the proposed LAGConv achieves
the best results. It also proves that it is worth to design spe-
cific methods for specific tasks.

Extension to Another Application
To demonstrate the robustness and the adaptability of our
model, we tested it on another application, i.e., the hy-
perspectral image super-resolution (HISR), which fuses an
LR hyperspectral image (LR-HSI) and an HR multispec-
tral image (HR-MSI) to obtain an HR-HSI. We adopt the



Table 2: Average results on 81 GF and 48 QB examples, respectively. (Bold: best; Underline: second best)

(a) GF dataset (b) QB dataset

Method SAM ERGAS SCC Q4 SAM ERGAS SCC Q4

SFIM (J. Liu 2000) 2.297± 0.638 2.189± 0.695 0.861± 0.054 0.865± 0.040 7.718± 1.872 8.778± 2.380 0.832± 0.105 0.767± 0.119

GLP-CBD (Alparone et al. 2007) 2.274± 0.733 2.046± 0.620 0.873± 0.053 0.877± 0.041 7.398± 1.783 7.297± 0.932 0.854± 0.064 0.819± 0.128

BDSD (Garzelli et al. 2007) 2.307± 0.670 2.070± 0.610 0.877± 0.052 0.876± 0.042 7.671± 1.911 7.466± 0.991 0.851± 0.062 0.813± 0.136

PanNet (Yang et al. 2017) 1.400± 0.326 1.224± 0.283 0.956± 0.012 0.947± 0.022 5.314± 1.018 5.162± 0.681 0.930± 0.059 0.883± 0.140

DiCNN1 (He et al. 2019) 1.495± 0.381 1.320± 0.354 0.946± 0.022 0.945± 0.021 5.307± 0.996 5.231± 0.541 0.922± 0.051 0.882± 0.143

DMDNet (Fu et al. 2020) 1.297± 0.316 1.128± 0.267 0.964± 0.010 0.953± 0.022 5.120± 0.940 4.738± 0.649 0.935± 0.065 0.891± 0.146

FusionNet (Deng et al. 2021) 1.180± 0.271 1.002± 0.227 0.971± 0.007 0.963± 0.017 4.540± 0.779 4.051± 0.267 0.955± 0.046 0.910± 0.136

Proposed 1.085± 0.238 0.912± 0.206 0.977± 0.006 0.970± 0.016 4.378± 0.727 3.740± 0.298 0.959± 0.047 0.916± 0.134

Ideal value 0 0 1 1 0 0 1 1

Table 3: Quantitative comparison of the ablation study on
the Tripoli dataset (source: WV3).

Method SAM ERGAS SCC Q8

CK (v1) 4.2564 3.1026 0.9628 0.9511

CK + bias (v2) 4.3483 3.1302 0.9614 0.9511

CK + GH bias (v3) 4.2267 3.0575 0.9637 0.9524

LCAK (v4) 4.0354 2.9495 0.9676 0.9571

LCAK + bias (v5) 4.0264 2.9129 0.9684 0.9568

LCAK + GH bias (v6, i.e., proposed) 3.9740 2.9010 0.9692 0.9584

Ideal value 0 0 1 1

same evaluation framework as in (Xie et al. 2020). Further-
more, we compare our network with three state-of-the-art
data-driven methods, including the SSRNet (Zhang et al.
2020), the ResTFNet (Liu, Liu, and Wang 2020), and the
MHFNet (Xie et al. 2020). Table 5 shows the quantita-
tive performance on a widely used dataset, i.e., the CAVE
dataset (Yasuma et al. 2010). Our model gets the best overall
outcomes. For the sake of brevity, we only show the visual
comparison with the MHFNet in Fig. 8. More results can be
found in the supplementary material. The AEMs of our ap-
proach are displayed in dark blue indicating a better spatial
and spectral preservation than the MHFNet.

Conclusions
We have presented a novel adaptive convolution operation,
called LAGConv, including the generation of local-context
adaptive kernels and global harmonic bias. The adaptive lo-
cal and translation-invariance properties of the LAGConv
guarantee its huge potential for pixel-level vision tasks. Be-

Table 4: Comparisons with two state-of-the-art spatially
adaptive kernel-based methods on 1258 reduced resolution
WV3 test cases.

Method SAM ERGAS SCC Q8

PAC 4.102± 1.713 3.012± 0.947 0.947± 0.053 0.902± 0.122

DDF 3.877± 1.278 2.876± 0.967 0.952± 0.048 0.913± 0.114

LAGConv 3.473± 1.197 2.338± 0.911 0.965± 0.043 0.923± 0.114

Table 5: Average results on 11 CAVE examples.

Method PSNR SAM ERGAS SSIM

SSRNet 45.28± 3.13 4.72± 1.76 2.06± 1.30 0.990± 0.004

ResTFNet 45.35± 3.68 3.76± 1.31 1.98± 1.62 0.993± 0.003

MHFNet 46.32± 2.76 4.33± 1.48 1.74± 1.44 0.992± 0.006

Proposed 47.68± 3.37 3.07± 0.97 1.49± 0.96 0.995± 0.002

Ideal value ∞ 0 0 1

RGB MHFNet Proposed GT

0 500 1000 1500 2000 2500 3000

Figure 8: AEMs for the HISR task on three CAVE examples.

sides, the global information is added to the output as a bias,
making the results more reasonable. We further adopt a sim-
ple residual structure network equipped with the LAGConv
for the task of remote sensing pansharpening. The exper-
iments prove that the proposed method could achieve the
best results compared with state-of-the-art approaches, and
it can be easily extended to another similar tasks, e.g., the
challenging hyperspectral image super-resolution problem.
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