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Abstract—Hyperspectral image super-resolution (HISR) is to
fuse a low-resolution hyperspectral image (LR-HSI) and a high-
resolution multispectral image (HR-MSI), aiming to obtain a
high-resolution hyperspectral image (HR-HSI). Recently, various
convolution neural network (CNN) based techniques have been
successfully applied to address the HISR problem. However,
these methods generally only consider the relation of a local
neighborhood by convolution kernels with a limited receptive
field, thus ignoring the global relationship in a feature map. In
this paper, we design a transformer-based architecture (called
Fusformer) for the HISR problem, which is the first attempt to
apply the transformer architecture to this task to the best of
our knowledge. Thanks to the excellent ability of feature rep-
resentations, especially by the self-attention in the transformer,
our approach can globally explore the intrinsic relationship
within features. Considering the specific HISR problem, since
the LR-HSI holds the primary spectral information, our method
estimates the spatial residual between the upsampled LR-MSI
and the desired HR-HSI, reducing the burden of training the
whole data in a smaller mapping space. Various experiments
show that our approach outperforms current state-of-the-art
HISR methods. The code is available at https://github.com/J-
FHu/Fusformer.

Index Terms—Hyperspectral image super-resolution, Trans-
former, Image fusion, Remote sensing.

I. INTRODUCTION

HYPERSPECTRAL images can provide more abun-

dant spectral characteristics than standard red-green-

blue (RGB) images or multispectral images. As a result,

the hyperspectral images have many practical applications,

such as classification [1]–[3], and remote sensing [4], [5],

thus showing a quite important role. However, limited by the

current physical imaging system, there is an unavoidable issue,

i.e., it is impossible to generate an image with a high spatial

resolution and a high spectral resolution at the same time
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[6]. Therefore, the HISR becomes a promising technique to

produce the desired HR-HSI.

Many methods have been proposed from various perspec-

tives in the last few years to address the HISR problem.

They can be roughly divided into two classes, i.e., traditional

methods and deep learning (DL) based approaches.

For traditional methods, many researchers propose different

prior knowledge in their models to exploit intrinsic properties

under the maximum a posteriori (MAP) framework. This prior

knowledge, such as sparsity, low rankness and self-similarity,

has been applied to many computer vision and image process-

ing tasks, see, e.g., remote sensing pansharpening [7]–[9], and

HISR [10]–[13]. However, those handcrafted priors are usually

limited to depicting all the latent characteristics. Furthermore,

their optimal algorithm parameters sometimes need to be tuned

carefully for different datasets.

Recently, DL-based methods, especially CNN techniques,

have been exploited to deal with the HISR problem and

showed promising performance, see e.g., [14]–[21]. CNNs are

more flexible and comprehensive than traditional approaches

using manual priors. Nevertheless, each neuron in CNN ar-

chitecture has a limited receptive field; thus, the CNN only

observes the input feature in a local neighborhood. Besides,

excellent results are usually accompanied by an excessive

amount of parameters. Due to the above-mentioned issues, the

further development of CNN methods has been limited.

It is worth to be remarked that the transformer architecture

proposed by Vaswani et al. in [22] and its various modifi-

cations [23]–[26] have obtained outstanding achievements in

many tasks. This novel technique brings a powerful capability

of extracting global information from the whole feature map.

Moreover, Gu et al. [27] showed that a wider range of features

can achieve better performance in image super-resolution.

Based on the excellent property of the transformer module,

a network architecture (called Fusformer) is designed for

the HISR problem. Our method integrates a self-attention

mechanism that can exploit more global relationships among

pixels than standard convolution operations with a limited

receptive field.

To sum up, this paper designs an efficient network archi-

tecture to solve the HISR problem. The contributions of this

paper are summarized as follows:

1) To the best of our knowledge, this work represents

the first attempt to utilize the transformer for solving

the HISR problem. The self-attention mechanism in

the transformer enables our network to represent more

global information than previous CNN architectures. A
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preliminary version of the paper can be found in the

preprint website1.

2) The proposed approach focuses on learning in the resid-

ual domain instead of the image domain, which leads to

a smaller mapping space for more accessible training.

3) Only a few parameters are involved in the given

lightweight network, making our approach more practi-

cal. Furthermore, the network is plain and easy to follow.

Thus, future researchers can easily improve our simple

yet effective architecture.

II. PROPOSED METHOD

A. Background

Previous CNN-based methods have obtained state-of-the-art

(SOTA) performance in recent years. The core elements in the

CNN framework are various convolution kernels with limited

sizes, resulting in the receptive field being restricted within a

small (local) area. As a result, the global structure containing

valuable information is neglected in the CNN framework. Con-

sidering the limitation of the standard convolution, better ways

to extract and understand global information are challenges of

paramount importance.

The transformer model was proposed first by Vaswani et al.

in 2017 [22]. The transformer outperforms other methods and

has proven crucial and effective in natural language processing

tasks. Motivated by the success of the transformer architecture,

Dosovitskiy et al. [23] proposed the vision transformer (ViT)

for image classification. After that, Chen et al. [24] designed

the image processing transformer (IPT) to address low-level

vision tasks. The achievements of the transformer in various

tasks inspired us to design a network utilizing its superior

ability to capture long-term information and relationships in

the HISR problem.

B. Network Architecture

According to the analysis of Gu et al. [27], a wider range of

involved pixels usually brings better performance. However,

the global relationship among all the pixels is hard to be

obtained due to the limitation of the standard convolution

operation in the CNN architecture. Hence, we integrate the

transformer into our network for effectively and globally ex-

ploiting that information. The overall flowchart of our network

structure is presented in Fig. 1. In this figure, the LR-HSI,

Y ∈ R
h×w×S , holds a similar spectral structure as the ground-

truth HR-HSI, X ∈ R
H×W×S , where h = f ·H , w = f ·W ,

and f is the scaling factor, besides, S represents the band

number of the HSI.

1) Inputs: From Fig. 1, it is clear that the inputs of the given

architecture are the upsampled LR-HSI, YU ∈ R
H×W×S

and the HR-MSI, Z ∈ R
H×W×s. s represents the band

number of the MSI. The HR-MSI, Z , is concatenated first

with YU along the spectral dimension to get the data cube,

D ∈ R
H×W×(S+s), containing the spectral and spatial in-

formation. Then we unfold the tensor D to a matrix D ∈
R

HW×(S+s) due to the input’s dimension requirement of the

1https://arxiv.org/abs/2109.02079

transformer model. It is worth noting that each row vector in

the matrix D has its own significance. Namely, the vector

d = [d1, d2] ∈ R
1×(S+s) can be viewed as two vectors

d1 ∈ R
1×S and d2 ∈ R

1×s, which denote the tube pixels of the

hyperspectral and multispectral images, respectively. Note that

other transformer-based methods for computer vision tasks,

such as [23], [24], reshape a small image patch (e.g., 16× 16
in ViT) into a vector instead of a pixel. On one hand, the

hyperspectral image contains more spectral bands than natural

RGB images, thus the vector reshaped from a hyperspectral

image patch leads to a heavy computation load. On other hand,

pixel-wise information (instead of patch-wise) embedded to

a vector is also suitable for our pixel-wise super-resolution

problem. Hence, the transformer model is quite consistent

with the characteristics of the HISR problem. Every pixel

can naturally be represented as a vector, and the transformer

architecture enables the network to discover and consider

the global relationships among all the pixels. With a simple

fully connected layer, the matrix D ∈ R
HW×(S+s) is then

embedded to the matrix E ∈ R
HW×F , where F denotes the

number of feature channels. After getting the inputs, we send

the embedded features to the transformer model.
2) Main Network Architecture: The transformer model is

the main part of our architecture, which is shown in Fig. 1-

(b). We use both the encoder and decoder parts of the original

ViT. For the encoder shown in the top of Fig. 1-(b), a layer

normalization (LN), widely used in transformer-based methods

[22]–[24], is employed for the training’s stability. Then, the

use of the multi-head attention, mainly constructed by the

self-attention (SA) mechanism with multi-heads, enables the

network to capture the long-term information and the global

relationship in the HISR problem. The calculation of the self-

attention of the input X ∈ R
HW×F , i.e., A = SA(X), is given

as follows:

[Q,K,V] = X [Wq,Wk,Wv] ,

A = softmax

(

XWqW
T
k X

T

√
dk

)

XWv

= softmax

(

QKT

√
dk

)

V

= SV,

(1)

where Wq , Wk, and Wv ∈ R
F×b denote the corresponding

learnable weights of Q, K, and V (i.e., the query, the key,

and the value matrices), respectively. Besides, b indicates the

number of feature channels, dk represents the dimension of K

for scaling, and ·T is the transpose operator. Note that the score

of S ∈ R
HW×HW defines the degree of similarity among all

the pixels in the data to some extent. A larger value of smn

(m,n = 1, · · · , HW ) in the similarity matrix, S, represents a

stronger relationship between the m-th and n-th pixel in X.

Next, the introduction of V gives learning flexibility to the

network to extract the intrinsic features of X. The detailed

encoder is described as follows:

X0 = E,

X
′

i = MHA(LN(Xi−1)),

Xi = Xi−1 +X
′

i,

X
′

i = MLP(LN(Xi)),

Xi = Xi +X
′

i, i = (1, 2),

(2)
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Fig. 1. (a) Overview of the proposed Fusformer architecture. (b) The transformer module used in the network. MLP denotes the multi-layer perception, LN
represents the layer normalization, FC represents the fully connected layer and LReLU indicates the leaky ReLU activation function. (c) An illustration of
the Reshape & Refine module.

where MHA(·) = (SA1(·), · · · , SA3(·)) denotes the multi-

head attention module, MLP (·) defines the multi-layer percep-

tion, and LN(·) indicates the layer normalization. The decoder

can be described in a similar way. Finally, the feature matrix

F ∈ R
HW×F is obtained by the transformer module, and then

it is reshaped into a tensor F ∈ R
H×W×F in the Reshape &

Refine module to generate the residual E ∈ R
H×W×S .

3) Loss function: With a skip connection, we finally add

the learned residual E ∈ R
H×W×S to the upsampled LR-HSI,

YU , to obtain the HR-HSI, O ∈ R
H×W×S . Then, the ℓ1 loss

function is employed to train the network:

Li =
1

N

N
∑

n=1

∥

∥

∥
YU

(n) + E(n) −X(n)

∥

∥

∥

1

=
1

N

N
∑

n=1

∥

∥O(n) −X(n)

∥

∥

1
,

(3)

where N indicates the number of training pairs, and ‖·‖1
represents the ℓ1 norm that has shown its superiority in

preserving edges and textures [28].

III. EXPERIMENTS

To verify the effectiveness of our Fusformer, we compare it

with representative SOTA HISR methods, including 1) tradi-

tional approaches: the fast fusion based on solving Sylvester

equation (FUSE) approach [29], the generalized Laplacian

pyramid for hypersharpening (GLP-HS) technique [7], the

coupled sparse tensor factorization (CSTF) method [10] and

the fusion with CNN denoiser (CNN-FUS) approach [30];

2) DL-based approaches: the spatial-spectral reconstruction

network (SSRNet) [20], the residual two-stream fusion net-

work, (ResTFNet) [21], the MS/HS image fusion network

(MHF-Net) [15], and the hyperspectral image super-resolution

network (HSRnet) [31], on three benchmark hyperspectral

image datasets, i.e., CAVE dataset [32], Harvard dataset [33]

and Chikusei dataset [34]. Note that all the networks are only

trained on the CAVE dataset and tested on both CAVE and

Harvard datasets, thus, the experiments on the Harvard images

can be viewed as a test for the network generalization, which is

of crucial importance for DL-based methods. Furthermore, the

Chikusei dataset is selected for remote sensing hyperspectral

images experiments. It consists of 2517 × 2335 pixels and

has 128 bands. We regard the original data as the ground-

truth HR-HSI and simulate the LR-HSI in the same way

as the previous experiments. The corresponding RGB image

for the HR-MSI is obtained by Canon EOS 5D Mark II

coupled with the HR-HSI. Following that, we choose the top-

left area with a spatial size of 1000 × 2200 for training

and cut 64 × 64 overlapping regions from the training part

as the ground-truth HR-HSI patches. Furthermore, the input

HR-MSI and LR-HSI patches are 64 × 64 × 3 and 16 ×
16 × 128, respectively. For the testing data, we extract the

same 6 non-overlapping 680 × 680 × 128 areas from the

leftover Chikusei dataset as the experiment setting in [31].

For fair comparison, the used datasets are the same as in [31].

Moreover, four widely used quality indexes (QIs), i.e., the peak

signal-to-noise ratio (PSNR), the spectral angle mapper (SAM)

[35], the erreur relative globale adimensionnelle de synthèse

(ERGAS) [36], and the structure similarity (SSIM) [37] are
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Fig. 2. The top/bottom of the first column shows the GT image/corresponding LR-HSI of testing image (680 × 680 × 128) from Chikusei dataset with
pseudo-color display (R-81, G-76, B-2). The 2nd-10th columns: the pseudo-color results and the corresponding residual maps of area obtained by the methods
in the benchmark, pointing out some close-ups to facilitate the visual analysis.

used for quantitative evaluation. Furthermore, all the DL-based

networks are trained using Python 3.8.5, Pytorch 1.7.1, and an

NVIDIA GPU GeForce GTX 2080Ti on Windows operating

system. To minimize the loss function (3), we utilized the

Adam optimizer with a dynamic learning rate starting from

1×10−3 and multiplying by 0.1 for every 200 epochs (totally

1000 epochs). In addition, the batch size is set as 3 for training.

The feature channels F and b of Wq , Wk, and Wv ∈ R
F×b

in the self-attention are set to 48 and 16, respectively.

TABLE I
AVERAGE QUANTITATIVE RESULTS ON CAVE (11 TESTING IMAGES),

HARVARD (10 TESTING IMAGES) AND CHIKUSEI DATASETS (6 TESTING

IMAGES) AND THE CORRESPONDING AVERAGE RUNNING TIMES AND

NUMBER OF PARAMETERS. THE BEST VALUES ARE HIGHLIGHTED IN

BOLDFACE, THE SECOND-BEST VALUES ARE UNDERLINED. C INDICATES

CPU, G INDICATES GPU, AND M INDICATES A MILLION.

Dataset Method PSNR SAM ERGAS SSIM Running Time (s) # parameters

CAVE

FUSE [29] 39.72±3.5 5.83±2.0 4.18±3.1 0.975±0.02 1.357 (C) /
GLP-HS [7] 37.81±3.1 5.36±1.8 4.66±2.7 0.972±0.01 5.621 (C) /
CSTF [10] 42.14±3.0 9.92±4.1 3.08±1.6 0.964±0.03 22.887 (C) /
CNN-FUS [30] 42.66±3.5 6.44±2.3 2.95±2.2 0.982±0.01 6.772 (C+G) /
SSRNet [20] 45.28±3.1 4.72±1.8 2.06±1.3 0.990±0.00 0.002 (G) 0.03M

ResTFNet [21] 45.35±3.7 3.76±1.3 1.98±1.6 0.993±0.002 0.003 (G) 2.26M

MHF-Net [15] 46.32±2.7 4.33±1.8 1.74±1.2 0.992±0.00 0.224 (G) 3.63M

HSRnet [31] 47.82±2.7 2.66±0.9 1.34±0.8 0.995±0.00 0.068 (G) 1.90M

Fusformer 48.56±3.0 2.52±0.8 1.30±0.9 0.995±0.00 0.173 (G) 0.10M

Harvard

FUSE [29] 42.06±2.9 3.23±0.9 3.14±1.5 0.977±0.01 4.935 (C) /
GLP-HS [7] 40.14±3.2 3.52±1.0 3.74±1.4 0.966±0.01 20.578 (C) /
CSTF [10] 42.97±3.5 3.30±1.2 2.43±1.1 0.972±0.02 26.346 (C) /
CNN-FUS [30] 43.61±4.7 3.32±1.2 2.78±1.6 0.978±0.02 25.355 (C+G) /
SSRNet [20] 39.87±4.2 5.40±2.3 5.44±2.2 0.963±0.02 0.003 (G) 0.03M

ResTFNet [21] 38.39±4.3 5.85±2.5 6.98±2.4 0.957±0.02 0.003 (G) 2.26M

MHF-Net [15] 40.37±3.7 4.64±1.8 24.17±46.7 0.966±0.01 0.864 (G) 3.63M

HSRnet [31] 44.28±3.0 2.66±0.7 2.45±0.8 0.984±0.01 0.267 (G) 1.90M

Fusformer 44.42±3.2 2.66±0.7 2.48±1.0 0.984±0.01 0.247 (G) 0.10M

Chikusei

FUSE [29] 27.76±1.5 4.80±1.2 7.22±0.5 0.882±0.02 4.992 (C) /
GLP-HS [7] 31.60±1.3 3.29±0.3 5.69±0.3 0.919±0.01 39.784 (C) /
CSTF [10] 30.36±0.9 4.58±0.5 5.91±0.6 0.824±0.02 25.675 (C) /
CNN-FUS [30] 31.83±1.7 4.76±0.9 5.25±0.9 0.918±0.01 10.576 (C+G) /
SSRNet [20] 35.54±1.2 2.33±0.2 3.79±0.3 0.953±0.01 0.003 (G) 0.03M

ResTFNet [21] 36.70±1.5 2.20±0.2 3.66±0.3 0.949±0.01 0.003 (G) 2.26M

MHF-Net [15] 33.19±1.0 3.18±0.4 6.24±0.4 0.927±0.01 0.327 (G) 3.63M

HSRnet [31] 36.95±1.1 2.08±0.2 3.60±0.3 0.952±0.01 0.352 (G) 1.90M

Fusformer 36.34±0.9 2.00±0.2 3.68±0.3 0.957±0.01 0.276 (G) 0.10M

Tab. I reports the quantitative comparisons on the CAVE,

Harvard and Chikusei datasets. The proposed Fusformer gets

the best outcomes on almost all the QIs and only involves

about 0.1 million parameters (differently from MHF-Net and

HSRnet involving 3.63 million and 1.9 million, respectively),

making our network more practical. In Fig. 2, we also show

visual performance and the corresponding absolute residual

maps of one selected sample from the Chikusei dataset. One

can observe that the Fusformer obtains the smallest error, both

in the overall outcome and in the zoomed-in area. Moreover,

FUSE [29], GLP-HS [7], CSTF [10] and CNN-FUS [30] have

more obvious residual maps than those deep learning-based

approaches, and our Fusformer still obtains the highest PSNR

and lowest SAM, also showing the darkest residuals among all

these methods. These outcomes could be due to the powerful

feature representation and extraction ability of Transformer

(especially self-attention for depicting global dependencies).

Generalization: The generalization ability of DL-based

methods is of crucial importance. As presented in Tab. I, our

Fusformer is still satisfying, showing the best performance for

almost all the QIs. We believe that the excellent generalization

of the proposed network comes mainly from two aspects.

i) The global feature extraction brought by the Transformer

allows Fusformer not to be restricted by the specific content of

a local region. ii) Fusformer is trained in the high-pass domain,

rather than the image domain directly associated with a

specific image content, yielding abstract residual information.
TABLE II

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS ON

THE CAVE DATASET USING THE PROPOSED METHOD WITH AND WITHOUT

THE RESIDUAL LEARNING STRATEGY (RLS). THE BEST VALUES ARE

HIGHLIGHTED IN BOLDFACE.

Method PSNR SAM ERGAS SSIM
W/o RLS 42.71±7.82 3.29±1.24 4.48±7.43 0.984±0.02
Fusformer 48.56±3.03 2.52±0.83 1.30±0.86 0.995±0.00

Residual Learning: Fusformer learns the residuals between

the upsampled LR-HSI and the HR-HSI instead of directly

reconstructing the HR-HSI. We conduct a simple experiment

to verify the effectiveness of residual learning (RL). Tab. II

shows the results of the architecture with or without the RL.

It is clear that the adding of the upsampled LR-HSI, YU ,

is important for the network to boost the performance and

strengthen the stability.

IV. CONCLUSIONS

This paper proposed a transformer-based network archi-

tecture, called Fusformer, for the HISR problem. Compared

with previous CNN-based methods, our method can con-

sider the global information instead of focusing on the local

neighborhood with a limited kernel size. To the best of our

knowledge, it is the first attempt to adopt the transformer

to the HISR problem. Experimental results demonstrated our

method’s SOTA performance using fewer network parameters

and with a better network generalization.
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