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Abstract
Standard convolution operations can effectively
perform feature extraction and representation but
result in high computational cost, largely due to the
generation of the original convolution kernel cor-
responding to the channel dimension of the fea-
ture map, which will cause unnecessary redun-
dancy. In this paper, we focus on kernel generation
and present an interpretable span strategy, named
SpanConv, for the effective construction of kernel
space. Specifically, we first learn two navigated
kernels with single channel as bases, then extend
the two kernels by learnable coefficients, and fi-
nally span the two sets of kernels by their linear
combination to construct the so-called SpanKernel.
The proposed SpanConv is realized by replacing
plain convolution kernel by SpanKernel. To ver-
ify the effectiveness of SpanConv, we design a sim-
ple network with SpanConv. Experiments demon-
strate the proposed network significantly reduces
parameters comparing with benchmark networks
for remote sensing pansharpening, while achiev-
ing competitive performance and excellent gener-
alization. Code is available at https://github.com/
zhi-xuan-chen/IJCAI-2022 SpanConv.

1 Introduction
High-spatial-resolution (HR) multispectral (MS) images are
the database that reflects changes in geographic information.
However, satellite sensors cannot provide HR-MS images due
to payload and bandwidth constraints. Pansharpening, a task
of fusing HR panchromatic (PAN) images with simultane-
ously captured low-spatial-resolution (LR) MS images to ob-
tain HR-MS images, facilitates various applications, includ-
ing mineral exploration, agricultural surveying, geological
monitoring, etc. Existing pansharpening approaches can be
divided into two categories: hand-crafted feature-based meth-
ods and deep learning-based methods.

LR-MS and PAN images are frequently represented by fea-
tures backed with conventional image processing knowledge
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in hand-crafted feature-based approaches [Lolli et al., 2017;
Vivone, 2019; Vivone et al., 2018]. However, these features
have limited representational power due to their simple struc-
ture. On the other hand, by virtue of the powerful nonlin-
ear fitting ability of convolutional neural networks (CNNs),
deep learning feature-based approaches [Masi et al., 2016;
Yang et al., 2017; He et al., 2019; Deng et al., 2021;
Jin et al., 2022; T.-J. Zhang and Vivone, 2022] can automati-
cally extract features from training data and express the com-
plex nonlinearity of data. A comprehensive review can be
found in [Vivone et al., 2020].

To improve the performance of CNNs, deeper architectures
with millions of parameters are proposed while increasing the
computational burden. To balance the computational cost and
performance of CNNs, several works, such as group convolu-
tion [Krizhevsky et al., 2012], deeply separable convolution
[Howard et al., 2017] and blueprint separable convolutions
(BSConv) [Haase and Amthor, 2020] attempt to form a more
advanced convolution module by modifying the representa-
tion of convolution kernels. In addition, complex and deep
CNNs will have overfitting problem that cannot be ignored,
which leads to poor performance of the model in the face of
unknown data, limiting its application in real scenarios.

In this paper, we propose a SpanConv module based on
SpanKernel, whose generation process is analogous to the
spanning process in linear algebra. In detail, we learn the nav-
igated kernels as the basis vectors, then span the kernel space
by corresponding coefficients to create a kernel slice along
each input channel dimension. We observed that standard-
convolution-generalized kernels distribution could depict as
a subspace in the kernel space, which inspired us to cut down
the number of navigated kernels, thus reducing the computa-
tional parameters with trade-offs of accuracy. The contribu-
tions of this work are two-fold:

• We construct a kernel space that approximates the stan-
dard convolution kernel space through spanning, and re-
move the possible redundancy of the standard convolu-
tion kernel, which significantly reduces the number of
parameters. To the best of our knowledge, the proposed
SpanConv method has the fewest network parameters
(only about 16,000 parameters) while maintaining com-
petitive pansharpening performance.

https://github.com/zhi-xuan-chen/IJCAI-2022_SpanConv
https://github.com/zhi-xuan-chen/IJCAI-2022_SpanConv


Figure 1: The comparison of standard convolution kernel, the proposed SpanKernel, and prior BlueKernel [Haase and Amthor, 2020]. (a)
The standard convolution kernel with Cin × k × k is firstly reshaped to Cin kernel vectors with k2 × 1; Without the loss of generality, we
set Cin = 6 and k2 = 3 for the better illustration in R3 space. (b) The six kernel vectors are represented by six points in R3 space. (c) A R2

subspace can be spanned by a linear combination of two independent kernel vectors (i.e., the two red points, also called navigated kernels in
this work) in R3 space, motivating us to propose the SpanKernel that is further constructing SpanConv. If the six kernel vectors are located
in a plane, they can be represented by our SpanKernel completely, thus reducing parameters significantly, especially with larger Cin. (d) A
degraded version of our SpanKernel, i.e., the BlueKernel, if the linear combination only has one navigated kernel.

• We further analyze the proposed SpanConv from the per-
spective of subspace in linear algebra, and point out the
optimal number of navigated kernels by empirical ex-
periments. Also, the better generalization of the given
approach is verified comparing with recent state-of-the-
art (SOTA) pansharpening techniques.

2 Related Works and Motivation
The standard convolution kernel needs to realize the joint
mapping of channel correlation and spatial correlation. Its
parameters involve spatial and channel dimensions, which are
inefficient and prone to redundancy. In AlexNet [Krizhevsky
et al., 2012], where group convolution is proposed, the stan-
dard convolution procedure is divided into g sets of smaller
sub-operations that can be executed in parallel, thus reduc-
ing the computation complexity. In MobileNets [Howard et
al., 2017], authors build a simplified architecture through the
depth-wise separable convolution (DSC) module. The DSC
module decomposes the standard convolution into depthwise
convolution and pointwise convolution, thus significantly re-
ducing the parameters. In blueprint separable convolutions
(BSConv) [Haase and Amthor, 2020], it is found that many
convolution kernels exhibit the same structure after visualiz-
ing the learned convolution kernels. Therefore, BSConv uses
only a template called a “blueprint” convolution kernel to
generate the convolution kernel (denoted as BlueKernel from
hereon) and achieves magnificent parameters cut down.
Motivation. As the number of convolutional channels in-
creases, learnable parameters dramatically intensify. This
problem is unavoidable for deep convolutional neural net-
works and imposes a tremendous computational load on de-
vices. Naturally, not all parameters are indispensable, which
can be observed in the specific pansharpening task. In Fig.
2, we use the standard convolution to replace the SpanConv
in our proposed network and reshape the trained kernels
into a matrix Fi (please refer to the definition introduced in
Sect. 3.3). Then we apply the principal component analysis
(PCA) to the Fi, and draw the scatter distribution of the first
four principal components of each kernel, demonstrating the
low rank of Fi. The results show that the first two components
manifest strong representation ability, of which the remaining

Figure 2: The representation range of the principal components of
the standard convolution kernel. The vertical axis stands for the rep-
resentation range and the horizontal axis represents the first four
components of the standard convolution kernels after PCA. Com-
ponents with a larger range imply stronger representation ability.

components are weak. This observation further verifies the
correlation of standard kernels along the channel dimension.
Considering this, we attempt to generate a kernel space that
can approximate the standard convolution kernel by the linear
combination of basis vectors, thereby alleviating the problem
of computational parameters.

3 Methodology
In what follows, we will first give several Definitions and one
Lemma, then further propose our SpanKernel base on them.

3.1 Background and Definitions
The Preparation of Linear Algebra. To illustrate the given
method, we need to first present some basic concepts in linear
algebra, which can be found from the book in [Meyer, 2000]

Definition 1. If β = {v1, v2, · · · , vr} is r linearly indepen-
dent vectors in Rk2

, then we have the space spanning:

Span{β} = Span {v1, v2, · · · , vr}

=

{
r∑

i=1

λivi| λi ∈ R

}
.

(1)



By Definition 1, we then define the Definition 2,

Definition 2. If vi ∈ Rk2

, λi ∈ R, and r ≤ k2 where r, k2 ∈
N, then the following space

Lr =

{
r∑

i=1

λivi| λi ∈ R, vi ∈ Rk2

, r ≤ k2

}
, (2)

is a subspace of Rk2

.
Lemma 1. In Definition 2, if r = k2, the space Lr could
completely represent Rk2

, when r < k2, the space Lr could
not completely represent Rk2

.
By Definition 1, Definition 2 and Lemma 1, we use them

into the analysis for the kernel space, and we get the following
Definition 3 and three important conclusions.
Definition 3. For easy analysis, we may reshape the Fi ∈
RCin×k×k to Cin kernel vector kj ∈ Rk2

, correspondingly
define the following kernel space:

K =
{
kj | j = 1, 2, · · · , Cin, kj ∈ Rk2

, Cin ∈ N
}
, (3)

which are distributed in Rk2

.
According to Definition 2 and Lemma 1, we define vi =

K̄i, if β = {K̄1, K̄2, · · · , K̄r} is r linearly independent vec-
tors in Rk2

kernel space:

Standard Kernel For standard kernel, the parameters in one
layer is Cout × Cin × k2, where the Cout is represents the
number of output channel. Any of kernel vector in standard
kernel space can be represented by linearly independent vec-
tors in β when r = k2, as the Fig. 1 (b) shows.

BlueKernel In order to reduce parameters, the BlueKernel
[Haase and Amthor, 2020] takes an extreme approach. It only
learns a K̄1 ∈Rk2

as basis vector. Then, using the Cin learnt
coefficients, the authors expand the basis vector to Cin convo-
lution kernels. In mathematics, its essence is equal to the lin-
ear subspace spanned by β when r = 1, as illustrated in Fig.
1 (d). Considering the parameters for the coefficients, the pa-
rameters of BlueKernel in a layer are Cout×(Cin×1+k2×1),
which are tiny. And as far as we know, the paper of BSConv
did not describe its method in terms of math theory.

SpanKernel For the proposed SpanKernel, we have known
only two linearly independent vectors (β when r = 2) can
greatly represent the standard kernel space according to the
PCA analysis in Sec. 2, as Figure. 1 (c) shows. Its specific
generation method is displayed in Fig. 3. The parameters of
SpanKernel in a layer are Cout × (Cin × 2 + k2 × 2). And it
can be concluded from Fig. 1 (c) and (d), the representation
ability of SpanKernel is better than BlueKernel prominently.

3.2 Generation of SpanKernel
By the above analysis, we intend to only learn two indepen-
dent kernels as the bases1, then extend the two basis kernels
K̄i, i = 1, 2 to Cin channels by learnable coefficients and

1The case of more independent kernels will be discussed in the
experiments.

Figure 3: Generation detail of SpanKernel. We first generate
two navigated kernels, denoted as K̄1 and K̄2, then extend them
to Cin channels with learnable coefficients λ

(j)
1 and λ

(j)
2 (j =

1, 2, · · · , Cin). It is clear that the SpanKernel is formulated by
the linear combination of two navigated kernels, which is consis-
tent with the definition in Fig. 1 (c).

finally span the two sets of navigated kernels by their linear
combination to construct the so-called SpanKernel, aiming
to represent all standard kernels approximately with tolerable
errors. For the detailed procedure, please refer to Fig. 3.

3.3 Analysis
The Selection of the Number of Navigated Kernels. Here,
we discuss the number of navigated kernels in different sit-
uations. We reshape and view the kernel Fi ∈ RCin×k×k

to Fi ∈ RCin×k2

in each input feature channel as a set of
vectors, as illustrated in Fig. 1 (a), where i indicates the out-
put channel index. Usually, Fi is a non-full-rank matrix, thus
satisfying Rank(Fi) ≤ k2 (generally, Cin > k2).

When Rank(Fi) = k2, as mentioned in Sec. 3.1, we could
employ r = k2 independent vectors to completely repre-
sent any vector of Fi. Thus, the number of navigated ker-
nel vectors, i.e., N , is also equal to Rank(Fi) = k2. In
this situation, the number of parameters with SpanConv is
Cout × (Cin × k2 + k2 × k2), which is greater than that with
standard convolution, Cout × Cin × k2.

When Rank(Fi) < k2, the N still needs to be equal to
Rank(Fi) for representing standard kernel space.

In summary, the N is always equal to Rank(Fi), and the
number of parameters will reduce when the N decreases. To
balance the representation ability discussed in the Sec. 2 and
the parameters, we finally set N = 2 in our experiments.

Comparison with Benchmark Convolution Kernels. With
the above background, we analyze the modeling process of
SpanKernel and compare it with standard kernel and prior
module BlueKernel [Haase and Amthor, 2020] as follows.

For standard convolutions, the kernel in an output channel
is arbitrarily scattered in Rk2

space. In the training process,
the algorithm directly learns a set of fixed kernel vectors by
back-propagation, as Fig. 1 (b) shows. It is self-evident from
knowledge of linear algebra that a collection of linearly inde-
pendent bases is capable of describing any vector in its corre-
sponding space. In the proposed method, we view the kernel
vectors that exist in the subspace of the Rk2

space, and use
a pair of navigated vectors to span this subspace, as Fig. 1
(c) illustrates. If the kernel generation has single navigated



Table 1: The parameters of the three types of kernels.

Kernel Type Parameters

Standard Kernel CoutCink
2

SpanKernel Cout(2k
2 + 2Cin)

BlueKernel Cout(k
2 + Cin)

C

4

… +PAN

LR-MS Upsampled 
  LR-MS

Fusion head

LightNet Backbone

SpanConv ReLUC Concat + Add Belly block

Extraction belly Reconstruction tail HR-MS 

Figure 4: The overall architecture of the LightNet.

kernel, our SpanKernel degenerates into BlueKernel, as Fig.
1 (d) shows. This operation can further reduce the param-
eters, however, its representation capability is limited. The
parameters of the three kernels are displayed in Tab. 1.

3.4 Proposed LightNet
In this section, we introduce the proposed LightNet, in which
all convolutions are implemented by SpanConv that are real-
ized by replacing the standard kernel with SpanKernel. As
shown in Fig. 4, our model has three components, i.e., a fu-
sion head, an extraction belly and a reconstruction tail.

The fusion head consists of three convolution layers with
an increasing channel number. It inputs concatenated PAN
and upsampled LR-MS images and outputs a preliminary fu-
sion feature. The Cout×Cin of three layers are 9× 9, 20× 9
and 32× 20, respectively. To introduce fractional linearity, a
ReLU layer is set at the end of the fusion head.

The extraction belly receives features from the visual back-
bone and performs detail extraction. It is composed by sev-
eral belly blocks. Each block is made up of two convolution
layers with a sandwiched ReLU layer. The Cout × Cin of
the convolution layer in belly are all 32 × 32, and the block
number defaults to 2.

The part of reconstruction tail comprises three convolution
layers with decreasing channel number. It produces compen-
sated features, which are added to the upsampled LR-MS im-
age for the final fusion outcome. In particular, the Cout×Cin

of the three layers are 16×32, 8×16 and 8×8, respectively.

Network Training. Our overall objective is to train LightNet
to perform the fusion of LR-MS and PAN images, and ob-
tain a high quality HR-MS image. We exploit the ℓ1 distance
between the network prediction and the ground truth (GT)
image to supervise the reconstruction process. Besides, the
Adam optimizer is utilized with a learning rate that decays by
0.75 every 120 epochs. The initial learning rate and training
period are 0.0025 and 800 epochs, respectively. More details
are described in the supplementary material.

4 Experiments
4.1 Compared Methods
We compare our LightNet with recent benchmark DL-based
pansharpening methods, i.e., DRPNN [Ghazali et al., 2011],
MSDCNN [Wei et al., 2017], BDPN [Zhang et al., 2019],
DiCNN [He et al., 2019], PNN [Masi et al., 2016], LPPN
[Jin et al., 2022] and FusionNet [Deng et al., 2021]. For
each network, we use default hyperparameters mentioned in
their original papers. In addition, we also compare with sev-
eral representative hand-crafted feature-based methods, in-
cluding BT-H [Lolli et al., 2017], BDSD-PC [Vivone, 2019]
and MTF-GLP-FS [Vivone et al., 2018].

4.2 Datasets and Evaluation Metrics
Datasets. All DL networks are trained and tested on
WorldView-3 dataset with eight bands and QuickBird dataset
with four bands which are available on the public website2.
After downloading these datasets, we use Wald’s protocol
to simulate 10000 PAN/MS/GT image pairs with sizes of
64 × 64, 16 × 16 × 8, and 64 × 64 × 8, respectively, and
divide them into 90%/10% for training (9000 examples) and
validation (1000 examples). For testing datasets, the same
way as training dataset is taken. Especially, the upsampled
MS image (called EXP from hereon) is obtained via a poly-
nomial kernel with 23 coefficients [Aiazzi et al., 2002].

Evaluation Metrics. The performance assessment is con-
ducted both at reduced- and full-resolutions. For the quality
evaluation of reduced-resolution datasets, we take three com-
monly used metrics, i.e., the spectral angle mapper (SAM)
[Boardman, 1993], the relative dimensionless global error
in synthesis (ERGAS) [Wald, 2002] and the Q4 for four-
band data or Q8 for eight-band data [Alparone et al., 2004;
Garzelli and Nencini, 2009]. For the full-resolution datasets,
to assess the performance of all involved methods without
GT images, the quality with no reference (QNR) [Alparone
et al., 2008], the spatial distortion index Ds and the spectral
distortion index Dλ are employed for the quality evaluation.
Especially, the ideal values for QNR, Q4 and Q8 are 1, while
for ERGAS, SAM, Ds, and Dλ are 0.

4.3 Assessment on Reduced-Resolution Examples
Quantitative results of compared methods and LightNet on
130 WorldView-3 testing examples are presented in Tab. 2.
Besides, we perform the same experiment on 130 QuickBird
testing examples with four bands. Also, the number of pa-
rameters for these methods is reported on the right side of the
table. It can be observed that the parameters of LightNet are
significantly smaller compared to other DL-based techniques.
Although with the fewest parameters, the performance of the
LightNet still surpasses most of the DL-based methods. This
well proves the effectiveness of the LightNet, which can max-
imize the feature representation capacity. For visual compar-
isons, please refer to supplementary material.

2https://www.maxar.com/product-samples/,
https://earth.esa.int/eogateway/catalog/quickbird-full-archive



Table 2: Average quantitative comparisons on 130 reduced-resolution WorldView-3 and QuickBird examples. Best results are in boldface.

Methods WorldView-3 QuickBird

Q8 SAM ERGAS Params Q4 SAM ERGAS Params

EXP 0.577±0.092 8.973±1.605 8.102±2.482 − 0.743±0.057 4.549±1.141 4.011±0.660 −
BT-H 0.873±0.066 7.307±1.168 4.228±0.881 − 0.867±0.038 3.737±1.029 2.971±0.526 −

BDSD-PC 0.856±0.071 8.403±1.397 4.578±0.971 − 0.868±0.030 4.071±1.060 3.192±0.505 −
MTF-GLP-FS 0.855±0.069 8.401±1.580 4.659±1.029 − 0.850± 0.036 4.064±1.178 3.296±0.577 −

DRPNN 0.906±0.062 5.094±0.783 3.046±0.545 1867K 0.949±0.019 2.075±0.444 1.814±0.309 418K
MSDCNN 0.900±0.067 5.564±0.792 3.235±0.544 229K 0.949±0.019 2.065±0.452 1.831±0.306 190K

BDPN 0.898±0.064 5.932±0.925 3.410±0.629 1487K 0.922±0.024 2.553±0.572 2.301±0.402 1481K
DiCNN 0.912±0.057 5.075±0.760 3.006±0.586 47K 0.949±0.019 2.059±0.455 1.852±0.327 43K

PNN 0.890±0.078 5.902±0.916 3.353±0.533 104K 0.946±0.019 2.144±0.473 1.882±0.313 80K
LPPN 0.903±0.067 5.159±0.775 3.065±0.531 51K 0.957±0.018 1.933±0.378 1.664±0.260 160K

FusionNet 0.920±0.053 4.561±0.731 2.724±0.533 79K 0.958±0.017 1.821±0.374 1.629±0.283 76K
LightNet 0.919±0.053 4.897±0.792 2.901±0.554 16K 0.958±0.016 1.842±0.389 1.663±0.273 16K

Table 3: Average quantitative comparisons on 64 full-resolution WorldView-3 and QuickBird examples. Best results are in boldface.

Methods WorldView-3 QuickBird

Dλ Ds QNR Params Dλ Ds QNR Params

EXP 0.055±0.014 0.141±0.031 0.813±0.036 − 0.047±0.005 0.150±0.038 0.811±0.038 −
BT-H 0.093±0.029 0.096±0.043 0.821±0.057 − 0.088±0.030 0.100±0.033 0.822±0.050 −

BDSD-PC 0.158±0.028 0.036±0.040 0.813±0.050 − 0.121±0.028 0.041±0.028 0.843±0.043 −
MTF-GLP-FS 0.040±0.017 0.081±0.040 0.884±0.050 − 0.036±0.011 0.108±0.031 0.860±0.038 −

DRPNN 0.119±0.028 0.050±0.030 0.838±0.046 1867K 0.068±0.027 0.033±0.017 0.901±0.036 418K
MSDCNN 0.160±0.049 0.069±0.031 0.783±0.064 229K 0.080±0.045 0.030±0.013 0.893±0.053 190K

BDPN 0.133±0.039 0.067±0.026 0.810±0.054 1487K 0.064±0.026 0.077±0.027 0.864±0.043 1481K
DiCNN 0.105±0.036 0.094±0.025 0.811±0.039 47K 0.095±0.041 0.116±0.042 0.801±0.066 43K

PNN 0.143±0.071 0.083±0.012 0.787±0.070 104K 0.107±0.053 0.065±0.030 0.836±0.071 80K
LPPN 0.122±0.034 0.058±0.012 0.827±0.039 51K 0.067±0.020 0.022±0.010 0.912±0.025 160K

FusionNet 0.093±0.047 0.083±0.026 0.833±0.053 79K 0.041±0.013 0.020±0.009 0.940±0.017 76K
LightNet 0.054±0.017 0.042±0.031 0.907±0.042 16K 0.051±0.026 0.032±0.015 0.919±0.037 16K

Table 4: The perfomance of SpanConv and BSConv as the embed-
ded modules in benchmark networks.

Network Q8 SAM ERGAS Params

DiCNN 0.912±0.057 5.075±0.760 3.006±0.586 83K
DiCNN+ 0.886±0.072 6.853±1.096 3.767±0.703 16K

DiCNN++ 0.891±0.072 6.445±1.026 3.575±0.607 28K

FusionNet 0.920±0.053 4.561±0.731 2.724±0.533 79K
FusionNet+ 0.891±0.074 6.226±0.987 3.478±0.578 12K

FusionNet++ 0.904±0.065 5.384±0.828 3.131±0.551 24K

4.4 Assessment on Full-Resolution Examples
We also perform test on full-resolution datasets where most
DL-based methods fail to generate reasonable results due to
the over-fitting. The results are shown in Tab. 3. As ex-
pected, some hand-crafted feature-based methods surpass the
DL based methods in several metrics, and BDSD-PC and
MTF-GLP-FS win the best performance in Dλ and Ds on
WorldView-3 datasets, respectively. Nevertheless, our gains
are higher than other DL-based methods, closing to the level
of the best in all metrics, which verifies the SpanConv can
overcome the defect that deep learning has a large gap be-
tween the performance of real data and simulation data.

4.5 Discussion

Network Generalization. It is well known that DL-based
approaches have poor generality. For further verification with
the generalization of the LightNet, we test the models trained
in WorldView-3 datasets on 12 WorldView-2 examples in dif-
ferent places. The results are displayed in Tab. 5. It can
be observed that the proposed LightNet outperforms all DL-
based algorithms with the fewest parameters in generaliza-
tion. Because more complicated models are more prone to
dataset changes. Thus, the tiny model size of LightNet con-
tributes to its high generalization ability.

As Embedded Module. As an embedded module, SpanConv
can be embedded into other benchmark networks to replace
standard convolution. We test the SpanConv as embedded
module in the DiCNN and FusionNet, and compare it with
BSConv. The results are shows in Tab. 4. The symbol ”+”
means the network embedded with BSConv, and ”++” means
the network embedded with SpanConv. It can be observed
that the network using SpanConv and BSConv all reduces the
parameters. SpanConv, unlike BSConv, may enhance perfor-
mance by increasing parameters. This indicates that Span-
Conv’s kernel space may be approximated to conventional



Table 5: Average quantitative comparisons on 12 WorldView-2 ex-
amples in different places. Best results are in boldface.

Method Q8 SAM ERGAS Params

EXP 0.581±0.057 7.494±1.239 7.029±0.827 -
DRPNN 0.692±0.074 9.284±0.552 8.042±0.336 1867K
MSDCNN 0.630±0.118 9.545±0.686 7.983±0.259 229K
BDPN 0.700±0.130 10.150±0.485 8.123±0.386 1487K
DiCNN 0.561±0.080 9.166±0.940 8.075±0.312 47K
PNN 0.619±0.173 13.173±0.750 8.086±0.327 104K
LPPN 0.663±0.117 8.690±0.658 7.139±0.273 51K
FusionNet 0.663±0.092 8.111±0.927 6.265±0.412 79K
LightNet 0.828±0.057 6.160±0.999 4.155±0.495 16K

convolution for nonlinear characterization.

The Number of the Navigated Kernels. In the previous dis-
cussion, we set navigated kernel number as 2. In this section,
we will justify this setting to see what happens. We have
tested the performance of LightNet with different numbers of
the navigated kernels. The results are reported in Fig. 5. It
is worth to mention that when N is set to 1, the SpanConv
degenerates into BSConv. The most obvious improvement is
achieved when N increasing from 1 to 2, and metrics become
fluctuate when N > 2, which indicates two navigated kernels
are enough to construct a qualified kernel space for pansharp-
ening. In addition, during the experiment, we find that the
optimized N differs in the different networks and tasks.

Figure 5: The SAM and ERGAS curves with varying navigated ker-
nel number N for LightNet.

The Computational Cost of the Networks. The computa-
tional cost of benchmark DL-based methods is presented in
Tab. 6. It can be observed that LightNet can achieve the sat-
isfying performance with the fewest computational resource.

The Representation Ability of SpanKernel. In this sec-
tion, we hook out the weights of LightNet with SpanConv,
BSConv, and standard convolution, respectively. And we use
ℓ2 distance and Pearson coefficient to measure the difference
between the SpanKernel, BlueKernel and the standard con-
volution kernel. From the results displayed in Tab. 7, the
difference of the kernels gradually decrease as the network
flows to the end, indicating the correlation become prominent

Table 6: The computational cost comparison of all networks.

Network Params FLOPS MAdd

DRPNN 1867K 1.8G 3.6G
MSDCNN 229K 936.2M 1.9G

BDPN 1487K 3.8G 7.6G
DiCNN 47K 191.9M 382.5M

PNN 104K 299.9M 599.1M
FusionNet 79K 322.7M 642.4M
LightNet 16K 67.0M 126.4M

Table 7: The comparison of the error of SpanKernel and BlueKernel.

Evaluation Metrics ℓ2 distance Pearson

Layer Name BlueKernel SpanKernel BlueKernel SpanKernel

head conv.1. 3.0399 2.8704 0.0321 0.0678
head conv.2. 0.3538 0.2561 0.0035 0.0114
head conv.3. 0.3354 0.4261 0.0159 0.0210

belly block.1.conv1. 0.6251 0.6015 0.0100 0.0106
belly block.1.conv2. 0.0836 0.0727 0.0163 0.0026
belly block.2.conv1. 0.0601 0.1579 0.0106 0.0118
belly block.2.conv2. 0.0303 0.0309 0.0120 0.0036

tail conv.1. 0.0082 0.0086 0.0068 0.0096
tail conv.2. 0.0024 0.0024 0.0565 0.0388
tail conv.3. 0.0015 0.0014 0.1108 0.0490

as the networks deepens. In the shallow layer of the network,
the difference of SpanKernel and standard convolution kernel
are much smaller than that of BlueKernel, illustrating that the
kernel space constructed by Spanconv is closer to the standard
kernel space. In the other word, campared with BlueKernel,
Spanconv can describe richer mapping relationships, thus it
has stronger feature representation capabilities.

Limitations. When the kernels have strong independence,
the representation ability of our SpanKernel will be limited.
As a result, when the kernels display a high degree of de-
pendence fit with the SpanKernel assumption, our technique
performs well, consistent with the experimental results.

5 Conclusion
Standard convolution has a high computational cost primarily
because the dimension of the convolution kernel is propor-
tional to the channel count of the feature maps. The proposed
method introduces a novel convolution operation, SpanConv,
that constructs the kernel space by spanning a small number
of navigated kernels. A simple end-to-end learning frame-
work, i.e., LightNet, is presented for remote sensing pan-
sharpening task based on the SpanConv. The comparison to
the state-of-the-art method demonstrates that our method, to
the best of our knowledge, requires the fewest network pa-
rameters for pansharpening and achieves superior generaliza-
tion when achieving competitive outcomes.
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