
Laplacian Pyramid Networks: A New Approach for Multispectral Pansharpening

Cheng Jina, Liang-Jian Dengb,∗, Ting-Zhu Huangb, Gemine Vivonec

aSchool of Optoelectronic Science and Engineering, University of Electronic Science and Engineering of China, Chengdu, 611731, China
bSchool of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China

cInstitute of Methodologies for Environmental Analysis, CNR-IMAA, 85050 Tito Scalo, Italy.

Abstract

Pansharpening is about fusing a high spatial resolution panchromatic image with a simultaneously acquired multi-

spectral image with lower spatial resolution. In this paper, we propose a Laplacian pyramid pansharpening network

architecture for accurately fusing a high spatial resolution panchromatic image and a low spatial resolution multi-

spectral image, aiming at getting a higher spatial resolution multispectral image. The proposed architecture considers

three aspects. First, we use the Laplacian pyramid method whose blur kernels are designed according to the sen-

sors’ modulation transfer functions to separate the images into multiple scales for fully exploiting the crucial spatial

information at different spatial scales. Second, we develop a fusion convolutional neural network (FCNN) for each

scale, combining them to form the final multi-scale network architecture. Specifically, we use recursive layers for

the FCNN to share parameters across and within pyramid levels, thus significantly reducing the network parameters.

Third, a total loss consisting of multiple across-scale loss functions is employed for training, yielding higher accuracy.

Extensive experimental results based on quantitative and qualitative assessments exploiting benchmarking datasets

demonstrate that the proposed architecture outperforms state-of-the-art pansharpening methods.

Keywords: Laplacian Pyramid, Modulation Transfer Function, Convolutional Neural Network, Pansharpening,

Image Fusion, Machine Learning, Remote Sensing.

1. Introduction

Thanks to a wide range of applications, such as

medicine [1], sociology [2], ecology [3], and other

fields, pansharpening has drawn loads of attention from

the scientific community. This can be corroborated

by the organization of the data fusion contest from

the IEEE Geoscience and Remote Sensing Society in

2006 [4] and a huge recent literature about this topic

[5, 6, 7]. Pansharpening is about merging a high reso-

lution panchromatic (PAN) and a low resolution multi-

spectral (LRMS) images, which can be easily obtained

by several satellite sensors like WorldView-3, Quick-

Bird, and GaoFen. As Fig. 1 illustrates, the goal

of pansharpening is to yield a high resolution multi-

spectral (HRMS) image. Besides, pansharpening algo-

rithms have gained much interest from commercial en-

terprises. For instance, famous software, such as ENVI
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and ERDAS, utilizes fusion techniques to deal with im-

age enhancement problems [8]. Moreover, pansharp-

ening has been considered a preliminary step for sev-

eral image processing tasks, e.g., change detection [9],

which demonstrates the important role of pansharpen-

ing in practical applications.

Regarding pansharpening algorithms, we may cat-

egorize them into four classes, i.e., component sub-

stitution (CS) approaches, multi-resolution analysis

(MRA) methods, variational optimization-based (VO)

approaches, and deep learning-based (DL) techniques

[7]. In this work, we mainly focus on developing a

new deep learning network to address the pansharpen-

ing problem.

The first two categories are CS and MRA methods

which obtain the final pansharpened outcome from the

perspective of details injection, see, e.g., [10, 12, 13, 14,

15]. The former approach is based on the substitution of

a component of the spectral transformed multispectral

(MS) image with the PAN image, see, e.g., the band-

dependent spatial-detail with local parameter estima-

tion (BDSD) [10], the robust band-dependent spatial-
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Figure 1: First row: the schematic diagram of pansharpen-

ing, where MS ∈ R
m×n×b, PAN ∈ R

M×N×1 and GT ∈ R
M×N×b,

M = 4m,N = 4n, b is the number of bands of the MS image.

Second row: the pansharpened results by a state-of-the-art tra-

ditional method, BDSD [10], a deep learning approach, DMD-

Net [11], and the proposed method. Third row: the residual

maps between BDSD, DMDNet, the proposed approach, and

the ground-truth (GT). It is clear that our method obtains a

better residual map, thus showing a better visual quality.

detail (BDSD-PC) [16], and the PRACS approach [12].

The MRA class relies upon the injection of the spatial

details of the PAN image into the upsampled LRMS

image to obtain a high spatial resolution MS image,

see, e.g., the smoothing filter-based intensity modula-

tion (SFIM) [17], the generalized Laplacian pyramid

(GLP) [18, 19, 20], the GLP with full-scale regres-

sion (GLP-Reg) [21], the deconvolution based meth-

ods [22, 23], and the bilinear filtering [24]. Hybrid

CS/MRA approaches can also be found in the related

literature [14, 25]. In general, the two types of meth-

ods could get quite fast computation and promising out-

comes, but, sometimes, may lead to slight spatial and

spectral distortions.

The third category, the so-called VO class, is based

on the formulation of models with proper regularizers to

address the pansharpening problem, then reconstructing

the high-resolution outcomes by designing algorithms

for the given models. The whole process can be seen

from a mathematical point of view as the reconstruction

of incomplete complementary observations of multi-

channel data. In general, it mainly contains Bayesian-

, Sparse Reconstruction (SR)-, and Model-based Opti-

mization (MBO) techniques, whose generally utilizes

the regularization-based technique to address this chal-

lenge, see, e.g., [26, 27, 28, 29, 30]. In [31], Ballester

et al. proposed the P+XS method, which obtained the

spectral information for the fused image under the as-

sumption that the PAN image can be approximated as

a linear combination of the high resolution multispec-

tral bands. In [32], Yokoya et al. employed the coupled

nonnegative matrix factorization (CNMF) unmixing to

deal with the pansharpening problem, which could pro-

duce high quality fusion results, both spectrally and spa-

tially. In [33], Deng et al. proposed a reproducible ker-

nel Hilbert space and Heaviside based framework to ad-

dress the task of pansharpening. Recently, Wu et al. in

[34] proposed a new DL-based VO scheme that could

benefit from both traditional VO methods and the out-

come of DL-based approaches, thus getting both com-

petitive results and generalization ability. Especially,

some recent hyperspectral and multispectral image fu-

sion approaches can be also applied to the task of pan-

sharpening, see e.g., [35, 36]. More recently, this field

of pansharpening has evolved into more specific appli-

cations, i.e., in cloud-contaminated circumstances [37],

where X. Meng et al. proposed a variational-based in-

tegrated pansharpening model specifying in cloud con-

tamination scenarios. Although VO-based techniques

can obtain competitive results, they are sometimes lim-

ited, e.g., the use of many hyperparameters, the insuf-

ficient feature representation and extraction that could

result in spatial and spectral distortions.

The fourth category is represented by the DL-based

methods, which are mainly based on a feature extrac-

tion/representation phase, the training of network pa-

rameters, and the testing on real-world data. These

methods are often far from a theoretical development

and require enormous datasets to train the underlying

parameters, but they have been widespread used (in-

cluding but not limited to image super-resolution, pat-

tern recognition, and image classification), often show-

ing state-of-the-art performance. In particular, many

satisfactory results have been obtained by deep learn-

ing networks for pansharpening [38, 39, 40] [41, 42]. In

[43] , Masi et al. employed first a convolutional neural

network (CNN) with three layers to deal with the task of

multispectral image pansharpening, obtaining excellent

pansharpened results comparing with traditional state-

of-the-art approaches. In [44], Fu et al. developed a

deep CNN architecture with a high-pass filtering tech-

nique to fuse the PAN and the LRMS images, which ob-

tains state-of-the-art pansharpening outcomes. Besides,

He et al. [45] followed physical concepts to design a
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CNN based method for pansharpening relied upon the

spatial detail injection framework. In [11], Fu et al.

elaborated their high-pass filtering network design with

a grouped multiscale network structure. In [46], Deng

et al. proposed two network architectures, named CS-

Net and MRA-Net, respectively, according to the tra-

ditional CS and MRA fusion equations. To limit the

drawbacks of the two networks, they further proposed a

simple but effective fusion network, called FusionNet,

to yield state-of-the-art pansharpening outcomes. More

recently, Generative Adversarial Networks (GAN) and

unsupervised training have teemed with the pansharp-

ening field thanks to their novelty and powerfulness.

Literature like [47, 48] demonstrates the promising fea-

ture of these method. For improving the effectiveness of

this type of methods, the solutions mainly focus on two

broad aspects. One is to make more generalized datasets

for network training, e.g. [49]. The other mainly fo-

cuses on the amelioration of the network architecture.

Although these methods have achieved excellent per-

formance, there is still room for improvement by con-

sidering the following points. First of all, the multi-

scale property plays an important role in resolution

enhancement applications, see, e.g., the image super-

resolution issue [50]. It is important to design more

effective multi-scale network architectures based on

widely used multi-scale structures, see, e.g., the state-

of-the-art Laplacian pyramids. Second, for the specific

pansharpening problem, the Modulation Transfer Func-

tion (MTF) is a reasonable way to describe the physi-

cal procedure of image capture, thus its consideration in

the datasets simulation is expected to get better perfor-

mance.

Motivated by the above-mentioned points, we pro-

pose, in this work, a new network architecture that is

able to deal with these aspects. Hence, a novel Lapla-

cian pyramid pansharpening network (LPPN) architec-

ture is considered. The given network accounts for

both the image multi-scale information and the sen-

sors’ MTFs. To exploit the multi-scale information, we

use the Laplacian pyramid to decompose the original

PAN image and the upsampled LRMS image in several

scales, then designing the corresponding sub-networks

for each image scale and incorporating them into a fu-

sion convolutional neural network (FCNN). Due to the

use of multi-scale sub-networks, the final loss function

is represented by a combination of multiple ℓ2 loss func-

tions. Moreover, we also introduce recursive blocks

into our sub-networks, aiming to reduce the number of

network parameters. Additionally, unlike the classical

Laplacian pyramid that uses a fixed Gaussian kernel for

all the image channels, our approach employs the spe-

cific sensors’ MTFs, which vary along the spectral di-

mension (i.e., different Gaussian kernels for different

spectral bands). Extensive experiments on reduced and

full resolution datasets demonstrate that the proposed

method gets the best quantitative and qualitative per-

formance compared with state-of-the-art pansharpening

approaches.

The contributions of this paper can be summarized as

follows:

• To the best of our knowledge, this is the first work

merging both the recursive sub-network and Lapla-

cian pyramids to address the pansharpening task.

Unlike the classical Laplacian pyramid using a

fixed Gaussian kernel for all the spectral channels,

the Laplacian pyramid used in our work takes ad-

vantage of the specific sensors’ MTFs for image

scale decomposition, which can yield significant

improvements.

• The exploitation of Laplacian pyramids allow us

to develop multi-scale structured sub-networks im-

proving the capability of managing different spatial

details at the feature extraction stage. Besides, we

also build multiple loss functions to describe the

information loss for each scale, which can aid the

image details recovery at different scales.

• The recursive block is used within each sub-

network to effectively decrease the number of net-

work parameters. Furthermore, its use can increase

the depth of the sub-networks. Thus, the proposed

approach can be seen as a lightweight network for

pansharpening. For example, our method only in-

volves about 50,000 network parameters to achieve

the state-of-the-art performance on WorldView-3

datasets, which is significantly far away from the

compared approaches.

The remaining of the paper is as follows. Firstly, the

related works and motivations under the development of

the proposed method are reported in Sect. 2. Sect. 3 is

devoted to the presentation of the proposed method, in-

cluding the network architecture, the loss function, the

training details, and so forth. Sect. 4 shows the quan-

titative and qualitative outcomes. Finally, conclusions

are drawn in Sect. 5.

2. Related Works and Motivations

Laplacian pyramid decomposition (LPD) and its

multi-scale structure, which are suitable for image res-

olution enhancement tasks. Recently, some pansharp-

ening algorithms are proposed from the perspective of
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constructing multi-scale structures, see, e.g., [51], ob-

taining promising outcomes. For instance, Yuan et al.

[52] formulated a novel pansharpening approach by em-

ploying the multi-scale convolutional kernels, which

could fully widen the network and effectively extract

the image features on different scales. In [53], although

the authors mentioned the words “Laplacian pyramid”

in their work, they did not really exploit the multi-scale

LPD for the task of pansharpening, which limited the

final pansharpening performance. Different from the in-

troduced multi-scale methods, here we accordingly re-

sort to the classical LPD with some special operations

in pansharpening, e.g., LPD with MTF, to formulate an

effective and lightweight deep CNN with a multi-scale

structure, aiming to yield state-of-the-art pansharpen-

ing results. In this section, we will introduce first the

Gaussian pyramid decomposition (GPD) and the related

LPD. Afterwards, we will point out the motivations un-

der the development of the proposed method.

2.1. GPD and LPD

Proposed by H. Olkkonen et al. [54], the GPD is

about the reconstruction of the image by the Gaussian

expand wavelet transform for multi-resolution analysis

of images. It aims to use Gaussian kernels to create a

series of images at different scales. The general GPD

equation is as follows:

G1(I) = I,

Gi(I) = (k ⊗ Gi−1(I)) ↓2
, i = 2, · · · , S ,

(1)

where Gi stands for the i-th layer of the Gaussian

pyramid, I is the original image, ⊗ denotes the convo-

lution operation, ↓2 indicates the downsampling with a

scale factor of 2, k represents the Gaussian kernel, and S

is the total number of layers. It is worth to be remarked

that k is fixed for each channel of an MS image.

The LPD is a bandpass image decomposition derived

from the GPD. It is originally proposed by Burt and

Adelson [55] before multiresolution wavelet analysis

was introduced. More in detail, the LPD technique is a

multi-resolution image representation obtained through

a recursive reduction of the set of data.

The general LPD processing equation is as follows:

LS (I) = GS (I),

Li(I) = Gi(I) − Gi+1(I) ↑2
, i = S − 1, · · · , 1,

(2)

where Li stands for the i-th layer of the LPD, Gi is the

outcome of the i-th layer of the GPD, and ↑2 indicates

the upsampling with a scale factor of 2. Please, refer to

Fig. 2 for a better understanding.

2.2. Motivations

Since conventional deep learning networks do not of-

ten exploit multi-scale information, the proposed work

is motivated by the introduction of this kind of infor-

mation. In particular, the pyramid structure achieves a

multi-scale representation in image processing to por-

tray global and local information in a better way. This

property inspired us to utilize the multi-scale spatial rep-

resentation structure of the LPD to design an end-to-end

deep neural network structure capable of progressively

restoring more image information to get a better perfor-

mance.

It is important to note that conventional GPD methods

mainly utilize a fixed Gaussian kernel for each chan-

nel of an MS image (e.g., an RGB image) to proceed

with the convolution operation. However, this approach

fails to meet the physics principles of pansharpening

since the MS sensors’ point spread functions, which

model the spatial responses of each spectral channel

(also called band), are not the same along the spectral

dimension. In other words, the Gaussian kernels related

to the spectral bands of an MS image should be differ-

ent from each other. They are about a special function,

i.e., the MTF. Thus, we exploit the MTF to generate the

specific kernels for every band of the MS image in order

to implement the GPD. For more details, the interesting

readers can refer to Sect. 3.1.1.

3. The Proposed Method

In this section, we describe the design of the proposed

LPPN. The whole procedure is depicted in Fig. 3. The

architecture of the network, the adopted loss function,

and the training details are introduced in the remaining

of this section. For simplicity, we denote the PAN image

as P and the MS image as M.

3.1. Network Architecture

This section is devoted to the detailed description of

the proposed network architecture.

3.1.1. GPD with MTF

The Modulation Transfer Function (MTF) is used to

model the magnitude response of the optical system at

different spatial frequencies. In pansharpening, it has

widespread used to design filters for image degrada-

tion. The sensors’ MTFs are usually band-dependent,

thus generating filters that have different Gaussian ker-

nels for each spectral band. In this work, our goal is to

address a resolution enhancement issue involving natu-

ral images, thus motivating us to implement Laplacian
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Figure 2: Schematic diagram of the Gaussian pyramid decomposition (GPD) and the Laplacian pyramid decomposition (LPD) for

S = 5.

pyramids using the MTF a priori information. For more

details, the interesting readers can refer to [6, 56].

3.1.2. LPD with MTF

Multi-scale information is essential for image reso-

lution enhancement applications. Thus, we want to uti-

lize the LPD, a well-established technique for producing

multi-scale images, to recover more image details. In

what follows, we will introduce our MTF LPD, which

performs first the MTF GPD into several scales of the

original PAN image, the upsampled LRMS image, and

the ground-truth (GT) multispectral image, thus getting

the corresponding LPD components using (2).

To match the spatial resolution, we employ the trans-

posed convolution to upsample M with a factor 4 (de-

noted as M̃) to the PAN, P, scale. Then, we separately

decompose P and M̃ into their S -layer pyramids, which

is processed by the following procedure:

a) We generate convolution kernels according to the

MTF information. P and M̃ have correspond-

ing MTF functions (readers can find the kernels

by having a look at the codes MTF-PAN and

MTF, which are available in the pansharpening

toolbox1). In particular, the MTF kernel for P

is denoted as kP. Regarding to the b-th band of

M̃, we separately indicate each band’s kernel as

k1, k2, · · · , kb, respectively.

b) Compute the GPD with MTF for P and M̃. Let

Gi(P), Gi(M̃) denote the MTF-decomposed PAN

1http://openremotesensing.net/knowledgebase/

a-critical-comparison-among-pansharpening-algorithms/

and upsampled LRMS images of the i-th Gaussian

pyramid layer (i = 1, 2, · · · , S ), and set G1(P) = P,

G1(M̃) = M̃. Afterwards, we respectively compute

the output image at each GPD layer for P

G1(P) = P,

Gi(P) = (kP ⊗ Gi−1(P)) ↓2
, i = 2, · · · , S ,

(3)

and for M̃

G1(M̃) = M̃,

Gi(M̃ j) = (k j ⊗ Gi−1(M̃ j)) ↓
2
, i = 2, · · · , S .

(4)

where ⊗ denotes the convolution operation, ↓2

stands for the downsampling operation with a scale

factor of 2, and j = 1, 2, · · · , b is the band index.

c) Compute LPD with MTF for P and M̃ based on the

obtained GPD in (3) and (4), i.e.

LS (P) = GS (P),

Li(P) = Gi(P) − Gi+1(P) ↑2
, i = S − 1, · · · , 1,

(5)

and

LS (M̃) = GS (M̃),

Li(M̃ j) = Gi(M̃ j) − Gi+1(M̃ j) ↑
2
, i = S − 1, · · · , 1,

(6)

where ↑2 stands for the upsampling operation with

a scale factor of 2, and j = 1, 2, · · · , b is the band

index.

More details about Laplacian pyramids can be

found in [55].
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Figure 3: The network architecture of the proposed Laplacian pyramid pansharpening network (LPPN) for a resolution ratio

between PAN and MS equal to 4.

In summary, the whole procedure of generating of our

LPD with MTF for P and M̃ can be found in (5) and (6).

Please, refer also to Fig. 4 for the LPD and the GPD for

P and M̃.

3.1.3. Fusion Convolutional Neural Network (FCNN)

After getting the multi-scale LPD components of P

and M̃, we consider them into the designed fusion con-

volutional neural network (FCNN, denoted as Net
(i)(θ)

in Fig. 3) for each scale to extract features. Thus, our

final architecture is the combination of multiple sub-

networks.

More in detail, we concatenate first the Li(P) and

Li(M̃) at the i-th layer of LPD, after taking them into

account at the corresponding sub-network Net
(i)(θ) and

producing the output. Furthermore, the output is op-

erated by the ReLU activation function and upsampled

exploiting a factor of 2. Finally, it is transmitted to the

output of the next layer.

For each sub-network Net
(i)(θ) (i.e., each FCNN), we

mainly employ the residual learning [57] and recursive

blocks [58] for enhancing the performance of the net-

work, which separately play the role of improving ac-

curacy and reducing the number of parameters. Please,

see Fig. 5 for the structure of the FCNN. More details

on the Net
(i)(θ) sub-network are pointed out as follows.

a) Feature Extraction: The goal of this step is to ac-

quire the feature maps of the corresponding inputs.

For higher layers, we take fewer kernels. In this

work, we apply 2S−i+1 kernels with a 3 × 3 size for

convolution operations to the concatenated input.

b) Recursive Blocks: To achieve the parameter reduc-

tion and improve the accuracy, we employ several
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Figure 4: Detailed illustration of the generation of the i-th Laplacian pyramid layer of M̃ and P (exploiting an exemplary

WorldView-3 data with S = 5 and resolution ratio between the products to be fused equal to 4). Gi represents the i-th layer

of the Gaussian pyramid. Note that we do not use the classical Gaussian pyramid, rather we use MTF-based filters to generate

Laplacian pyramid layers.

recursive blocks. As the gradient vanishing and

exploding in training of deep models, the shared-

source skip-connection residual learning is incor-

porated into our sub-network, whose accuracy is

proven in [50]. The goal of our recursive block

setting is to share the network parameters across

each recursive block and between each convolu-

tional layer. Therefore, a single set of parameters

is capable of building multi-layer sub-networks.

c) Output Reconstruction: After recursive blocks, the

FCNN output for each layer is integrated to recon-

struct the multiple outputs, which lead to multiple

across-scale loss functions for training. In the test-

ing phase, we get multiple outputs and the sole out-

put at the first layer, i.e., Out(1)(θ), represents the

outcome of the proposed approach.

Fig. 3 sums up the whole proposed architecture. It

mainly includes several sub-networks to progressively

fuse and enhance the spatial details. Please, see Fig.

6 to get more insights about how the proposed network

architecture works and its effectiveness on an exemplary

real-world test case.

3.2. Loss Function

Due to the usage of the LPD, we will have multi-scale

output images. For each image, we build one FCNN to

train the network parameters. Therefore, the final loss

function is the combination of the different loss func-

tions. The final loss function is defined as follows:

L(θ(i)) =

S∑

i=1

‖Out(i)(θ) − Gi(GT)‖
2

F , (7)

where Out(i)(θ) is obtained by Fθ(i)
(
Li(P), Li(M̃)

)
and

its subsequent operations (please see Fig. 3 for more de-

tails). In particular, i indicates the i-th layer of LPD and

θ stands for the network parameters. Besides, Gi(GT) is

the i-th layer of the GT image obtained via the GPD and

‖ · ‖F is the Frobenius norm. In this work, we empiri-

cally set S equal to 5. It is worth to be pointed out that
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Figure 5: The flowchart of the fusion convolution neural network (FCNN). In which, the output channels are set as 2S−i+1, where

S represents the total number of LPD layers, and the i is the corresponding LPD layer number.

Figure 6: The outputs of all the S layers of our LPPN, i.e.,

Out(i)(θ), i = 1, 2, · · · , S (from right to left) with S = 5 on an

exemplary real-world test case.

in order to have a robust layer-by-layer injection proce-

dure, the use of multiple losses to constrain the distance

between the output image of a layer and the correspond-

ing target (GT) image is advisable and commonly used

in the related literature. If the loss function is only about

the layer 1 (i.e., the final layer), the control of each layer

of the network could be not easy, making the training a

hard task. Moreover, although all the loss functions in

(7) have equal weights, the more the training time the

higher the impact of the first layer on the final solution.

3.3. Generation of Training Data

For the generation of training samples, we simu-

lated three datasets acquired from the WorldView-3,

the QuickBird, and the Gaofen-2 sensors. The simu-

lation way for the three datasets is the same. We con-

sider here the WorldView-3 datasets as an exemplary

case. The WorldView-3 satellite datasets can be freely

downloaded2. The same way as in [46] is exploited

2https://www.maxar.com/product-samples/

to simulate the training/validation/testing datasets get-

ting 12,580 PAN/LRMS/GT patch pairs of size 64× 64,

16 × 16 × 8, and 64 × 64 × 8, respectively. Af-

ter that, these datasets are divided into the 70/20/10%

for training (8,806 examples)/validation (2,516 exam-

ples)/testing (1,258 examples). We simulate the LRMS,

the PAN, and the GT images according to Wald’s pro-

tocol [59] due to the unavailability of the GT image.

The upsampled LRMS image is obtained via a polyno-

mial kernel with 23 coefficients [18], called EXP from

hereon. Please, find more details on the implementation

of Wald’s protocol in [46].

4. Experimental Results

In this section, we compare the proposed LPPN

method with some recent state-of-the-art pansharpening

approaches belonging to CS, MRA, VO, and DL cate-

gories. The employed sensors, the benchmarking meth-

ods, and the adopted quality indexes are described first.

Afterwards, the experimental analysis both at reduced

and full resolutions is reported.

4.1. datasets

Several datasets have been acquired by the

WorldView-3 sensor, which simultaneously cap-

tures a high resolution PAN channel and eight MS

bands. Four standard colors (red, green, blue, and

near-infrared 1) and four new bands (coastal, yellow,

red edge, and near-infrared 2) are acquired. The images

are distributed with a pixel size of 0.3m and 1.2m for

PAN and MS, respectively. The spatial resolution ratio

is equal to 4. The radiometric resolution is 11 bits.

Different from WorldView-3, the images obtained by

QuickBird and GaoFen-2 sensors consist of four MS
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Table 1: Details of experimental datasets

Satellite Spatial Spectral Radiometric Themiatic Original data

Sensors Dimension Dimension Resolution Scenes Volume

WorldView-3 PAN 0.3m One band
11 bits 6

MS 1.2m Eight bands mixed

QuickBird
PAN 0.6m One band

11 bits
(urban, vegetation,

1
MS 2.4m Four bands water scenario)

GaoFen-2
PAN 1m One band

10 bits 1
MS 4m Four bands

bands and one PAN channel. The spatial resolution ra-

tio is equal to 4, again. In particular, QuickBird and

GaoFen-2 data have a spatial resolution of about 0.6m

and 1m for the PAN channel, respectively. Moreover,

they have a radiometric resolution of 11 bits and 10 bits,

respectively. Please refer to Tab. 1 for the summary of

the experimental datasets.

4.2. Benchmark

The benchmark consists of one representative CS

based method (i.e., BDSD [10]), one representative

MRA based methods (i.e., MTF GLP CBD [56], de-

noted as GLP CBD from hereon for saving space in

the tables), two regularization-based (VO) methods (i.e.,

CNMF [32] and CVPR19 [60]), and three state-of-the-

art DL methods (i.e., PanNet[44], DiCNN [45], and

DMDNet [11])3.

For fair comparison, all the compared DL-based

methods (i.e., LPPN, DiCNN, PanNet, and DMDNet)

are trained on the same training data using Python 3.7.4

with Tensorflow 1.14.0 on a desktop computer equipped

with a Linux operating system and a GPU NVIDIA

GeForce GTX 2080Ti with 11GB.

4.3. Quality Assessment Indexes

For quantitative evaluation, we adopt the spectral an-

gle mapper (SAM) [61] to evaluate the spectral quality,

the erreur relative globale adimensionnelle de synthèse

(ERGAS) index [62] as an extension of the root mean

square error for multidimensional arrays, the spatial cor-

relation coefficient (SCC) [63] in order to assess the

3The source codes of BDSD, GLP CBD and CNMF can be

downloaded at the website http://openremotesensing.net/kb/codes/

pansharpening/. Additionally, the source codes of CVPR19 and Pan-

Net can be downloaded at the website https://xueyangfu.github.io/.

Instead, the source codes of DiCNN and DMDNet are not available

online, thus we re-implemented them by ourselves using the default

parameters indicated in the related papers to ensure their best perfor-

mance.

spatial quality, and two universal image quality indexes

[64], Qavg (an average version of the Q index along the

spectral bands) and Q2n (Q4 and Q8 for four and eight

bands datasets, respectively) representing the multidi-

mensional extension of the Q index [65, 66]. These

indexes can be used when a reference (GT) image is

available (i.e., at reduced resolution). Instead, when we

need to assess the performance at full resolution, quality

without reference indexes should be used [67, 68, 69].

In this paper, the quality with no reference (QNR) [67]

index is exploited. It is obtained by the combination of

the spatial distortion index, DS , and the spectral distor-

tion index, Dλ. The ideal values for SCC, QNR, Qave,

and Q4/Q8 are 1. Instead, for ERGAS, SAM, Dλ, and

DS are 0. Furthermore, we exhibit the average running

time for each fusion method, denoted as A.T. in seconds

in the results tables.

4.4. Parameters Tuning

In our LPPN network, we empirically employ the

Adam [70] approach with a learning rate equal to 0.003

in order to minimize the loss function in (7). The num-

ber of iterations for the training step is 1 × 105 and the

batch size is 32. Additionally, we set the kernel size

of all filters as 3 × 3. In particular, for the setting of

the other compared methods, we use the default asset

pointing out in the related papers or source codes. In the

DiCNN case, the batch size is set to 64 and the number

of iterations is 3 × 105. Instead, for PanNet and DMD-

Net, the batch size is set to 32 and the number of itera-

tions is 255,000. Under the use of the above-mentioned

settings, the three methods can achieve their best perfor-

mance.

4.5. Reduced Resolution Assessment

In this section, we assess the qualitative and quanti-

tative performance of the compared methods on the re-

duced resolution datasets. The process for simulating

the testing data is the same as that of the training data

9



Figure 7: The visual comparisons on a reduced resolution WorldView-3 case (depicted bands: 1, 3 and 5). First two rows: The

fusion results by means of BDSD, CNMF, GLP CBD, CVPR19, DiCNN, PanNet, DMDNet, and Proposed LPPN. Third and fourth

rows: The corresponding residual maps using the GT image as reference. To aid the visual inspection, we display the residual maps

obtained by the analysis of the third spectral band.

Table 2: Quality assessment at reduced resolution on 1258

WorldView-3 test cases. The mean and the standard deviation

indexes are used to sum up the obtained performance. Best

results are in boldface.

Method SAM ERGAS SCC Q8 Qave A.T.

EXP 5.85±1.99 7.04±2.93 0.660±0.106 0.627±0.142 0.640±0.157 0.016

BDSD 6.90±2.73 5.15±2.27 0.878±0.075 0.817±0.118 0.823±0.119 0.019

CNMF 5.53±1.88 4.62±1.93 0.888±0.068 0.822±0.123 0.825±0.125 0.035

GLP CBD 5.29±1.96 4.16±1.77 0.890±0.070 0.854±0.114 0.849±0.123 0.033

CVPR19 5.21±1.87 5.14±2.12 0.867±0.604 0.793±0.123 0.788±0.130 1.731

DiCNN 4.25±1.35 3.05±1.06 0.945±0.047 0.893±0.118 0.908±0.115 0.838

PanNet 4.10±1.30 2.96±1.00 0.949±0.046 0.896±0.116 0.910±0.116 0.863

DMDNet 3.97±1.25 2.86±0.97 0.953±0.045 0.900±0.114 0.912±0.115 0.951

LPPN 3.90±1.29 2.64±0.96 0.955±0.045 0.913±0.111 0.913±0.114 0.977

(see Sect. 3.3 for details). More in detail, the spatial size

of the testing PAN/LRMS/GT patch is 64×64, 16×16,

and 64×64 for WorldView-3 datasets in Tab. 2. For

Figs. 7-9, the testing images for WorldView-3, Quick-

Bird and GaoFen-2 cases are with the spatial size of

256×256, 64×64, and 256×256, respectively. We tested

the compared approaches on a large dataset consisting

of 1258 test cases extracted from WorldView-3 data,

Table 3: Quality assessment at reduced resolution on 25

QuickBird test cases . The mean and the standard deviation

indexes are used to sum up the obtained performance. Best

results are in boldface.

Method SAM ERGAS SCC Q4 Qave A.T.

EXP 7.27±2.31 10.88±2.77 0.530±0.023 0.545±0.139 0.540±0.146 0.008

BDSD 6.71±2.08 7.05±1.12 0.840±0.084 0.769±0.178 0.761±0.187 0.205

CNMF 6.34±2.75 7.07±2.77 0.771±0.295 0.683±0.281 0.680±0.280 0.172

GLP CBD 6.52±1.96 6.91±1.06 0.840±0.085 0.779±0.169 0.764±0.185 0.036

CVPR19 6.84±2.14 8.62±1.86 0.815±0.060 0.686±0.171 0.676±0.179 4.478

DiCNN 4.79±1.09 5.06±0.57 0.908±0.067 0.835±0.187 0.830±0.194 0.868

PanNet 4.78±1.07 4.80±0.34 0.915±0.078 0.841±0.184 0.841±0.188 0.887

DMDNet 4.61±0.94 4.46±0.29 0.919±0.087 0.845±0.193 0.845±0.197 1.047

LPPN 4.39±0.85 4.41±0.50 0.937±0.065 0.851±0.185 0.848±0.190 1.122

and Tab. 2 exhibits the average performance and the

corresponding standard deviations for all the compared

methods. From Tab. 2, it can be readily got that our

method obtains high performance for all the quality in-

dexes. We depict a typical result in Fig. 7. It can be seen

that BDSD and CNMF show greater spectral distortion.

GLP CBD and CVPR19 have various blurring defects,

especially visible in the building area at the lower right
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Figure 8: The visual comparisons on a reduced resolution QuickBird case (depicted bands: 1, 2 and 3). First two rows: The fusion

results by means of BDSD, CNMF, GLP CBD, CVPR19, DiCNN, PanNet, DMDNet, and Proposed LPPN. Third and fourth rows:

The corresponding residual maps using the GT image as reference. To aid the visual inspection, we display the residual maps

obtained by the analysis of the fourth spectral band.

Table 4: Quality assessment at reduced resolution on 25

GaoFen-2 test cases. The mean and the standard deviation

indexes are used to sum up the obtained performance. Best

results are in boldface.

Method SAM ERGAS SCC Q4 Qave A.T.

EXP 2.88±0.47 3.58±0.44 0.690±0.047 0.760±0.030 0.773±0.032 0.017

BDSD 2.90±0.43 2.53±0.46 0.859±0.054 0.873±0.047 0.884±0.042 0.019

CNMF 3.20±0.56 2.74±0.59 0.860±0.055 0.852±0.042 0.877±0.044 0.455

GLP CBD 2.83±0.50 2.49±0.44 0.852±0.054 0.873±0.042 0.877±0.039 0.079

CVPR19 2.57±0.44 2.76±0.37 0.854±0.041 0.861±0.024 0.861±0.024 9.037

DiCNN 1.77±0.31 1.57±0.20 0.943±0.013 0.949±0.015 0.953±0.012 0.879

PanNet 1.65±0.25 1.44±0.12 0.955±0.009 0.951±0.022 0.963±0.011 0.887

DMDNet 1.54±0.24 1.32±0.12 0.961±0.009 0.956±0.022 0.968±0.012 1.049

LPPN 1.49±0.20 1.18±0.12 0.968±0.007 0.968±0.014 0.970±0.015 1.129

corner. Furthermore, the other three DL-based meth-

ods, i.e., PanNet, DMDNet and DiCNN, exhibit com-

petitive visual performance. However, they still fail to

outperform our method. To highlight the differences,

we depicted several magnified sub-regions among the

compared methods. It is clear that our method obtains

the best visual performance, closer to the GT image in

spatial aspects, including sharper edges and clearer ob-

jects. This can be observed in the lower right area of the

sub-regions.(e.g., see the orange roofs of the close-ups

in Fig. 7). Moreover, we compute the residual maps be-

tween the comparison candidates and the ground-truth

(GT) image. It is clear that the fusion image of the pro-

posed approach is closer to GT image, getting a residual

map close to zero almost everywhere.

In order to corroborate the results obtained on the

WorldView-3 test cases, we assessed the performance

of the compared approaches on data acquired by the

QuickBird sensor (Indianapolis datasets) and GaoFen-

2 sensor (Beijing and Guangzhou datasets4). For the

best performance, we adjusted its output channels in

the head of each FCNN to 2S−i+2 for both datasets.

The deep learning-based methods are properly trained

on training data acquired by these sensors. Similar to

WorldView-3 testing cases, we also compare the ap-

proaches on larger datasets of 256×256 spatial size con-

sisting of 25 and 25 test cases extracted from Quick-

Bird and GaoFen-2 datasets, respectively. Tabs. 3 and

4Datasets from: http://www.rscloudmart.com/dataProduct/sample
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Figure 9: The visual comparisons on a GaoFen-2 case (depicted bands: 1, 2 and 3). First two rows: The fusion results by means of

BDSD, CNMF, GLP CBD, CVPR19, DiCNN, PanNet, DMDNet, and Proposed LPPN. Third and fourth rows: The corresponding

residual maps using the GT image as reference. To aid the visual inspection, we display the residual maps obtained by the analysis

of the fourth spectral band.

4 exhibit the average performance and the correspond-

ing standard deviations for all the compared methods,

and Figs. 8 and 9 show the typical corresponding per-

formance of the compared methods. In the scenario of

the QuickBird sensor, BDSD and CNMF demonstrate

acceptable visual outcomes. However, GLP CBD and

CVPR19 still exhibit blurring defects on the white roof-

like object, thus decreasing the spatial performance.

For DL-based methods, the outcomes are still compet-

itive. With the aid of the residual maps, we can see

our method outperforms the other DL-based compared

methods for its close degree of proximity to the GT

image. In the GaoFen-2 test case, BDSD and CNMF

show acceptable visual results, again. GLP CBD and

CVPR19 still suffer from spatial distortion. However,

in this case, the CNMF method demonstrates an evident

spectral distortion. For DL-based methods, we can ob-

serve that our method yields better outcomes with the

aid of the residual maps. In both the figures, the pro-

posed LPPN clearly shows its spatial advantages thanks

to lower image residuals (see the close-ups in the re-

lated figures), thus very high performance of the pro-

posed LPPN method can be easily observed.

Table 5: Quality assessment at full resolution on 200

WorldView-3 test cases. The mean and the standard deviation

indexes are used to sum up the obtained performance. Best

results are in boldface.

Method QNR Dλ DS A.T.

EXP 0.913±0.031 0.000±0.000 0.086±0.030 0.018

BDSD 0.893±0.032 0.033±0.013 0.077±0.027 0.035

CNMF 0.896±0.072 0.040±0.037 0.067±0.047 0.416

GLP CBD 0.920±0.050 0.028±0.024 0.055±0.032 0.079

CVPR19 0.932±0.023 0.012±0.006 0.057±0.019 8.964

DiCNN 0.953±0.036 0.018±0.020 0.030±0.020 0.861

PanNet 0.961±0.021 0.019±0.009 0.020±0.012 0.886

DMDNet 0.960±0.020 0.019±0.010 0.021±0.012 1.038

LPPN 0.963±0.023 0.018±0.012 1.089±0.013 1.082

4.6. Full Resolution Assessment

We also compare our LPPN approach with recent

state-of-the-art pansharpening approaches on full res-

olution WorldView-3, QuickBird and GaoFen-2 data,

whose PAN/LRMS patch is of spatial size 256×256 and

64×64, respectively. Due to the lack of a reference (GT)

image, the QNR index is used instead of the quality in-

dexes in Sect. 4.5. Tabs. 5-7 report the outcomes re-
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Figure 10: The visual comparisons on a full resolution WorldView-3 case (depicted bands: 1, 3, and 5).

Table 6: Quality assessment at full resolution on 20 QuickBird

test cases. The mean and the standard deviation indexes are

used to sum up the obtained performance. Best results are in

boldface.

Method QNR Dλ DS A.T.

EXP 0.845±0.026 0.000±0.000 0.156±0.026 0.008

BDSD 0.877±0.029 0.034±0.016 0.092±0.036 0.025

CNMF 0.779±0.072 0.076±0.050 0.067±0.047 0.144

GLP CBD 0.832±0.028 0.055±0.013 0.012±0.021 0.043

CVPR19 0.936±0.013 0.008±0.004 0.056±0.012 4.539

DiCNN 0.910±0.027 0.026±0.009 0.065±0.024 0.872

PanNet 0.943±0.021 0.027±0.008 0.031±0.015 0.899

DMDNet 0.943±0.020 0.024±0.008 0.034±0.014 1.051

LPPN 0.947±0.004 0.025±0.009 0.029±0.007 1.132

spectively on 200 real WorldView-3, 20 real QuickBird

and 20 GaoFen-2 examples, synthesizing them using the

mean and the standard deviation operators. It is worth

to be pointed out that the proposed method gets the best

results related to the overall quality index at full reso-

lution, QNR. The other two indexes, i.e., Dλ and DS ,

are also close to the approaches that get the best perfor-

mance. Moreover, we also show the visual comparison

on a full resolution WorldView-3 datasets in Fig. 10,

in which the LPPN approach yields more image details

and sharper image edges than the compared methods.

4.7. Discussions

In this section, we will deeply discuss about the pro-

posed architecture (i.e., the number of Laplacian layers,

the effect of recursive blocks, the use of kernels, and

loss functions) after comparing the convergence of dif-

ferent fusion methods. Note that for the discussion of

this part, we take a WorldView-3 datasets (spatial size

256 × 256) as the test example for the sake of brevity.

Table 7: Quality assessment at full resolution on 20 GaoFen

test cases. The mean and the standard deviation indexes are

used to sum up the obtained performance. Best results are in

boldface.

Method QNR Dλ DS A.T.

EXP 0.860±0.269 0.000±0.000 0.140±0.269 0.008

BDSD 0.882±0.035 0.021±0.014 0.099±0.029 0.201

CNMF 0.779±0.043 0.079±0.030 0.067±0.047 0.172

GLP CBD 0.892±0.037 0.048±0.021 0.064±0.021 0.034

CVPR19 0.832±0.035 0.006±0.005 0.163±0.036 4.479

DiCNN 0.870±0.027 0.033±0.013 0.100±0.022 0.873

PanNet 0.970±0.007 0.012±0.006 0.019±0.008 0.881

DMDNet 0.969±0.007 0.010±0.006 0.021±0.006 1.045

LPPN 0.970±0.004 0.010±0.005 0.018±0.005 1.134

Figure 11: Convergence of the proposed network.

4.7.1. Convergence Analysis

We utilize the mean squared error (MSE) loss on

WorldView-3’s 8,806 training data to compare the dif-
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Figure 12: Altered ResNet block structure of the FCNN.

Table 8: Performance assessment by varying the layer number

of the proposed Laplacian pyramid-based approach.

Layers SAM ERGAS SCC Q8 Qave

1 4.81 3.29 0.9584 0.9467 0.9480

2 4.54 3.18 0.9624 0.9496 0.9515

3 4.41 3.12 0.9627 0.9507 0.9520

4 4.40 3.11 0.9640 0.9509 0.9522

5 4.30 3.10 0.9657 0.9518 0.9536

6 4.52 3.16 0.9621 0.9506 0.9519

Table 9: Performance assessment by varying the FCNN struc-

ture.

Methods SAM ERGAS SCC Q8 Qave

Without recursive 4.83 3.54 0.9442 0.942 0.943

Fixed Gaussian kernel 4.66 3.21 0.9616 0.947 0.950

ℓ1 loss 4.51 3.18 0.9617 0.948 0.949

Proposed 4.30 3.10 0.9657 0.952 0.954

ferent network convergence among all the compared

DL-based method, i.e., DiCNN, PanNet, DMDNet and

our LPPN architecture. As shown in Fig. 11, our net-

work has demonstrated a lower training error with less

iterations.

4.7.2. The Influence of the Laplacian Pyramid Layer

Number

A key parameter of Laplacian pyramids is the layer

number. Since the maximum spatial size of our training

images is 64 × 64, S can only vary from 1 to 6. Using

the datasets depicted in Fig. 7, the results of our method

by varying the layer number are reported in Tab. 8. It is

easy to show that the best performance can be obtained

by the 5 layers configuration, i.e. the one adopted in this

paper.

4.7.3. FCNN Structure Discussion

After determining the network levels, we look at the

sub-network level, that is the FCNN. We studied several

configurations of the FCNN. In particular, we have:

a) With recursive Vs. without recursive blocks: In

order to investigate the effects of the recursive

blocks, we substituted the recursive blocks with

ResNet [57] blocks in each FCNN, as depicted in

Fig 12. Having a look at the first and fourth rows in

Tab. 9, it is straightforward that the proposed archi-

tecture with recursive blocks generates better re-

sults than that of the one without recursive blocks.

Moreover, the amount of parameters related to the

compared architectures is 174086 (without recur-

sive) against 50706 (with recursive), and the aver-

age usage of GPU RAM is 1485 MB (without re-

cursive) against 1453 MB (with recursive), consid-

ering the test case depicted in Fig. 7, thus demon-

strating the reduction of the number of parameters

under the use of recursive blocks.

b) Fixed Gaussian Vs. MTF kernels: To verify our

statement in Sect. 3.1.1, we change the shape of

the filters by using classical fixed Gaussian kernel

instead of MTF kernels to deal with the genera-

tion of the Laplacian pyramid. Having a look at

the second and fourth rows Tab. 9, it is clear that

the proposed architecture with MTF-based kernels

used for convolution obtains the best quantitative

performance.

c) ℓ1 Vs. ℓ2 loss functions: We also consider the per-

formance of our network architecture with ℓ1 and

ℓ2 loss functions. The results shown in the third

and fourth rows demonstrate that the proposed ℓ2
loss function is advisable.

4.7.4. Generalization Ability Assessment

We also evaluate the generation ability of our network

architecture among the aforementioned fusion methods
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Table 10: Comparison of the number of parameters (NoPs),

total training time in seconds for all the CNN-based methods.

DiCNN PanNet DMDNet LPPN

NoPs 1.5 × 105 2.5 × 105 3.1 × 105 0.5 × 105

Time 3.7 × 103 4.8 × 103 1.2 × 104 7.4 × 103

Table 11: Generalization ability assessment on the

WorldView-2 dataset.

Method SAM ERGAS SCC Q4 Qave

EXP 8.24 8.88 0.4958 0.6468 0.6667

BDSD 8.42 6.30 0.7989 0.8400 0.8479

CNMF 7.41 6.29 0.8453 0.8298 0.8365

GLP CBD 7.77 6.31 0.8046 0.8370 0.8390

CVPR19 7.30 6.89 0.8144 0.7882 0.7976

DiCNN 6.80 5.54 0.8680 0.8493 0.8658

PanNet 6.52 5.40 0.8588 0.8643 0.8785

DMDNet 6.37 5.22 0.8648 0.8707 0.8824

LPPN 6.50 5.38 0.8742 0.8641 0.8725

by utilizing WorldView-2 datasets, whose number of

spectral bands are equal to the WorldView-3 ones. The

datasets can be freely downloaded from the same link as

for the WorldView-3 datasets. More in detail, the test-

ing WorldView-2 datasets have the PAN image of spa-

tial size of 256×256 with a 4 PAN/MS spatial ratio. The

outcomes are reported in Tab. 11. From the table, we

can see that albeit the performance of our method does

not outstrip the DMDNet, they are very close to the best.

4.7.5. Number of Parameters and Total Training Time

Assessment

Lastly, we compare the number of parameters and to-

tal training time of the four DL-based algorithms. As

a consequence of the use of the recursive structure in

each FCNN, our complexity significantly outperforms

the one of the other methods. Tab. 10 shows the com-

parison of the number of parameters (NoPs) for all the

CNN methods on the WorldView-3 datasets. From this

table, it is clear that the proposed LPPN method has

only 0.5 × 105 parameters, which is significantly less

than the NoPs of DiCNN (1.8×105), PanNet (2.5×105),

and DMDNet (3.2×105). To the best of our knowledge,

the proposed LPPN is one of the best lightweight net-

work for pansharpening showing a small NoPs and also

getting state-of-the-art performance. As for total train-

ing time, DiCNN method yields the shortest. We be-

lieved the reason for this is the relatively simple network

structure, which only contains 3 convolutional blocks

and a skip-connection composition.

5. Conclusions

In this paper, we proposed an efficient deep pyra-

mid network architecture for pansharpening. The net-

work architecture consists of three parts. The first one

is the decomposition of the input image set into Lapla-

cian pyramids using MTF-based kernels. Afterwards,

these pyramids are fused by the fusion convolutional

neural network. Finally, we reconstruct the multi-layer

outputs comparing them with the reference (GT) data

exploiting an ℓ2 loss function in order to train the net-

work. A broad experimental analysis demonstrates that

the proposed approach outperforms the compared state-

of-the-art pansharpening methods. Furthermore, some

discussions about the network convergence, the number

of Laplacian pyramid layers, the influence of the loss

function, the use of recursive blocks, the generalization

ability and so forth, are provided to the readers. Finally,

an analysis on the number of parameters and total train-

ing time of the network pointed out that our LPPN is a

lightweight pansharpening network getting state-of-the-

art performance.
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