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Abstract

Deep Convolution Neural Networks have been adopted
for pansharpening and achieved state-of-the-art perfor-
mance. However, most of the existing works mainly fo-
cus on single-scale feature fusion, which leads to fail-
ure in fully considering relationships of information be-
tween high-level semantics and low-level features, despite
the network is deep enough. In this paper, we propose a
dynamic cross feature fusion network (DCFNet) for pan-
sharpening. Specifically, DCFNet contains multiple par-
allel branches, including a high-resolution branch served
as the backbone, and the low-resolution branches progres-
sively supplemented into the backbone. Thus our DCFNet
can represent the overall information well. In order to en-
hance the relationships of inter-branches, dynamic cross
feature transfers are embedded into multiple branches to
obtain high-resolution representations. Then contextual-
ized features will be learned to improve the fusion of in-
formation. Experimental results indicate that DCFNet sig-
nificantly outperforms the prior arts in both quantitative in-
dicators and visual qualities.

1. Introduction
Pansharpening is a crucial technique in the field of re-

mote sensing image processing, which aims at fusing a
low-resolution multispectral (LRMS) image and a high-
resolution (HR) panchromatic (PAN) image to generate a
final HR image with the same spectral resolution as the MS
image. The outcome of the pansharpening can provide a
better visual interpretation, on the other hand, it is con-
ducive to further processing, e.g., land monitoring, mineral
exploration, and change detection.

The major point for handling pansharpening task [33,
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Figure 1: The visual comparison on an original-resolution
WorldView-3 dataset. First row: the original PAN and up-
sampled low-resolution MS (LRMS) images. Second row:
the pansharpened image by FusionNet [4] and DCFNet.

11, 19] is able to recover more spatial details while re-
taining more complete spectral information. The tradi-
tional methods can be roughly divided into three cate-
gories [18, 21, 14], i.e., component substitution (CS) meth-
ods, multi-resolution analysis (MRA) methods, variational
optimization (VO) approaches. Recently, with the impres-
sive development driven by deep learning (DL), the ex-
isting convolutional neural network (CNN) based meth-
ods [4, 6, 27, 28, 29, 30, 32] for pansharpening have
achieved encouraging performances. This is attributed to
the strong nonlinear fitting ability of the CNN, which can
well depict the relationship between LRMS image, PAN im-
age, and the desired high-resolution multispectral (HRMS)
image.

By observing the existing CNN-based methods, it is con-
cluded that the PAN and LRMS images are used as the input



of the network, and a number of different network architec-
tures are designed to perform the fusion processing. Our in-
tuitive reasoning is that whether the information in the data
can be fully utilized and mined is closely related to the net-
work structure. In recent years, many advanced networks
have emerged for different computer vision tasks. A typ-
ical example is ResNet [9], which designs the module of
residual learning and has become the basic feature extrac-
tion module in general computer vision problems. In [12],
a feature pyramid network (FPN) is developed, which could
efficiently extract various scale features. On its basis, its en-
hanced architecture provides us with more possibilities for
feature fusion and characterization [12, 8, 17].

Although the effectiveness of deep convolutional net-
works has been proven in computer vision tasks, when it
comes to the pansharpening, the defects of information dis-
tortion caused by deepening the network are what exactly
required to be mitigated. And the existing networks have
not adequately considered the cross-scale gap between low-
resolution and high-resolution images well to coordinate the
relationship between the main feature and supplementary
information.

In this paper, we present a novel architecture for pan-
sharpening, namely a dynamic cross feature fusion network
(DCFNet). The proposed DCFNet contains three parallel
branches, one branch maintains the same resolution as the
PAN image and serves as the main branch, which is spa-
tial reduction-free. One of the remaining two branches has
the same spatial resolution as the MS image, and the other
is twice that of the MS image. On the whole, the infor-
mation between the three branches is dynamically fused.
Features extracted from low spatial resolution are gradu-
ally injected into the main branch, maintaining high resolu-
tion while supplementing the information provided by low-
resolution branch species. Extensive experiments demon-
strate that DCFNet can generate reliable results.

To sum up, the contributions of this paper are summa-
rized as follows:

1. We propose a novel architecture named DCFNet,
which is the first network with cross-scale parallel
branches designed for pansharpening. Benefit from
the information fidelity capabilities of high-resolution
branches, our model can perform the spatial reduction-
free fusion.

2. We design a pyramid cross feature transition layer,
which helps multi-resolution branches to capture inter-
branches features. And dynamic branch fusion with
few parameters is adopted to make the network more
effective. As a result, DCFNet significantly outper-
forms the state-of-the-art methods on a wide range of
datasets obtained by various satellite sensors.

3. The proposed DCFNet has a distinctive structure. It

has two special variants, namely the famous U-Net and
SegNet, which indicates our network can also be ap-
plied in more visual tasks.

2. Notations and Related Works

For better explanation, the notations used throughout this
paper are first presented.

2.1. Notations

LRMS and PAN images captured by the remote sens-
ing satellite are denoted as MS ∈ Rh×w×c and P ∈
RH×W , respectively. The desired high-resolution multi-
spectral (HRMS) image is defined as M̂S ∈ RH×W×c,
and the ground truth is represented as GT ∈ RH×W×c,
where H = 4h,W = 4w. Moreover, we adopt the in-
terpolation method by a polynomal kernel with 23 coeffi-
cients to upsample the MS ∈ Rh×w×c to obtain the 2×
and 4× MS images, defined as MS2× ∈ R2h×2h×c, and
MS4× ∈ RH×W×c.

2.2. Related Works

CNN-based methods. Pioneering work for pansharp-
ening based on CNN is the pansharpening neural network
(PNN) [13], learning the mapping relationship between im-
ages only through a simple three-layer CNN. After PNN,
a noteworthy work called PanNet [28] proposes a simple
structure with a certain degree of physical interpretabil-
ity. To be more specific, PAN and MS images are passed
through a low-pass filter firstly, and their high frequency
components are obtained as the input of the network. Spa-
tial information is learned through convolution layers, and
the shortcut connection operation in ResBlock is used for
spectral preservation. Subsequent works, e.g., DMDNet [6],
and FusionNet [4] further prove that the residual learning
module is an effective choice for pansharpening. How-
ever, existing works do not fully consider the difference in
spatial resolution between the MS and PAN images. The
most common strategy is to directly resize the MS image to
match the spatial resolution of the PAN image and perform
convolution operations only at the single scale of high spa-
tial resolution. Such strategy will cause spectral distortion
during upsampling, and cannot make full use of the known
LRMS image and PAN image.

Motivation. For pansharpening, the supplement of con-
textual information is conducive to recovering more desired
information. However, a family of pansharpening networks
mentioned before only adopts single-scale feature fusion to
generate final HRMS, lacking contextual guidances to fea-
ture representations. And existing feature pyramid network
(FPN) provides us a framework for extracting contextual in-
formation. Regrettably, since FPN always reduces the spa-
tial resolution of features in the process of feature extrac-
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Figure 2: Flowchart of the proposed DCFNet.

tion, it is not wise to adopt FPN for pansharpening. To alle-
viate the above problems, we propose DCFNet inspired by
the HRNet [16], which aims to obtain inter-branch feature
fusions from the pyramidal module while always maintain-
ing high resolution in the main branch. Moreover, we adopt
a dynamic fusion strategy to coordinate the information fu-
sion between multi-scale branches, which improves the re-
dundancy and conflicts in information supplementation, so
that our network can achieve satisfactory results.

3. Network Architecture
The overall pipeline of DCFNet is presented in Fig. 2, it

consists of three parallel branches: the main high-resolution
(HR) feature branch, the medium-resolution (MR) feature
branch, and the low-resolution (LR) feature branch. The
three branches are arranged in parallel and are combined
progressively to form three convolution stages. Specifically,
the main high-resolution feature branch starts from the fea-
ture maps obtained by concatenating MS4× and P; the
medium-resolution feature branch starts from MS2× and
the feature maps passed by the high-resolution branch. Sim-
ilarly, the low-resolution feature branch takes the MS and
the feature maps passed by the above two branches as the
input of head structure. The pyramid cross feature trans-
fer (PCFT) layer is designed to realize the transfer of fea-
ture information between different scales. And the three
branches are cross-fused by the proposed dynamic branch
fusion (DBF) between each stage.

3.1. Pre-fusion units and building blocks

For the input of the MS image in each branch, we de-
sign pre-fusion units as the head structure of each branch

to aggregate feature maps transferred from other branches
with newly MS images as shown in Fig. 3. In particular,
pre-fusion is conducive to network learning of multi-modal
information and preliminary feature fusion.

As shown in Fig. 2, we choose the residual block and
bottleneck as the building block, which has been proved
effective in pansharpening. The convolution kernel of the
residual block of each branch is the same. Finally, the stack-
ing of residual blocks is arranged behind pre-fusion units.
Therefore, a complete stage is constructed to makes the net-
work deeper so that it can extract better features.
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Figure 3: Flowchart of the pre-fusion units. Please note
that x refers to medium or low. x − Fi represents one
or more feature maps transferred from other branches. Ni
equals to 64/128 for medium/low-resolution feature branch,
respectively.



3.2. Pyramid Cross Feature Transfer

Compared with the previous feature pyramid network,
the proposed feature transition layer simplifies upsam-
pling process and transfers feature maps to different scale
branches as shown in Fig. 4. The PCFT includes two steps:
1) Downsample and transfer the feature maps of higher res-
olution to lower resolution. 2) Upsample and transfer the
feature maps of lower resolution to higher resolution. The
form of fusion is the weighted addition of corresponding
elements via 3x3 Conv. Notably, the operations of up-
sampling and downsampling are not symmetrical owing
to boost slightly. Specifically, for the path of the high-
resolution branch feature to the low-resolution branch fea-
ture, the high-resolution feature is first transferred to the
medium-resolution feature, and then the medium-resolution
feature is transferred to the low-resolution feature, which
is a progressive process. However, the path from the LR
branch to the HR branch is directly realized, and there is no
intermediate process.

DCFNet always maintain the high-resolution branch,
which is spatial reduction-free. The PCFT aggregates
feature maps from high-to-low and low-to-high branches
and transfers the cross-scale feature maps back to high-
resolution branches through the above operations, and
high-level semantic information is fed into high-resolution
branches. The PCFT makes it easier for parallel branches
to capture contextual information.

Upsample(Conv(3x3), 
stride=1,   padding=1)

Conv(3x3), stride=1,     
padding=1

Conv(3x3), stride=2,     
padding=1

Figure 4: Diagram of the pyramid cross feature transfer
layer, corresponding to the yellow part of Fig. 2. The circles
in the figure represent the feature maps in each branch, and
are color-coded to distinguish the resolution of the feature
maps.

3.3. Dynamic branch fusion

Regarding the fusion of features of different resolutions,
the method adopted by HRNet [16] is to first adjust their

sizes to the same resolution, and then add them accordingly.
However, considering the unequal effects of different reso-
lutions on the final result, feature maps of different reso-
lutions should be weighted before being added. Inspired
by the weighted feature fusion (WFF) proposed in [17], we
adopt the following weighting method:

O =
∑
i

wi∑
j wj + ε

· Ii, (1)

where wi > 0 are the weight learned dynamically, its non-
negativity is guaranteed by a layer of ReLU. The value of ε
is set to 0.0001 to ensure numerical stability.

3.4. Diverse structural deformation

In this section, we devote ourselves to exploring the
particularities and possibilities of the DCFNet structure.
DCFNet has diverse transformations and connection paths
in the process of transferring feature maps. The highlight
is that it can be degenerated into two well-known networks,
i.e., (a) U-Net [15]; (b) SegNet [3]. For the sake of intuition,
we present its degenerate form in Fig.5. In the framework of
the convolutional network, the features extracted from deep
layers provide contextual semantic information in the entire
image, and the features extracted from the shallow network
provide more refined information. Whether it is U-Net or
SegNet, they can combine information from deep and shal-
low layers. Both structures are variants of DCFNet. This
also indicates DCFNet has a superior foundation for feature
extraction and fusion.

Conv(3×3), stride=2
     padding=1

Conv(3×3), stride=1
     padding=1

Conv(1×1), stride=1
     padding=0

(a) U-Net

(b) SegNet

Figure 5: Schematic diagram of DCFNet deformation.

3.5. Loss fuction

We expect to get an ideal HRMS image close to the GT
image for achieving good performance. The following ex-
periments (see Sect. 4) prove the significant advantages of
the DCFNet structure, though here only choose the simple



mean squared error (MSE) as the loss function,

Loss = 1
n

∑n
k=1

∥∥FΘDCFNet

(
I{k}

)
−GT{k}

∥∥2

F
, (2)

where I{k} = {P{k},MS
{k}
4× ,MS

{k}
2× ,MS{k}}, which

represents the input of the DCFNet. n is the number of
training examples, and ‖ · ‖F , is Frobenius norm.

4. Experiments
In this section, we gauge the performance of DCFNet1

by comparing it with other state-of-the-art pansharpen-
ing methods through a series of experiments on various
datasets obtained by WorldView-2(8-bands), WorldView-
3(8-bands), QuickBird(QB, 4-bands), and GaoFen-2(GF-2,
4-bands).

4.1. Network training

In this work, we mainly conduct experiments on data
obtained by WorldView-3. We render 8806 sets of data
(size: 256 × 256 × 8) from the public website and
use 70%/20%/10% of them as the training/validation/test
datasets. However, due to the lack of the ground truth im-
age, we are required to follow Wald’s protocol [26] to get
them. The specific data generation steps are: 1) Use mod-
ulation transfer function (MTF) for 4x downsampling of
original PAN and MS images; 2) Take the downsampled
PAN image and the downsampled MS image as the simu-
lated PAN image and the MS image, respectively; 3) Take
the original MS image as the simulated GT image.

4.2. Benchmark and Metrics

We compare the proposed DCFNet with several state-
of-the-art methods containing the traditional methods (i.e.,
MS image interpolation using a polynomial kernel with
23 coefficients (EXP) [1], BDSD-PC [20], GLP-HPM [2,
24], GLP-Reg [2, 23]2, CVPR19 [5]), and five compet-
itive CNN-based methods (i.e., PNN [13], PanNet [28],
DiCNN1 [10], DMDNet [6], and FusionNet [4]). The
evaluation calculates four metrics for simulation (reduced-
resolution) experiment, and three metrics for real (full-
resolution) experiment. The former includes the SAM
[31], ERGAS [25], SCC [34], Q4 (for 4-band data) or Q8
(for 8-band data) [7]. Accordingly, the latter includes the
QNR [22], the Dλ, and the Ds [21].

4.3. Evaluation on reduced-resolution datasets

Comparation of CNN-based methods. The results ob-
tained by the CNN-based methods are based on large data
set training. The traditional method does not have this prior

1Our model is implemented in the Pytorch framework.
2http://openremotesensing.net/kb/codes/

pansharpening/

work. Therefore, the comparison on the test datasets (men-
tioned in Sect. 4.1) only includes other advanced CNN-
based methods. We calculate the average and standard devi-
ation of each indicator on the test dataset and show them in
Tab. 1. Obviously, our method far exceeds the performance
of other methods on all indicators, which fully proves that
DCFNet has a strong learning ability.

Table 1: Quantitative metrics the compared CNN-based methods
on 1258 reduced-resolution test datasets (WorldView-3). Best re-
sults are in boldface.

Method SAM (± std) ERGAS (± std) Q8 (± std) SCC (± std)

PNN [13] 4.401 ± 1.329 3.228 ± 1.004 0.888 ± 0.112 0.921 ± 0.046
DiCNN1 [10] 3.980 ± 1.318 2.736 ± 1.015 0.909 ± 0.111 0.951 ± 0.047
PanNet [28] 4.092 ± 1.273 2.952 ± 0.977 0.894 ± 0.117 0.949 ± 0.046
DMDNet [6] 3.971 ± 1.248 2.857 ± 0.966 0.900 ± 0.114 0.952 ± 0.044
FusionNet [4] 3.743 ± 1.225 2.567 ± 0.944 0.913 ± 0.112 0.958 ± 0.045
DCFNet 3.377 ± 1.200 2.257 ± 0.910 0.926 ± 0.107 0.967 ± 0.043
Ideal value 0 0 1 1

Evaluation on Tripoli dataset. We further carry out the
test on new data captured by WorldView-3, which records
the local data of Tripoli. In this comparison, all the methods
in the benchmark are included. The quantitative evaluation
results are shown in Tab. 2, which again indicates the supe-
riority of the DCFNet. In addition, considering real-world
applications and observations, it is necessary to compare vi-
sual perception. Therefore, we present natural color maps
and the absolute error maps with GT as the reference im-
age in Fig. 6 and Fig. 7, respectively. Since the darker the
the absolute error map is, the closer the result is to the GT
image, it is obvious that DCFNet surpasses other represen-
tative methods.

Table 2: Quantitative results for Tripoli dataset (WorldView-3).
Best results are in boldface.

Method SAM ERGAS Q8 SCC

EXP [1] 6.7883 8.5719 0.7235 0.5129
BDSD-PC [20] 6.4985 6.7186 0.8475 0.7313
GLP-HPM [2, 24] 6.8196 6.8881 0.8393 0.7350
GLP-Reg [2, 23] 6.4100 6.5463 0.8548 0.7394
CVPR19 [5] 6.2395 7.0669 0.8152 0.7321
PNN [13] 5.0778 3.9614 0.9214 0.9242
DiCNN1 [10] 4.7552 3.4978 0.9444 0.9482
PanNet [28] 4.6079 3.4227 0.9395 0.9516
DMDNet [6] 4.4282 3.1972 0.9458 0.9613
FusionNet [4] 4.2764 3.0568 0.9522 0.9646
DCFNet 3.8666 2.8208 0.9594 0.9718
Ideal value 0 0 1 1

http://openremotesensing.net/kb/codes/pansharpening/
http://openremotesensing.net/kb/codes/pansharpening/


(a) EXP (b) BDSD-PC (c) GLP-HPM (d) GLP-Reg (e) CVPR19 (f) PNN

(g) DiCNN1 (h) PanNet (i) DMDNet (j) FusionNet (k) DCFNet (l) GT

Figure 6: Visual comparisons in natural colors of all the methods on Tripoli dataset (WorldView-3).

(a) EXP (b) BDSD-PC (c) GLP-HPM (d) GLP-Reg (e) CVPR19 (f) PNN

(g) DiCNN1 (h) PanNet (i) DMDNet (j) FusionNet (k) DCFNet (l) GT

Figure 7: Absolute error maps of Fig. 6.

(a) EXP (b) PNN (c) DiCNN1 (d) PanNet (e) DMDNet (f) Fusion-Net (g) DCFNet

Figure 8: Visual comparisons in natural colors of the most representative 6 approaches on Tripoli-OS dataset (WorldView-3)
at the original scale.

4.4. Evaluation on full-resolution datasets

In order to demonstrate the application value of DCFNet,
we further perform experiments on 50 sets of full-resolution
data obtained by WorldView. The quantitative results of
compared CNN-based methods3 are shown in Tab. 3. More-

3Please note that traditional methods are relatively poor according to
the CNN-based methods. Hence, for the sake of space-saving, we exclude

over, we exhibit the six most competitive methods’ results
on one example from 50 sets of data (called Tripoli-OS) in
Fig. 8. It can be easily seen that whether it is quantitative
indicators or visual comparisons, DCFNet is the best.

traditional methods from the analysis. Furthermore, for the same reason,
we only show the results of the six CNN-based methods.



Table 3: Average values of QNR, Dλ and Ds with the re-
lated standard deviations (std) for the 50 full-resolution samples
(WorldView-3). Best results are in boldface.

Method QNR (± std) Dλ (± std) Ds (± std)

PNN [13] 0.946 ± 0.022 0.023 ± 0.014 0.032 ± 0.012
DiCNN1 [10] 0.939 ± 0.024 0.026 ± 0.016 0.035 ± 0.011
PanNet [28] 0.948 ± 0.017 0.029 ± 0.011 0.022 ± 0.009
DMDNet [6] 0.945 ± 0.020 0.024 ± 0.012 0.030 ± 0.013
FusionNet [4] 0.941 ± 0.022 0.024 ± 0.013 0.031 ± 0.013
DCFNet 0.956 ± 0.013 0.022 ± 0.009 0.022 ± 0.006
Ideal value 1 0 0

4.5. More experiments on extensive satellite data

In order to further prove the effectiveness of DCFNet,
we expand the type of experimental data, including data ac-
quired by GF-2 and QB sensors (see Sect 4). For the GF-2
case, we adopt a huge image (size: 6907 × 7300 × 4) cap-
tured over the city of Beijing from the open website 4 to
generate 21607 training data (size: 64×64×4), and another
large image acquired over the Guangzhou city to simulate
81 testing data (size: 256 × 256 × 4). For the QB case,
we adopt a large image (size: 4906 × 4906 × 4) captured
over the city of Indianapolis to generate 20685 training data
(size: 64×64×4) and 48 testing data (size: 256×256×4).
From the indicators shown in Tab. 4, and the visual results
shown in Fig. 9 and Fig. 10, the proposed DCFNet can re-
cover more spatial details without losing the spectral infor-
mation, and its results far exceed the existing methods. This
indicates that DCFNet can also be applied to 4-bands data
and its outcomes are satisfactory enough.

4.6. Network generalization

To prove the generalization of the network, we apply a
ready-made model trained on WorldView-3 data to another
dataset obtained by WorldView-2. For a reasonable ex-
periment, we implement the same data generation steps as
WorldView3 (see Sect 4.1). The quantitative results are dis-
played in Tab. 5. Since it is difficult to keep the consistency
of spectrum information between branches, the SAM ob-
tained by the compared approaches is slightly better. Over-
all, our network has produced satisfactory results, which are
the best for other indicators except SAM. Experimental re-
sults demonstrate that DCFNet has a reliable generalization
ability.

4.7. Ablation study

We ablate our various methods for DCFNet by taking
a sample from Tripoli dataset. The PCFT (mentioned in

4data link: http://www.rscloudmart.com/dataProduct/
sample

Table 4: Quantitative metrics of the compared CNN-based meth-
ods for the GF-2 testing dataset (81 samples) and the QB testing
dataset (48 samples). Best results are in boldface.

Method SAM (± std) ERGAS (± std) Q8 (± std) SCC (± std)

Guangzhou (GF-2)
PNN [13] 1.659 ± 0.360 1.570 ± 0.324 0.927 ± 0.020 0.928 ± 0.020
DiCNN1 [10] 1.494 ± 0.381 1.320 ± 0.354 0.944 ± 0.021 0.945 ± 0.022
PanNet [28] 1.395 ± 0.326 1.223 ± 0.282 0.946 ± 0.022 0.955 ± 0.012
DMDNet [6] 1.297 ± 0.315 1.128 ± 0.266 0.952 ± 0.021 0.964 ± 0.010
FusionNet [4] 1.179 ± 0.271 1.002 ± 0.227 0.962 ± 0.016 0.971 ± 0.007
DCFNet 0.994 ± 0.185 0.811 ± 0.144 0.971 ± 0.016 0.982 ± 0.004

Indianapolis dataset (QB)
PNN [13] 5.799 ± 0.947 5.571 ± 0.458 0.857 ± 0.148 0.902 ± 0.048
DiCNN1 [10] 5.307 ± 0.995 5.231 ± 0.541 0.882 ± 0.143 0.922 ± 0.050
PanNet [28] 5.314 ± 1.017 5.162 ± 0.681 0.883 ± 0.139 0.929 ± 0.058
DMDNet [6] 5.119 ± 0.939 4.737 ± 0.648 0.890 ± 0.146 0.134 ± 0.065
FusionNet [4] 4.540 ± 0.778 4.050 ± 0.266 0.910 ± 0.136 0.954 ± 0.045
DCFNet 4.342 ± 0.719 3.749 ± 0.266 0.920 ± 0.129 0.961 ± 0.046
Ideal value 0 0 1 1

Table 5: Quantitative results on Stockholm dataset (World-
View2). Best results are in boldface.

Method SAM ERGAS Q8 SCC

EXP [1] 7.8500 9.6793 0.6540 0.4505
BDSD-PC [20] 7.0953 6.3233 0.8819 0.8578
GLP-HPM [2, 24] 7.2988 6.9965 0.8527 0.8355
CVPR19 [5] 7.1098 6.5434 0.8752 0.8457
GLP-Reg [2, 23] 7.1195 6.4998 0.8776 0.8453
PNN [13] 6.8624 5.6259 0.8642 0.8539
DiCNN1 [10] 6.8159 5.9773 0.8802 0.8797
PanNet [28] 6.3916 5.6302 0.8897 0.8895
DMDNet [6] 6.1986 5.5692 0.8903 0.8965
FusionNet [4] 6.2784 5.5499 0.8969 0.8897
DCFNet 6.6871 5.1682 0.9175 0.9125
Ideal value 0 0 1 1

Sect 3.2) plays an important role in improving inter-branch
fusions. Specifically, we arrange the module of PCFT to
conduct cross-scale fusions. Without PCFT, inter-branch
fusions degenerate into the sum of low-to-high and high-to-
low cross-scale features, then the current branches generate
a new branch via Conv2D with a stride of 2. Moreover, we
employ learnable parameters to fuse features, which adjusts
the effects of branches. With the dynamic branch fusion,
the results can be slightly improved, but DBF (mentioned
in Sect 3.3) can keep conformity of fusions that is pro-
gressively supplemented between branches. From Tab. 6,
DCFNet has better results on SAM and slightly better on
ERGAS and SCC.

http://www.rscloudmart.com/dataProduct/sample
http://www.rscloudmart.com/dataProduct/sample
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Figure 9: Visual comparisons in natural colors of the most representative 6 approaches on the Guangzhou dataset (sensor:
GF-2). First row: visual results; Second row: absolute error maps.

(a) PNN (b) DiCNN1 (c) PanNet (d) DMDNet (e) FusionNet (f) DCFNet (g) GT

(h) PNN (i) DiCNN1 (j) PanNet (k) DMDNet (l) FusionNet (m) DCFNet (n) GT

Figure 10: Visual comparisons in natural colors of the most representative 6 approaches on the Indianapolis dataset (sensor:
QB). First row: visual results; Second row: absolute error maps.

Table 6: Abalation study of DCFNet with/without some fusion
operations on Tripoli dataset.

Method SAM ERGAS Q8 SCC

w/o DFB 3.893 2.836 0.971 0.959
w/o PCFT 4.001 2.852 0.972 0.959
DCFNet 3.852 2.825 0.972 0.960
Ideal value 0 0 1 1

5. Conclusion
In this paper, we propose a novel network called DCFNet

for pansharpening. DCFNet consists of three parallel
branches, where the main branch maintains an end-to-

end high-resolution representation, and the remaining two
branches continuously inject feature maps into the main
branch and adopt the designed pre-fusion units and pyramid
cross transfer to balance spatial-reduction and spectral re-
covering. Extensive experiments on various datasets verify
DCFNet achieves significant superiority results and a reli-
able generalization capability over other advanced methods.
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