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ABSTRACT

As the conventional activation functions such as ReLU, LeakyReLU,

and PReLU, the negative parts in feature maps are simply truncated

or linearized, which may result in unflexible structure and unde-

sired information distortion. In this paper, we propose a simple

but effective Bilateral Activation Mechanism (BAM) which could

be applied to the activation function to offer an efficient feature

extraction model. Based on BAM, the Bilateral ReLU Residual Block

(BRRB) that still sufficiently keeps the nonlinear characteristic of

ReLU is constructed to separate the feature maps into two parts, i.e.,

the positive and negative components, then adaptively represent

and extract the features by two independent convolution layers.

Besides, our mechanism will not increase any extra parameters or

computational burden in the network. We finally embed the BRRB

into a basic ResNet architecture, called BRResNet, it is easy to ob-

tain state-of-the-art performance in two image fusion tasks, i.e.,

pansharpening and hyperspectral image super-resolution (HISR).

Additionally, deeper analysis and ablation study demonstrate the

effectiveness of BAM, the lightweight property of the network, etc.

Please find the code from the project page1.
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1 INTRODUCTION

Image fusion aims to fuse the image data that record the same

target collected by different sensors through specific techniques

to maximize the extraction of the desired information from each

sensor. It can improve the spatial and spectral resolution of the

original image and finally produce a high-quality image that can

be further applied to other high-level vision tasks, such as image

segmentation and detection. Recently, convolutional neural net-

works (CNNs) have demonstrated remarkable superiority in image

fusion due to the powerful computing infrastructure and availabil-

ity of large-scale datasets. The main improvement direction of the

latest CNNs-based methods [18, 29, 30, 41, 44] points to the opti-

mization of the network structures. Structural changes, such as

deepening of depth, increasing width, and multi-scale convolution

operations, are essential to make the CNNs’ feature extraction ca-

pabilities more powerful. Activation function [25], e.g., Rectified

Linear Unit (ReLU), as the important tool which plays a role in

activating the nonlinear fitting ability of CNNs, has received more

and more attention. In particular, ReLU is anti-symmetric about 0.

It activates the positive part of the input, and the partial derivative

is 1. At the same time, the negative part of the input is ignored, and

the partial derivative is 0. Such an activation mechanism makes

the activated unit not have a vanishing gradient at any network

depth. However, when the unit is not activated, the gradient is 0,

resulting in it remaining inactivated throughout the optimization

process. To mitigate potential problems caused by the hard 0 acti-

vation of ReLU [24], its generalized versions (i.e., LeakyReLU [22],

PReLU [15] and so forth) have been developed. Most of them are

devoted to improving the activation performance of the original

ReLU by modifying its functional form. It is actually because of

the asymmetry of ReLU that some neurons can not be activated

and remain in an inhibited state. This model is conducive to image

classification, image segmentation, and other tasks. However, in

the image fusion task, those parts that are not activated have the

latent features we need. Although the existing activation function,

such as ReLU, enhances the nonlinear fitting ability of the network,

it will cause undesired information distortion.

In this paper, we present a framework from the direction of the ac-

tivation mechanism extension, expecting to explore and utilize the

features that can not be activated while retaining the nonlinearity

of the activation function. Thus, we propose a Bilateral Activation
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Figure 1: A toy example of the proposed Bilateral Activation Mech-

anism (BAM) with ReLU as the activation function, by which the

feature is separated into two parts, i.e., the positive and negative

parts that will be fed to the subsequent convolution layers. Com-

pared with conventional activation functions such as ReLU, the BAM

could effectively prevent information distortion, especially for the

negative features.
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Figure 2: The left one is the diagram of ReLUP, which is the same

as ReLU. The right one is ReLUN obtained through rotating ReLU by

180° clockwise.

Mechanism. Take ReLU as an example, BAM with ReLU is able

to separate input feature maps into positive and negative parts,

as shown in Fig. 1, and then send them to different convolutional

layers for feature extraction.

We mainly focus on two image fusion tasks, hyperspectral im-

age super-resolution (HISR) [4, 11, 28] and remote sensing image

pansharpening [7, 8, 31]. The first one (HISR) is to obtain a high-

resolution hyperspectral image (HR-HSI) by fusing a low-resolution

hyperspectral image (LR-HSI) and a high-resolution multispectral

image (HR-MSI). And pansharpening yields a high-resolution mul-

tispectral image (HR-MSI) by fusing a low-resolution multispec-

tral image (LR-MSI) and a high-resolution panchromatic image

(HR-PANI). Whether it is HISR or pansharpening, the difficulty

mainly lies in achieving competitive spatial and spectral preserva-

tion. Therefore, both precisely modeling the nonlinear relationship

between images and fully exploring image features are of critical

importance. In our work, the bilateral activation mechanism is

applied to a residual block with ReLU as the activation function.

Thus bilateral ReLU residual block (BRRB) is constructed without

increasing the number of parameters. Furthermore, we embed the

BRRB into a simple ResNet [16], called BRResNet, to implement

two image fusion tasks. Experiments demonstrate that BRResNet

can easily surpass other advanced methods. The main contributions

can be summarized as follows:

• A novel bilateral activation mechanism (BAM) is designed to

avoid the neuron inactivation problem caused by a peculiar

form of the activation function, e.g., ReLU. Not only the

nonlinearity of ReLU is retained, but also the features of the

input can be fully utilized.

• As a mechanism, BAM provides a more efficient feature

extraction mode without increase the computational burden.

Also, it has many variants and can be used as a substitution to

replace any structure like łActivation + Convolution", giving

us more flexibility in designing the network structure.

• A BRResNet with BAM is proposed, which achieves state-of-

the-art performance in two fusion tasks. Especially, the given

BRResNet holds a large margin among other CNNs-based

methods in terms of the parameters, thus can be viewed as a

lightweight network.

2 RELATEDWORKS AND MOTIVATION

In this section, we will first introduce a common form of several

activation functions and present their similarities and differences.

Then, the motivations of this paper will be detailed.

2.1 Related Works

As mentioned above, ReLU will ignore the negative elements of

the input and cause it to remain inactive. And its generalized ver-

sions, such as LeakyReLU, and PReLU, are all changed in their basic

form. Thus they can be unified into the following mathematical

expression:

A(𝑥) =

{
𝑥 , 𝑥 ≥ 0

𝛼𝑥, 𝑥 < 0
, (1)

where A(·) represents the activation function, and the correspond-

ing common derivative form can be expressed as follows:

A ′(𝑥) =

{
1 , 𝑥 ≥ 0

𝛼, 𝑥 < 0
, (2)

where A(·) represents the corresponding common derivative of

the activation function, 𝑥 is the input, and 𝛼 is the coefficient. For

ReLU, 𝛼 is set to zero, thus in the process of backpropagation, the

gradient for parameters of the inactive unit is zero, which means it

can not be updated during the training process. For LeakyReLU, 𝛼

is set as a small value, which offers a small, non-zero gradient to

the negative parts of the input. Besides, in PReLu, 𝛼 is adaptively

learned by networks. It is more flexible but still inhibits the negative

parts.

2.2 Motivation

The nonlinear nature of ReLU is reflected in the fact that all nega-

tive values are zero, which brings more possibilities for the network

to extract features, but the remaining features of the negative part



Figure 3: The illustration of BRRB.
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Figure 4: The flowchart of the proposed overall network architecture, i.e., BRResNet that mainly contains 𝑛 BRRBs, for image fusion tasks

such as HISR and pansharpening.

will be directly discarded. In order to extract the residual features

in the negative part, LeakyReLU multiplies the negative part with

a coefficient 𝛼 so that the information in the negative part can

be preserved. However, although the features of the negative part

become better extracted, the nonlinearity of the activation function

decreases, further causing the nonlinear fitting ability of the net-

work to decrease. PReLU regards 𝛼 in the activation function as a

trainable parameter in the network. This can indeed balance the

relationship between the feature extraction of the negative part and

the nonlinearity of the activation function, but in essence, the fea-

ture extraction of the negative part is strengthened by weakening

the nonlinearity of the activation function.

Therefore, to avoid information loss such as the negative features

in ReLU and the parameter tuning of𝛼 in LeakyReLU and PReLU,we

develop a simple and effective BAM tomake full use of both positive

and negative features, aiming to reduce the spatial distortion in

pixel-wise tasks, e.g., image fusion.

3 THE PROPOSED METHODS

This section will first introduce how BAM works when ReLU is

used as the activation function. Then, the Bilateral ReLU Residual

Block (BRRB) and BRResNet will be detailed.

3.1 Bilateral Activation Mechanism

By Fig. 1, it is clear that after the feature map passing the ReLU (also

called ReLUP), there still exist obvious negative features contain-

ing abundant details by the ReLU that rotated by 180°, i.e., ReLUN.

If only taking conventional ReLU, the negative features will be

discarded, weakening the ability of feature representation and ex-

traction. In this work, we novelly develop a simple BAM that takes



ReLU as the activation function to make use of both positive and

negative features in the network. Please see Fig. 2.

From Fig. 3, consider an input feature map Î, which contains the

positive part P and negative part N, the proposed BAM with ReLU

will separate P and N first. The separation process can be expressed

as follows:

P𝑖 𝑗𝑘 =𝑚𝑎𝑥
{
Î𝑖 𝑗𝑘 ; 0

}
, (3)

N𝑖 𝑗𝑘 =𝑚𝑖𝑛
{
Î𝑖 𝑗𝑘 ; 0

}
, (4)

where (𝑖, 𝑗, 𝑘) denotes the coordinate in the feature map. Then, P

and N will be sent to different paths for feature extraction. More

details about BAM with ReLU can refer to Fig. 2.

3.2 Bilateral ReLU Residual Block

After defining the BAM, we here present how to embed the BAM

into a common network architecture. The classical ResNet is choosen

as the basic architecture because of its high performance and effi-

ciency. Especially, Bilateral ReLU Residual Block (BRRB) embedded

with BAM is proposed to replace the residual block in ResNet [16].

Assume that the input feature map is I ∈ R𝐻×𝑊 ×𝐶 , where𝐻 and𝑊

is the size in spatial dimension,𝐶 is the channels of the input feature,

I will be sent to the convolutional layer to exact its shallow feature

Î ∈ R𝐻×𝑊 ×𝐶 . Then the exacting feature map Î will pass through

the BAM with ReLU to separate the the positive part P ∈ R𝐻×𝑊 ×𝐶

and negative part N ∈ R𝐻×𝑊 ×𝐶 . Next, the separated two parts will

pass through two independent convolutional layers to obtain the

potential feature P̂ ∈ R𝐻×𝑊 ×𝐶

2 and N̂ ∈ R𝐻×𝑊 ×𝐶

2 respectively.

After that, P̂ and N̂ will be concatenated as S ∈ R𝐻×𝑊 ×𝐶 . Finally, S

will be added with I as the final output feature map O ∈ R𝐻×𝑊 ×𝐶 .

It is worth noting that the process from Î to S can be seen as a basic

module that can replace the łActivation + Convolution" structure

in any networks. More details about BRRB can refer to Fig. 3.

3.3 The Overall Network and Loss Function

In this section, we proposed an overall network architecture for

the task of image fusion, in which we embed the BRRB into a

simple ResNet [16], called BRResNet. Especially, the BRResNet that

contains five BRRBs is used to solve the pansharpening problem

in this paper. Let HR ∈ R𝐻×𝑊 ×𝑏 and LR ∈ R
𝐻

4
×𝑊

4
×𝐵 represent

the high-resolution image and low-resolution image respectively,

where 𝐵 and 𝑏 denotes the bands in LR andHR. More information

about HR and LR can refer to Sec. 4.2.2 and Sec. 4.3.2. Firstly,

LR is upsampled to the same size as HR. Then, the upsampled

LR, represented as L̂R ∈ R𝐻×𝑊 ×𝐵 , will concatenate with HR

as M ∈ R𝐻×𝑊 ×(𝑏+𝐵) . Next, L̂R will be fed into the BRResNet

and the output will be added with L̂R as the final fused image

SR ∈ R𝐻×𝑊 ×𝐵 . The overall process can be expressed as follows:

SR = F𝜃 (L̂R;HR) + L̂R, (5)

where F𝜃 (·) represents the BRResNet with its parameters 𝜃 . More

details about BRResNet can refer to Fig. 4.

To depict the distance between SR and the ground-truth (GT)

image, we adopt the mean square error (MSE) as our loss function in

Table 1: Average quantitative comparisons on 11 CAVE examples

(Red: the best; Blue: the second best).

Method PSNR SAM ERGAS SSIM

FUSE [35] 39.72 ± 3.52 5.83 ± 2.02 4.18 ± 3.08 0.975 ± 0.018

GLP-HS [27] 37.81 ± 3.06 5.36 ± 1.78 4.66 ± 2.71 0.972 ± 0.015

CSTF [19] 42.14 ± 3.04 9.92 ± 4.11 3.08 ± 1.56 0.964 ± 0.027

CNN-FUS [10] 42.66 ± 3.46 6.44 ± 2.31 2.95 ± 2.24 0.982 ± 0.007

SSRNet [42] 45.28 ± 3.13 4.72 ± 1.76 2.06 ± 1.30 0.990 ± 0.004

ResTFNet [21] 45.35 ± 3.68 3.76 ± 1.31 1.98 ± 1.62 0.993 ± 0.003

MHFNet [36] 46.32 ± 2.76 4.33 ± 1.48 1.74 ± 1.44 0.992 ± 0.006

BRResNet 47.85 ± 3.56 2.96 ± 0.89 1.50 ± 1.18 0.995 ± 0.003

Ideal value ∞ 0 0 1

Table 2: Average quantitative comparisons on 10 Harvard examples.

Method PSNR SAM ERGAS SSIM

FUSE [35] 42.06 ± 2.94 3.23 ± 0.91 3.14 ± 1.52 0.977 ± 0.009

GLP-HS [27] 40.14 ± 3.22 3.52 ± 0.96 3.74 ± 1.44 0.966 ± 0.012

CSTF [19] 42.97 ± 3.33 3.30 ± 1.25 2.43 ± 1.06 0.972 ± 0.021

CNN-FUS [10] 43.61 ± 4.73 3.32 ± 1.17 2.78 ± 1.64 0.978 ± 0.016

SSRNet [42] 44.40 ± 3.49 2.61 ± 0.72 2.39 ± 1.02 0.985 ± 0.007

ResTFNet [21] 44.47 ± 4.04 2.56 ± 0.68 2.21 ± 0.87 0.985 ± 0.008

MHFNet [36] 43.10 ± 3.94 2.76 ± 0.77 3.28 ± 1.54 0.977 ± 0.009

BRResNet 45.74 ± 3.86 2.39 ± 0.66 1.94 ± 0.69 0.986 ± 0.009

Ideal value ∞ 0 0 1

the training process. The loss function can be expressed as follows:

L(𝜃 ) =
1

𝑁

𝑁∑︁

𝑖=1

F𝜃 (L̂R
(𝑖)
,HR(𝑖) ) + L̂R − GT(𝑖)


2

𝐹
, (6)

where 𝑁 denotes the amount of training examples, and ∥·∥𝐹 is the

Frobenius norm.

4 EXPERIMENTS

This section reports the main results of BRResNet in HISR and

pansharpening, where the effectiveness of BAM is demonstrated

by comparing with the existing state-of-the-art methods.

4.1 Baseline Methods

HISR is a classic task in the field of image fusion. The methods

developed in recent years can be divided into traditional methods

and deep learning (DL)-based approaches. Competitive traditional

methods including FUSE [35], the coupled sparse tensor factoriza-

tion (CSTF) [19] method and the CNN Denoiser (CNN-FUSE) [10].

Many DL-based methods based on CNN have emerged, pushing the

task of HISR to a new era, including SSRNet [42], ResTFNet [21],

and MHFNet [36].

Similarly, previous works for pansharpening can also be clas-

sified as traditional methods and DL-based methods [31]. Typical

traditional methods are the smoothing filter-based intensity mod-

ulation (SFIM) [20], the generalized Laplacian pyramid (GLP) [1]

with MTF-matched filter [3] and regression-based injection model

(GLP-CBD) [5], and the band-dependent spatial-detail with local

parameter estimation (BDSD) [14]. Advanced DL-based methods

are PanNet [38], DiCNN1 [17], and DMDNet [12].

4.2 Results for HISR

In this section, we will introduce the implementation of training,

then, datasets and evaluation indicators will be shown, and finally,
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Figure 5: AEMs comparison for HISR on CAVE dataset that is 15 bits and the maximum value is 65535.
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Figure 6: AEMs comparison for HISR on Harvard dataset that is 15 bits and the maximum value is 65535.
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Figure 7: Qualitative comparison on a reduced WV3 data.

the HISR results compared with state-of-the-art methods will be

presented.

4.2.1 Training Details and Parameters. All DL-based methods are

fairly trained on the same dataset on NVIDIA GeForce GTX 2080Ti.

Besides, we set 1000 epochs for the BRResNet training under the

Pytorch framework, while the learning rate is set to 1 × 10−4, the

channels of the BRRB is set to 64. Adam optimizer is used for

training with the batch size 32 while 𝛽1 and 𝛽2 are set to 0.9 and

0.999, respectively. For the compared approaches, we use the source

codes provided by the authors or re-implement the code with the

default parameters in the corresponding papers.



4.2.2 Datasets and Evaluation Metrics. In this work, we adopt two

widely used datasets: CAVE dataset [39] and Harvard dataset [6].

CAVE dataset includes 32 scenes with the size of 512×512 (31 bands

in total), with full spectrum resolution reflectance data from 400nm

to 700nm at 10nm increments. Harvard dataset [6] includes 77

indoor and outdoor scenes with the size 1392×1040 (31 bands in

total), with full spectrum resolution reflectance data in the range of

420nm to 720nm at 10nm increments. We have simulated a total of

3920 HR-MSI/LR-HSI/GT image pairs (80%/20% as training/testing

dataset) with the size 64×64×3, 16×16×31, and 64×64×31 for CAVE

dataset, and 3920 HR-MSI/LR-HSI/GT image pairs (80%/20% as

training/testing dataset) with the size 64×64×3, 16×16×31, and

64×64×31 for Harvard dataset, respectively. The process of CAVE

data generation contains the following three steps: 1) Crop 3920

overlapping patches from the original dataset as GT; 2) Apply a

Gaussian blur with the kernel size of 3×3 and standard deviation of

0.5 to GT patches, and then the blurred patches are downsampled

to generate LR-HSI patches; 3) Use the spectral response function

of Nikon D700 camera [9, 10, 36, 37] to generate MSI patches. Be-

sides, to evaluate the performance of HISR, we adopt the following

indicators, SAM, ERGAS, the peak signal-to-noise ratio (PSNR) and

the structure similarity (SSIM) [34].

Table 3: Average quantitative comparisons on 1258 reduced resolu-

tion WV3 examples.

Method SAM ERGAS SCC Q8

BDSD [14] 6.9997 ± 2.8530 5.1670 ± 2.2475 0.8712 ± 0.0798 0.8126 ± 0.1234

GLP-CBD [5] 5.2861 ± 1.9582 4.1627 ± 1.7748 0.8904 ± 0.0698 0.8540 ± 0.1144

PanNet [38] 4.0921 ± 1.2733 2.9524 ± 0.9778 0.9495 ± 0.0461 0.8942 ± 0.1170

DiCNN1 [17] 3.9805 ± 1.3181 2.7367 ± 1.0156 0.9517 ± 0.0472 0.9097 ± 0.1117

DMDNet [12] 3.9714 ± 1.2482 2.8572 ± 0.9663 0.9527 ± 0.0447 0.9000 ± 0.1142

BRResNet 3.5881 ± 1.2185 2.4618 ± 0.9306 0.9612 ± 0.0444 0.9183 ± 0.1099

Ideal value 0 0 1 1

Table 4: Average quantitative comparisons on 36 full resolution

WV3 examples.

Method QNR 𝐷𝜆 𝐷𝑠

BDSD [14] 0.9368 ± 0.0416 0.0170 ± 0.0137 0.0473 ± 0.0320

GLP-CBD [5] 0.9107 ± 0.0518 0.0323 ± 0.0243 0.0597 ± 0.0325

PanNet [38] 0.9605 ± 0.01551 0.0215 ± 0.0098 0.0184 ± 0.0074

DiCNN1 [17] 0.9454 ± 0.0268 0.0181 ± 0.0135 0.0374 ± 0.0159

DMDNet [12] 0.9595 ± 0.0155 0.0201 ± 0.0098 0.0209 ± 0.0073

BRResNet 0.9671 ± 0.0095 0.0179 ± 0.0063 0.0152 ± 0.0050

Ideal value 1 0 0

4.2.3 Comparison with State-of-the-art. This section will report

the comparison of the results on the CAVE dataset and the Harvard

dataset produced by our BRResNet and several advanced meth-

ods. Quantitative evaluation results of these approaches for the

CAVE dataset are summarized in Table 1, while these approaches

for the Harvard dataset are summarized in Table 2. The advantage

of the BRResNet could be shown across the board in terms of all

assessment metrics. Fig. 5 and Fig. 6 depict a part of the testing

fusion outcomes through the absolute error maps (left bottom area

of the original image). Visual examination reveals that the pro-

posed approach produces a superior visual impression. Compared

to the other results, the output of BRResNet is superior in terms of

texture/edge details retention and global intensity.

4.3 Results for Pansharpening

This section will first introduce the training implementation, then

datasets and evaluation indicators will be described, and finally, our

pansharpening results will be presented.

4.3.1 Training Details and Parameters. We conduct 1000 epochs

training under the Pytorch framework, and the learning rate is

fixed as 1 × 10−4 during the training process. For the parameters

of BRResNet, the number of the BRResBlock is set to 5, while the

number of channels of the BRRB is set to 32. The rest of the settings

and parameters are the same as that in Sec. 4.2.1.

4.3.2 Datasets and Evaluation Metrics. To benchmark the effec-

tiveness of BRResNet for pansharpening, we adopt a wide range

of datasets including 8-band datasets captured by WorldView-3

(WV3), 4-band datasets captured by GaoFen-2 (GF2) and QuickBird

(QB) satellites. As the ground truth (GT) images are not available,

Wald’s protocol [2] is performed to ensure the baseline image gener-

ation. All the source data can be download from the public website.

For WV3-data, we obtain 12580 HR-PANI/LR-MSI/GT image pairs

(70%/20%/10% as training/validation/testing dataset) with the size

64×64×1, 16×16×8, and 64×64×8, respectively; For GF2 data, we

use 10000 HR-PANI/LR-MSI/GT image pairs (70%/20%/10% as train-

ing/validation/testing dataset) with the size 64×64×1, 16×16×4, and

64×64×4, respectively; For QB data, 20000 HR-PANI/LR-MSI/GT

image pairs (70%/20%/10% as training/validation/testing dataset)

with the size 64×64×1, 16×16×4, and 64×64×4 were adopted.

The quality evaluation is conducted both at reduced and full

resolutions. For reduced resolution test, the spectral angle mapper

(SAM) [40], the relative dimensionless global error in synthesis

(ERGAS) [33], the spatial correlation coefficient (SCC) [43], and

quality index for 4-band images (Q4) and 8-band images (Q8) [13]

are used to assess the quality of the results. In addition, to assess

the performance of all involved methods on full resolutions, the

QNR, the 𝐷𝜆 , and the 𝐷𝑠 [32] indexes are applied.

4.3.3 Comparison with State-of-the-art. This section will compare

the results on various datasets obtained by our BRResNet and sev-

eral competitive methods (including traditional techniques and

DL-based methods).

Evaluation on 8-band reduced resolution dataset.We com-

pare the proposed method with recent state-of-the-art pansharpen-

ing methods on the quantitative performance on 1258 WV3 testing

datasets. The results of compared methods and BRResNet are re-

ported in Table 3. It can be observed that BRResNet achieves a tran-

scendence performance. Also, we compare the related approaches

on the Rio-dataset (WV3), whose visual results are shown in Fig. 7.

We can observe that BRResNet not only provides unambiguous

results, but also the color and brightness of the proposed method’s

results are clearly closer to the LR-MSI (refer to EXP).

Evaluation on 8-band full resolution dataset. We further

perform a full-resolution test experiment on the WV3 dataset with

50 pairs. The quantitative results are reported in Table 4, and the

visual results are shown in Fig. 10. Again, our method significantly

outperforms existing techniques in all quantitative indicators. Fur-

thermore, the compared DL-based techniques PanNtT, DiCNN1,

and DMDNet no longer outperform all standard unsupervised ap-

proaches, as they did in the previous section. This is because the
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Figure 8: Qualitative comparison on a reduced GF2 data.
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Figure 9: Qualitative comparison on a reduced QB data.
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Figure 10: Qualitative comparison on a full resolution WV3 data.

training and testing samples have similar spectral and spatial re-

sponses. Traditional deep learning algorithms can only work suc-

cessfully in constant training-testing scenarios. BRResNet, on the

other hand, mitigates this flaw to some extent.

Evaluation on 4-band reduced resolution dataset. In order

to prove the wide applicability of BRResNet, we also conducted

experiments on the 4-band GF2 and QB datasets. Similarly, the

comparison of quantified indicators is shown in Table 6 and Table 5,

the visual results are shown in Fig. 8 and Fig. 9. Other competing

approaches produce some ambiguity and residual more or less,

but our proposed method can generate results that are closest to

Table 5: Average quantitative comparisons on 81 reduced resolution

GF2 examples.

Method SAM ERGAS SCC Q4

BDSD [14] 2.3074 ± 0.2923 2.0704 ± 0.6097 0.8769 ± 0.0516 0.8763 ± 0.0417

GLP-CBD [5] 2.2744 ± 0.7335 2.0461 ± 0.6198 0.8728 ± 0.0527 0.8773 ± 0.0406

PanNet [38] 1.3954 ± 0.3262 1.2239 ± 0.2828 0.9558 ± 0.0123 0.9469 ± 0.0222

DiCNN1 [17] 1.4948 ± 0.3814 1.3203 ± 0.3544 0.9459 ± 0.0223 0.9445 ± 0.0212

DMDNet [12] 1.2968 ± 0.2923 1.1281 ± 0.2670 0.9645 ± 0.0101 0.9530 ± 0.0219

BRResNet 1.2129 ± 0.2923 1.0298 ± 0.2532 0.9686 ± 0.0094 0.9627 ± 0.0175

Ideal value 0 0 1 1

the GT image, which further proves that BRResNet has a certain

generalization ability.
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Figure 11: The left one is the diagram of PReLU or LeakyReLU,

the right one is the transformed one that denoted as PReLUT or

LeakyReLUT, the difference between PReLU and LeakyReLU is, PReLU

regards 𝛼 as a trainable parameter while LeakyReLU regards 𝛼 as an

immutable hyperparameter.

Table 6: Average quantitative comparisons on 48 reduced resolution

QB examples.

Method SAM ERGAS SCC Q4

BDSD [14] 7.6708 ± 1.9110 7.4661 ± 0.9912 0.8512 ± 0.0622 0.8132 ± 0.1361

GLP-CBD [5] 7.3983 ± 1.7826 7.2965 ± 0.9316 0.8543 ± 0.0643 0.8191 ± 0.1283

PanNet [38] 5.3144 ± 1.0175 5.1623 ± 0.6815 0.9296 ± 0.0586 0.8834 ± 0.1399

DiCNN1 [17] 5.3071 ± 0.9958 5.2310 ± 0.5412 0.9224 ± 0.0507 0.8821 ± 0.1432

DMDNet [12] 5.1197 ± 0.9399 4.7377 ± 0.6487 0.9350 ± 0.0653 0.8908 ± 0.1464

BRResNet 4.5990 ± 0.7882 3.9480 ± 0.2521 0.9541 ± 0.0486 0.9109 ± 0.1367

Ideal value 0 0 1 1

From the above experiments, it is clear that apart from the im-

provement of HISR performance, the proposed BAM also has a

favorable performance for pansharpening. We believe that BAM

can also achieve satisfactory results for more vision tasks.

4.4 Disscusions

In this section, we discuss the effectiveness of the proposed method

from the following three aspects. First, how activation function

may affect training results is investigated. Then, we study the per-

formance of BAM with different activation functions. And finally,

a comparison of parameters is presented.

Discussion on activation function. We provide experiments

that compare three ResNet variants over the Tripoli dataset (A

sample from theWV3 datasets). The three ResNet variants use ReLU,

LeakyReLU, and PReLU as the activation functions respectively,

denoted as ResNet-ReLU, ResNet-LReLU, ResNet-PReLU. As shown

in Table 7, ResNet with PReLU has the best results, indicating

that the negative part is necessary for feature extraction, but it

is not feasible to fix the derivative, like LeakyReLU. It is worth

mentioning that BAM can also be used for some of the latest and

effective activation functions, such as Mish [23] and Swish [26].

Discussion on BAM. BAM can be applied to different activa-

tion functions. Similarly, we select ReLU, LeakyReLU, and PReLU

for comparison, denoted as ResNet-BReLU, ResNet-BLReLU, and

ResNet-BPReLU respectively. The training and test procedures are

the same as the above experiment. The illustration of BPReLU and

BLeak-yReLU is shown in Fig. 11. Among them, the coefficient on

the negative interval of LeakyReLU is set to 0.2, and the initializa-

tion coefficient on the negative interval of PReLU is set to 0.2. The

Table 7: Quantitative comparisons of discussion study on Tripoli

dataset (A sample from the WV3 datasets).

Method SAM ERGAS SCC Q8

ResNet-ReLU 4.1367 3.0077 0.9658 0.9667

ResNet-LeakyReLU 4.1845 3.1040 0.9631 0.9533

ResNet-PReLU 4.0843 2.9601 0.9674 0.9561

ResNet-BReLU (our) 4.0124 2.9555 0.9677 0.9562

ResNet-BLeakyReLU (our) 4.0745 2.9694 0.9675 0.9559

ResNet-BPReLU (our) 4.0370 2.9455 0.9679 0.9564

Ideal value 0 0 1 1

Table 8: The number of parameters (NoPs). The first two lines are

the pansharpening experiment on WV3 dataset, and the last two

lines are the HISR experiment.

Method PanNet DiCNN1 DMDNet FusionNet BRResNet

NoPs 2.5 × 105 1.8 × 105 3.2 × 105 2.3 × 105 0.97 × 105

Method ÐÐ SSRNet ResTFNet MHFNet BRResNet

NoPs ÐÐ 0.3 × 105 22.6 × 105 36.3 × 105 4.1 × 105

experimental results over the Tripoli dataset are shown in Table 7.

It is clear that BAM can enhance the feature extraction ability of

the network and obtain the most competitive results on multiple

indicators. This is due to the ability of BRRB to receive bilateral

contextual information streams, allowing it to extract and apply

more extensive representations for image fusion.

Discussion on the number of parameters. The number of

parameters (NoPs) of all the compared DL-based methods for two

tasks are presented in Table 8. For pansharpening, the BRResNet has

only 0.97 million parameters, much less than the other competitive

methods. This is due to the fact that the bilateral activation method

improves the representation capabilities of the network without

increasing any extra parameters. Moreover, for HISR, although the

NoPs of the BRResNet is not the least, it is able to achieve a satisfy-

ing trade-off between computational burden and performance. Our

proposed method has demonstrated remarkable efficacy in experi-

ments while requiring a tolerable amount of computing, indicating

that such a BAM is efficient.

5 CONCLUSION

In this work, we introduce a simple but effective Bilateral Activation

Mechanism (BAM) that not only retains the nonlinearity of the acti-

vation function but also avoids information distortion caused by in-

activation. Moreover, a network with residual structure using BAM

with ReLU (BRResNet) is proposed, which significantly improves

the efficiency of feature extraction in image fusion tasks. Besides, a

wide range of experiments confirms that BRResNet exceeds other

advanced methods easily with fewer parameters. Finally, through

analysis and discussion, BAM can be applied to different activation

functions to replace any łActivation + Convolution" structures, thus

providing more flexible variants for designing neural networks.
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