BAM: Bilateral Activation Mechanism for Image Fusion
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1. ABSTRACT

As the conventional activation functions such as RelLU, LeakyRelLU, . .

and PReLU, the negative parts in feature maps are simply truncated o Bilateral ReLU Residual Block (BRRB)

or linearized, which may result in unflexible structure and undesired
information distortion. In this paper, we propose a simple R T —
but effective Bilateral Activation Mechanism (BAM) which could
be applied to the activation function to offer an efficient feature
extraction model. Based on BAM, the Bilateral ReLU Residual Block fx =0 x
(BRRB) that still sufficiently keeps the nonlinear characteristic of
ReLU is constructed to separate the feature maps into two parts,i.e.,
the positive and negative components, then adaptively represent
and extract the features by two independent convolution layers. 60 .
Besides, our mechanism will not increase any extra parameters or
computational burden in the network. We finally embed the BRRB
into a basic ResNet architecture, called BRResNet, it is easy to
obtain state-of-the-art performance in two image fusion tasks, i.e.,
pansharpening and hyperspectral image super-resolution (HISR). fe0) =x
Additionally, deeper analysis and ablation study demonstrate the BN
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effectiveness of BAM, the lightweight property of the network, etc.
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2. INTRODUCTION

F

® Pansharpening

o Contribution

BRRB n

Source: WorldView-3 |:-\s a mechanism, BAM provides a more efficient
eature extraction mode without increase the
P computational burden. Also, it has many variants
33 ] _ @and can be used as a substitution to replace any
LRec RmnxS F T N et © Concat ©® Add 'Conv structure like “Activation + Convolution", giving us
(LRMS Img., ie.,, MS) HRE RN SRe RS imore flexibility in designing the network structure.
(Panchromatic Img.) (HRMS Img., i.e., MS)

5. EXPERIMENT SETTING 7. CONCLUSIONS

® Hyperspectral Image Super-Resolution (HISR)

0 HISR:
CAVE dataset 1) Datasets: ® We introduce a simple but effective Bilateral Activation
O CAVE dataset Mechanism (BAM) that not only retains the nonlinearity of the
D 0 HAVARD dataset activation function but also avoids information distortion
caused by inactivation.
LRe Rmxnxs 2) Metrics: SAM, PSNR, SSIM, ERGAS
- HReE RMxNx3 MxNxS .
(LRHS Img., i.e., HS) ke R L Pansharpening: ® A network with residual structure using BAM with ReLU
(RGB Img.) (HRHS Img.)
1) Datasets: (BRResNet) is proposed, which significantly improves the
efficiency of feature extraction in image fusion tasks.
® CNNs-based Approaches for Pansharpening, e.g., PNN [1] O 3-band data: WorldView-3 (WV3) y J
' ESMS 1) reduced-resolution examples ® Proposed BRResNet achieves state-of-the-art performance
HIG”’H 2) full-resolution examples in two fusion tasks. Especially, the given BRResNet holds a
O4-band data: Quikbird (QB), GaoFen2 (GF2) large margin among other CNNs-based methods in terms of the
o 1| [ —== parameters, thus can be viewed as a lightweight network.
2nd Conv 3rd Conv 2) Metrics .
O Reduced-resolution: SAM, ERGAS, SCC, Q8

O Full-resolution: QNR, D , Dq

M

The current main improvement direction is to change the
network structure, such as deepening of depth, 6. RESULTS
increasing width, and multi-scale convolution operations

N

(Activation function, e.g., ReLLU, as the important tool which plays )

Table 1: Average quantitative comparisons on 11 CAVE examples

(Red: the best; Blue: the second best).
a role in activating the nonlinear fitting ability of CNNs. Thus we
R . . R Method PSNR SAM ERGAS S5IM
present a framework from the direction of the activation FUSE 972£352 5835202 418308 0975 £ 0018
. N . ou o GLP-HS 37.81 + 3.06 536 + 1.78 4.66 +2.71 0.972 + 0.015
mechanism extension, expecting to explore and utilize the CSTF 214304 9924411 308156 0964 +0.027
. . e o . . CNN-FUSE 42.66 + 3.46 6.44 £ 2.31 2.95£2.24 0.982 = 0.007
Qeatures that can not be activated while retaining the nonlinearity ) SSRNet 528313 4724176 206130  0.990 % 0.004
ResTFNet 45.35 + 3.68 376+ 1.31 1.98 +1.62 0.993 + 0.003
. MHFNet 46.32 + 2.76 4.33 £+ 1.48 1.74 £ 1.44 0.992 + 0.006
® More development history of CNN can be found from [2] ) (5)
__CSTF CNN-FUS SSRNet ResTFNet  MHFNet __ BRResNet en ol — - - -
[1] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by convolutional neural networks,” Remote ' _30000

Sensing, vol. 8, pp. 594, 2016.

Table 2: Average quantitative comparisons on 10 Harvard exam-

[2] Vivone, G, et al. "A New Benchmark Based on Recent Advances in Multispectral Pansharpening: Revisiting ples.

pansharpening with classical and emerging pansharpening methods. IEEE Geoscience and Remote Sensing Magazine.
Method PSNR SAM ERGAS SSIM
FUSE 42.06 +£294 323+091 3.14+152 0977 + 0.009
GLP-HS 40.14 +£3.22 3524096 3.74+144 0966 + 0.012

3. MOTIVATION

CSTF 4297+333 330+£125 243+106 0972+ 0.021
CNN-FUSE 4361 +473 332+117 278+164 0978 +0.016
SSRNet 4440 £349 261+072 239+£1.02 0985+ 0.007
ResTFNet 4447 £ 404 256 +0.68 221087 0985+ 0.008
H I H MHFNet 43104394 276+ 077 3284154 0977 +0.009
: Ideal val 0 0 1
_GLFLHS —— — — RESTFNM — -
0 30000
: o PRelU[3] or LeakyRelU [4 ® WV/3 Reduced-Resolution Dataset Table 3: Average quantitative comparisons on 1258 reduced resolu-
: tion WV3 examples.
: T ‘~ L, m R -l m e | S Rl - L SO, Method SAM ERGAS scc 08
; SO =y D, e NN TR T Ll e Wi T T L\ ] il \e L.i'_'! - ' -l T,_'.‘ BDSD 6.9997 + 2.8530 5.1670 + 2.2475 0.8712 + 0.0798 0.8126 + 0.1234
_ R B LR B B SN R N T SN N, GLP-CBD 5.2861 + 1.9582 4.1627 + 1.7748 0.8904 + 0.0698 0.8540 + 0.1144
] l ‘ ; » b e AR mo (AR e AR e AR R AR s AEL - PanNet 4.0921 + 1.2733  2.9524 +0.9778 0.9495 £ 0.0461 0.8942 + 0.1170
- . 0 FO0)=a Y [Fra sy P B DiCNN1 3.9805 + 1.3181 2.7367 £ 1.0156 0.9517  0.0472 0.9097 + 0.1117
Y ; BN R e _DMDNet _ _ _ | 3.9714 + 12482 2.8572 £ 0.9663_ 0.9527 + 0.0447_ 0.9000 + 0.1142
o Ut A e e | BRResNet (Our) | 3.5881 + 1.2185 _ 2.4618 + 0.9306_ 0.9612 + 0.0444 _ 0.9183 +0.109b
K / oo En e oo L aanBY Ideal value 0 0 1 1
/ EXP BDSD PANNet DiCNN1 DMDNet BRResNet
Yaa, S A H ° ° 3 3 3 1
SLEPTTEL L : | Feature extraction of the negatlve 0 400 Table 4: Average quantitative comparisons on 36 full resolution
: . . WV3 examples.
/ part is strengthened by weakening
the nonlinearit Method ONR D 7
A
Still existing image residuals BDSD 0.9368 + 0.0416 0.0170 £0.0137  0.0473 + 0.0320
. . ? : GLP-CBD 0.9107 + 0.0518 0.0323 +0.0243  0.0597 + 0.0325
which can be further utilized : [1] K.M He, et al., Surpassing human-level performance on PanNet 0.9605 + 0.01551  0.0215 +£0.0098  0.0184 = 0.0074
. : imagenet classification, ICCV, 2015 DiCNN1 0.9454 + 0.0268 0.0181 £0.0135  0.0374 % 0.0159
In next step for better Olltpllt! DMDNet 0.9595 + 0.0155 0.0201 £ 0.0098  0.0209 + 0.0073
] ) S [BRResNet™ |~ 09671 £0.0095 00179 £0.0063  0.0152 = 0.0050 )
[2] Andrew, et al., Rectifier nonlinearities improve neural 7 e e = = a J‘
network acoustic models, ICML, 2013




