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Abstract— Pansharpening refers to a spatio-spectral fusion of
a lower spatial resolution multispectral (MS) image with a high
spatial resolution panchromatic image, aiming at obtaining an
image with a corresponding high resolution both in the domains.
In this article, we propose a generic fusion framework that is
able to weightedly combine variational optimization (VO) with
deep learning (DL) for the task of pansharpening, where these
crucial weights directly determining the relative contribution
of DL to each pixel are estimated adaptively. This framework
can benefit from both VO and DL approaches, e.g., the good
modeling explanation and data generalization of a VO approach
with the high accuracy of a DL technique thanks to massive
data training. The proposed method can be divided into three
parts: 1) for the VO modeling, a general details injection term
inspired by the classical multiresolution analysis is proposed as
a spatial fidelity term and a spectral fidelity employing the MS
sensor’s modulation transfer functions is also incorporated; 2) for
the DL injection, a weighted regularization term is designed to
introduce deep learning into the variational model; and 3) the
final convex optimization problem is efficiently solved by the
designed alternating direction method of multipliers. Extensive
experiments both at reduced and full-resolution demonstrate
that the proposed method outperforms recent state-of-the-art
pansharpening methods, especially showing a higher accuracy
and a significant generalization ability.

Index Terms— Adaptive fusion, deep learning, image fusion,
multiresolution analysis, pansharpening, remote sensing,
variational models.

I. INTRODUCTION

SATELLITE systems, such as IKONOS, QuickBird,
Pléiades, GeoEye, WorldView-3, and WorldView-2,

capture two types of images for richer spectral and spatial
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Fig. 1. Schematic illustration of pansharpening for the Rio data set at reduced
resolution (source: WorldView-3). (a) MSI interpolated at PAN scale, (b) PAN
image, and (c) pansharpened result obtained by our approach. The 5th, the 3rd,
and the 2nd spectral channels are extracted for rendering the shown true-color
images.

information. A multispectral (MS) image with a lower spatial
resolution (LR-MSI) is acquired in order to retain spectral
information, instead, a panchromatic (PAN) image accounts
for greater spatial content. Thus, approaches for reconstructing
an MSI with a higher spatial resolution (HR-MSI) driven by
the simultaneously acquired PAN image are developed. In par-
ticular, the so-called pansharpening, a research line inside the
class of the spatio-spectral fusion methods, is dedicated to the
study of this issue. For an intuitive perspective, we present a
representative example in Fig. 1.

Pansharpening plays a crucial role as a preliminary step
for subsequent applications, e.g., target recognition [1] and
change detection [2]. Furthermore, some commercial products,
such as Bing Maps and Google Earth, exploit fused images in
order to show high-resolution products. Thus, the increasing
demand for pansharpened data has led to the growing number
of commercial products in recent years [3] with an increment
of the related academic research.

A. Related Works

Pansharpening is arousing widespread interest and a huge
literature from different perspectives and methodologies can
easily be found, see [4]–[6]. A general classification divides
the approaches addressing the pansharpening issue into four
main categories [7], [8]: 1) component substitution (CS)
methods; 2) multiresolution analysis (MRA) methods; 3) vari-
ational optimization-based (VO) approaches; and 4) deep
learning (DL) techniques.

The principle of CS methods is the replacement of a
spatial component of the MSI, which is extracted thanks to a
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spectral transformation of the LR-MSI, with the PAN image.
Thus, the final product can be obtained through the relative
inverse spectral transformation. Some well-known instances of
methods into this class are the Brovey transform [9], the prin-
cipal component analysis (PCA) [10], the partial replacement
adaptive component substitution (PRACS) [11], the intensity-
hue-saturation (IHS) [12], the Gram–Schmidt (GS) spectral
sharpening [13], and the band dependent spatial detail (BDSD)
methods [14], [15]. In general, the CS approaches are charac-
terized by lower time-consumption, whereas they usually show
severe spectral distortion [16].

Different from CS methods, the MRA approaches are
based on injecting the spatial structure information extracted
from the PAN image via spatial filtering into the upsampled
LR-MSI. Powerful examples classified into this family are
the “à-trous” wavelet transform (ATWT) [17], the smoothing
filter-based intensity modulation (SFIM) [18], and general-
ized Laplacian Pyramid [19]. Context-based solutions have
also been proposed for this class of algorithms [20], [21].
Compared with CS techniques, the pansharpened images using
MRA methods mainly suffer from spatial distortion, whereas
spectral contents are preserved well.

The VO approaches in pansharpening have been success-
fully attracted more attention for their capability of settling
usual ill-posedness inverse problems [22]–[26]. These latter
are committed to describing an exact link among the PAN
image, LR-MSI, and the unknown HR-MSI, thus formulating
an energy function. Therefore, the unknown (pansharpened)
image will be get via minimizing this known function. In 2006,
Ballester et al. [27] proposed a pioneering pansharpening
method, named P+XS, based on variational regularization,
mainly relying upon the assumption that the PAN image
can be represented as a linear degradation of the target
HR-MSI along the spectral dimension. However, the assump-
tion is unrealistic [28] so that this method sometimes suffers
from spectral distortion. To strongly avoid these drawbacks,
Fu et al. [29] take the gradient similarity constraint between
the underlying HR-MSI and the PAN image into account from
the local rather than global perspective, enforcing a structural
similarity and ensuring better fitting of the relation between
the sensors’ responses. Besides, pansharpening methods based
on unmixing [30] and dictionary learning [31] are also turned
out to be effective techniques. In general, better results, both
spatially and spectrally, can be theoretically produced via vari-
ational methodology with a solid mathematical foundation [8].
Unfortunately, these methods usually produce many unpre-
dictable deviations once making some unreasonable assump-
tions, as in [27]. In addition, the misalignment among channels
is also considered as another issue, usually resulting in artifacts
on final products.

Recently, the DL class has rapidly developed for computer
vision problems. Many convolutional neural networks (CNNs)
based approaches have been designed for image fusion show-
ing excellent capabilities for feature extraction and nonlinear
mapping learning [8], [32]–[38]. They can perfectly compen-
sate for the aforementioned deficiencies reflected by VO meth-
ods getting state-of-the-art performance [39]. Nevertheless,
CNN-based methods are often over-dependent on the training

data [29], thus leading to a weakened generalization, i.e., these
methods have excellent performance only on data similar
to the ones exploited in the training set. Specifically, since
the network parameters are fixed once the training is fin-
ished, the accuracy of CNN-based methods cannot be further
improved [29]. Although some exceptions, see e.g. [40], where
a self-supervised parameter tuning phase has been incorpo-
rated in the inference engine, have recently been implemented,
the vast majority of the remaining DL-based methods still
present this problem.

Moreover, hybrid approaches sharing some of the concepts
of CS, MRA, VO, and DL have also been proposed,
e.g., the guided filter PCA (GFPCA) [41], the additive
wavelet luminance proportional (AWLP) approaches, see [42],
where the first two concepts are integrated. Furthermore,
Shen et al. [8] designed a groundbreaking architecture for
remote sensing image fusion problem via combining a
VO method and DL, in which HR-MSI’s gradient priors
learned through a residual CNN are integrated into their
image observation variational models, getting state-of-the-art
results compared to traditional methods. Given the above
considerations, we explored in this article, a hybrid fusion
framework (detailed in Section III), which can leverage the
favorable merits of both MRA and VO and DL methodologies,
thus expecting to achieve higher performance on various data.
Different from the work [8], we develop in this article a
new strategy, which can adaptively distinguish the relative
contribution of deep networks to each pixel, i.e., the weight
of characteristics closer to ground-truth (GT) image will be
elevated via the proposed estimator. These kinds of algorithms
cannot be characterized by the behavior of any single class
of the above rigid taxonomy. For instance, our scheme can
simultaneously be classified as in the MRA, the VO, and the
DL categories.

B. Contributions

In this article, we propose a novel “VO+Net” scheme to
merge the LR-MSIs and PAN images, which can weighted
combine a generic variational model and a DL technique, thus
achieving higher accuracy and generalization. In particular,
the designed model consists of the spectral and spatial data
fitting terms and a CNN-based proximal term with pixel-wise
weights that are automatically estimated (we will call this
term WPDI from hereon). The spectral fidelity using the �2

norm is imposed on the LR-MSI and motivated by analyzing
the degradation from an underlying HR-MSI to the LR-MSI.
To capture spatial details in a proper way, the spatial coun-
terpart is imposed by exploiting a details injection framework
encouraging sharp edges of the unknown HR-MSI. Moreover,
we introduce the prior knowledge contained in the CNNs into
the proposed variational model through the WPDI, which is
considered a regularizer. This new hybrid problem is solved
by designing an alternating direction method of multipliers
(ADMM)-based algorithm, which is guaranteed to efficiently
converge to the global optimum. Extensive experiments both
at reduced and full resolution, exploiting real data acquired by
WorldView-3, WorldView-2, and QuickBird sensors, verify the
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Fig. 2. Flowchart of our scheme. The spectral matching [43] denotes the pre-processing operation, see Section II-A. The acronym CNN stands for deep
convolutional neural network.

superiority of the proposed framework compared to other state-
of-the-art methods belonging to different categories. Finally,
discussions about the parameters analysis, the ablation study,
the effects of the new weighting term, the generalization
ability, and the sensitivity analysis of computational load, are
also provided to the readers. The flowchart of the proposed
scheme is provided in Fig. 2.

The contributions of this article are summed up as follows.
1) A details injection framework inspired by the MRA

methodology has been introduced in our scheme as a
spatial fidelity term;

2) A proximal injection term with adaptive gains in order
to combine the prior information from various CNNs
with our variational model has been designed resulting
in an approach with a better generalization ability and a
higher accuracy than the two approaches taken alone;

3) An ADMM-based algorithm has been designed and
developed to solve the formulated hybrid problem;

4) A huge experimental analysis based on real data has
been conducted to assess the performance of the pro-
posed framework against the benchmark consisting of
state-of-the-art pansharpening approaches.

C. Organization

The remaining of this article is organized as follows. The
notation and motivations are briefly presented in Section II.
In Section III, the proposed regularization-based framework is
detailed. Afterward, the algorithm we designed is provided in
Section IV. In Section V, the experimental analysis is shown
comparing the proposed approach with some state-of-the-art
techniques belonging to different classes of pansharpening
algorithms. Finally, conclusions are drawn in Section VI.

II. NOTATION AND MOTIVATIONS

A. Related Notation

Lowercase letters denote scalars, matrices and vectors are
denoted by uppercase and lowercase bold letters, respectively,
and calligraphic letters represent tensor. We denote by 1 the

all-one matrix, whose dimension, when not given explicitly,
shall be inferred from the context. Furthermore, the main
acronyms and symbols used in this article are reported below
for i = 1, 2, . . . , S.

1) HR-MSI: X ∈ R
H×W×S with S spectral images;

X(i) ∈ R
H×W , where H and W are the number of pixels

in the row and column dimensions, respectively.
2) LR-MSI: Y ∈ R

h×w×S with S spectral images;
Y(i) ∈ R

h×w, where H = h × r , W = w × r , and r
stands for the scale factor.

3) PAN: the known single channel image P ∈ R
H×W .

4) Reference panchromatic image (RePAN): the extended
PAN image P̂ ∈ R

H×W×S with S bands P̂(i) ∈ R
H×W ,

used as reference for the proposed spatial fidelity term
in Section III-B.

P̂(i) can be regarded as a function of LR-MSI bands and the
PAN image and it is generated through some pre-processing
operations, e.g., spectral matching [43]. Their mode-3 unfold-
ing (refer to [44] for more details) can be marked by the
sibling uppercase bold letters, namely, by X = Unfold(X ),
Y = Unfold(Y) and P̂ = Unfold(P̂), respectively. Given
l = (l1, l2) ∈ �, where � is the related image domain, X(i)[l]
denotes the pixel value of X(i) at location (l1, l2). The other
symbols will be defined along this article, where needed.

B. Motivations

Thanks to the remarkable nonlinear mapping ability of DL,
CNN-based methods have recently attracted attention, yielding
competitive results even for image fusion. Nevertheless, these
methods have also been revealed some fatal defects, as ana-
lyzed in Section I, e.g., the enormous data dependence, owing
to the use of network parameters that can hardly be adjusted on
data very different from the ones shown in the training phase.
As a result, an optimization strategy that can make up for
these disadvantages needs to be developed to further improving
the performance. For this reason, we propose the concept of
WPDI, aiming to introduce the output of a CNN-based method
into a VO framework. The WPDI term establishes a relation
between this output and the target HR-MSI, thus transferring
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the required prior information from CNN into a variational
fusion framework for further optimization. In this model,
the WPDI plays the generic role of a regularizer avoiding using
other additional prior information often used in the related
literature, see, e.g., low-rank prior [45] and sparse prior [46].

Furthermore, a variational model that includes the spectral
and spatial data in input fitting terms needs to be completed.
To the best of our knowledge, the spectral fidelity is designed
almost in the same way for most VO techniques, even if rare
innovations can be found in the related literature, e.g., [5].
Instead, a crucial choice regards the spatial fidelity data fitting
term accounting for the PAN image’s spatial content, consid-
ering the clear difficulty in modeling the underlying nonlinear
even indirect relation. Hence, a new scheme to boost the spatial
structure is developed based on the multi-resolution analysis
philosophy characterized by a superior spectral fidelity.

III. PROPOSED MODEL

This section is devoted to presenting the proposed model
and the related spatial, spectral, and WPDI terms.

A. Proposed VO+Net Fusion Framework

In this work, we propose a general fusion framework linking
the traditional VO and the burgeoning DL techniques for
pansharpening, aiming to benefit from both the VO and DL
approaches, e.g., the good modeling explanation and data
generalization of VO approaches as well as the high accuracy
of DL techniques. In particular, this uniformed framework is
built up thanks to an adaptive tensor-format weight W . The
optimization model is as follows:

min
X

fVO(X ,Y, P) + α fWPDI(X ,Xnet,W) (1)

where fVO(X ,Y, P) is the VO model involving the under-
lying image X and the observed images Y and P;
fWPDI(X ,Xnet,W), i.e., the WPDI term, plays the role of
a prior term, α is a positive parameter to balance the VO and
the WPDI terms, Xnet ∈ R

H×W×S indicates the output of
a generic CNN-based method and W ∈ R

H×W×S is the
tensor-format weight that is viewed as a bridge connecting
VO and DL in element-wise manner.

More specifically, fVO(X ,Y, P) in (1) can be substi-
tuted by two popular data fitting terms in pansharpening,
i.e., fspec(X ,Y) (the spectral fidelity term) and fspat(X , P) (the
spatial fidelity term). Afterward, the adopted pansharpening
model is given by

min
X

fspec(X ,Y) + λ fspat(X , P) + α fWPDI(X ,Xnet,W) (2)

where λ is a positive regularization parameter.
For simplicity, the problem in (2) can be simply rewritten

as

min
X

fspec(X, Y) + λ fspat(X, P) + α fWPDI(X, Xnet, W) (3)

where X, Xnet, W ∈ R
S×H W and Y ∈ R

S×hw are the
Unfold(X ), the Unfold(Xnet), the Unfold(W) and the
Unfold(Y), respectively.

B. Spectral Fidelity Term

Many existing spatio-spectral fusion methods, see e.g. [9],
[11], [14], upsample the LR-MSI to the PAN scale. Nev-
ertheless, imprecise information could be carried using this
(usually biased) interpolation procedure, thus impacting on
the performance. Accordingly, the downsampled version of the
underlying HR-MSI is considered in this article. We perform
this operation according to the point spread function (PSF)
of the MSI sensor [47], [48], aiming to design the blurring
operation. Thus, we model that

Y = XBS + ξ1 (4)

where B ∈ R
H W×H W is the matrixization of blurring operators,

S ∈ R
H W×hw denotes the decimation matrix consisting of

sparse components, and ξ1 indicates a zero-mean Gaussian
noise assumed to follow a normal distribution N (0, σ 2

1 ) with
a standard deviation σ1. From (4), we paradigmize a spectral
fidelity term as

fspec(X, Y) = �XBS − Y�2
F (5)

where � · �F is the Frobenius norm. In some previous articles,
researchers used a uniform or a fixed Gaussian kernel to define
B without taking into account of the possible differences along
the spectral domain. Indeed, kernels designed to match the
MS sensor’s modulation transfer functions (MTFs) are advis-
able [16], [49]. These usually assume a Gaussian shape with
band-dependent standard deviations that are set thanks to the
above-mentioned information [16], [49]. Thus, these values are
also sensor-dependent invalidating the use of simple solutions
based on uniform or fixed Gaussian kernels. In this work,
we define B via the above-mentioned prior information based
on the MS sensor’s MTFs for a more accurate implementation
of the deblurring operation. See [47], [48], [50]–[52] for more
information about the matrices B and S.

C. Proposed Spatial Fidelity Term

Many spatial fidelity models, see [53], prefer choosing
intensity similarity or structure similarity as a constraint, forc-
ing pixels or gradient values between the unknown HR-MSI
and the PAN image to be consistent. However, the spectral
accuracy of the results is often affected and tends to get
worse with the increase of the channels to be fused (see
e.g. approaches into the CS class). Considering the analysis
drawn in Section I, an alternative technique for obtaining the
critical details is constituted by the multiresolution analysis
(MRA), which is generally achieved by linear decomposition
procedures, such as wavelet [54] and Laplacian pyramids [55].
These often yield a high fidelity and consistency in rendering
the spatial and spectral features in the final image retain-
ing a good tradeoff, especially when the characteristics of
the MS and PAN acquisition systems are considered [16],
[56]. Besides, their main advantages also consist in tempo-
ral coherence [57] and robustness to aliasing under proper
conditions [58]. Inspired by the idea under MRA approaches,
we exploit the MRA framework presented in [16] and [57]
defining a new spatial improved term based on the extraction
first and then injection of spatial details.
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The general MRA framework [16], [57] can be formulated
as

X(i) = Y(i)
H + G(i) ◦

(
P̂(i) − P̂(i)

L

)
(6)

for i = 1, 2, . . . , S, where Y(i)
H , G(i) ∈ R

H×W denote
the upsampled version of Y(i) at the scale of the P̂(i) and
the injection coefficients, respectively, the symbol ◦ represents
the element-wise multiplication, and P̂(i)

L is a low-pass version
of P̂(i) via filtering with impulse response hi , i.e., P̂(i)

L =
P̂(i) ∗ hi [59], where ∗ indicates the convolution operation.
Moreover, P̂(i) − P̂(i)

L are the image details regarded as a
high-pass version of P̂(i). Two common options for defining
the injection gains are G(i) = 1, namely the so-called additive
injection scheme, and G(i) = Y(i)

H � P̂(i)
L , which is referred to

as the multiplicative injection scheme or high-pass modulation
(HPM) scheme, where � denotes an element-wise division.
The latter, adopted in this article, can reproduce the local
intensity contrast of the PAN image in the fused image [60]
and turns out to be better suited than the former, being
explained by its greater flexibility in configuring the local
weights [16].

Analogously to Section III-A, we make the substitution of
YH with XB, to avoid the introduction of the LR-MSI, Y,
thus independently modeling the relation from the unknown
HR-MSI to the PAN image. Hence, considering the matrix
form, we have

G ◦
(

P̂ − P̂L

)
= X − XB + ξ2 (7)

where ξ2 is an error assumed to follow a zero-mean normal
distribution N (0, σ 2

2 ) with a standard deviation σ2. This is an
implicit expression about the histogram-matched PAN image,
contributing to a componentwise mapping from an unknown
HR-MSI to the details image closely related to the PAN
image. It is worth to be remarked that by comparing with
the structure-similarity models employing the hypothesis of
linear combination, see [3], the spatial fidelity model in (7) can
improve spatial details while preserving the spectral content
to the greatest extent, benefiting from the dual characteristics
of the MRA and of the element by element mapping in the
high-frequency domain (using HPM injection models).

Accordingly, an MRA-based details injection model for a
spatial fidelity can be obtained as follows:

fspta(X, P) =
∥∥∥X −

(
XB + G ◦

(
P̂ − P̂L

))∥∥∥2

F
. (8)

In this article, we adopt a HPM scheme to deal with the
details extraction. Namely, we define G = XB � P̂L (directly
using XB instead of YH ), thus having

XB + G ◦
(

P̂ − P̂L

)
= XB ◦

(
P̂ � P̂L

)
(9)

where P̂L is defined exploiting MTF-based filters as in
Section III-A.

Accordingly, the final spatial fidelity term relying upon an
HPM scheme can be formalized as follows:

fspta(X, P) =
∥∥∥X − XB ◦

(
P̂ � P̂L

)∥∥∥2

F
. (10)

The advantages of the formulation in (10) are an enhancement
of the spatial details while preserving spectral content and the
absence of any interpolation operation, unlike in (6).

D. WPDI Term

In [61] the following proximal deep injection (PDI) term
modulated by a constant parameter α as a regularizer is
introduced

fPDI(X, Xnet) = �X − Xnet�2
F . (11)

By using this proximal term, it is interesting to note in [61] that
the proposed technique gets always better performance than
the CNN-based outcome Xnet, through controlling the parame-
ter α. If the input data significantly differs from the training
data of the CNN-based method, one could select a smaller
α, even zero, to weaken the PDI term. However, from the
element-wise perspective, we argue that, even in the worst case
where the CNN result, Xnet, seems so far from the optimality,
some pixel values in Xnet are very close to that of the GT
image. This means that it is better to have a spatial-dependent
weight, aiming to locally differentiate the relative contributions
of Xnet. Thus, we propose a pixel-based weight to mini-
mize the distance between the unknown HR-MSI and the
CNN-based outcome Xnet, named weighted proximal deep
injection (WPDI) term. Besides, a novel strategy is designed to
adaptively estimate this weight. The proximal term is defined
as follows:

fWPDI(X, Xnet) = �W ◦ (X − Xnet)�2
F (12)

where W ∈ R
S×H W denotes a coefficient matrix defining a

weight for each pixel. A better result can be expected through
a set of weighting factors that are inversely proportional to
the absolute error between GT image and Xnet. Thus, still
considering the parameter α, we propose a new weighting
procedure (absorbing α into the paradigm to simplify the
mathematical formula) as follows:

Wα = √
αW = √

αwf(�) (13)

where α is a balance parameter, wf is strictly defined by an
element-wise monotone decreasing function, and � denotes
the absolute residual matrix. In Section V, we define wf as

wf(�)
def= √

1 − � (14)

in which 1 − � is selected as a correction to W = 1 (i.e.,
Unweighted), and

√
(·) plays a role to offset the quadratic

effect, as in sub-solution (34) of Section IV. Note that, outliers
exceeding 1 in � are forced to be 1. This definition suggests
that the undetermined W has a simple dependence on the
reconstructed accuracy of the network or, more precisely,
on the dispersion of the reconstructed residuals. The degree
of dispersion is measured by the standard deviation of �,
i.e., Std(�), abbreviated as STDR from hereon. The proce-
dure in (13) is committed to distinguishing the effectiveness
of each element, thus referring to as differential weighting
based on the dispersion of residuals (DWDR). The higher
the STDR, the more significant the effect of the DWDR.
Section V-E experimentally demonstrates the validity of the
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proposed weighting scheme. However, the reference GT image
is unavailable, which leads to the next estimation step based
on (7).

E. Estimating �

Combining (7) with (9), we have that

X = G ◦
(

P̂ − P̂L

)
+ XB − ξ2

= XB ◦
(

P̂ � P̂L

)
− ξ2. (15)

Thus, we can redefine the expression above using Xnet and the
GT image, say it Xgt , as follows:

Xnet = XnetB ◦
(

P̂ � P̂L

)
− ξ �

2

Xgt = Xgt B ◦
(

P̂ � P̂L

)
− ξ ��

2 (16)

where ξ �
2 and ξ ��

2 are the two reconstruction errors assumed
to be equivalent when inducing. Then, the absolute residual
matrix can be estimated as

� = 	+
(
Xnet − Xgt

)
= 	+

((
XnetB − Xgt B

) ◦
(

P̂ � P̂L

)
− (ξ �

2 − ξ ��
2

))
≈ 	+

(
(XnetB − YH ) ◦

(
P̂ � P̂L

))
(17)

where 	+ indicates the componentwise projection operator on
the set of nonnegative real numbers, that is,

	+(X)[l] def=
{

−X[l], If X[l] < 0

X[l], If X[l] ≥ 0.
(18)

Accordingly, the final optimization model consisting of
three energy terms is expressed as

min
X

1

2

∥∥XBS − Y
∥∥2

F
+ λ
∥∥∥X − XB ◦

(
P̂ � P̂L

)∥∥∥2

F

+ ∥∥Wα ◦ (X − Xnet)
∥∥2

F
. (19)

The proposed scheme explores the obtainable spatial details
and spectral contents via the first two fitting terms for data
in the input. Furthermore, with the WPDI term treated as
a regularizer, the prior knowledge provided by any CNN is
incorporated into the proposed VO model to optimize further.

Although the objective function (19) is convex and differ-
entiable, it is inadvisable to directly generate the derivative
because of a heavy computational and storage burden. In the
next section, a new ADMM-based algorithm will be explored
to pursue an iterative solution.

IV. PROPOSED ALGORITHM

This section applies an ADMM methodology [62] designed
for structured convex optimization problems to the proposed
model, aiming to separate the problem in three independent
subproblems, all having a closed-form solution. By introduc-
ing two auxiliary variables U and V, we rewrite (19) as the
following equivalent constrained problem:

min
X,U,V

1

2

∥∥∥US − Y�2
F + λ�X − U ◦

(
P̂ � P̂L

)∥∥∥2

F

+ ∥∥Wα ◦ V − Wα ◦ Xnet

∥∥2
F

s.t. U = XB, V = X. (20)

The augmented Lagrangian function of this constrained mini-
mization problem (20) can be expressed as

Lη1,η2(X, U, V,�1,�2)

= 1

2
�US − Y�2

F

+ λ
∥∥∥X − U ◦

(
P̂ � P̂L

)∥∥∥2

F
+ �Wα ◦ V − Wα ◦ Xnet�2

F

+ η1

2

∥∥∥XB − U+�1

η1

∥∥∥2

F
+ η2

2

∥∥∥X − V + �2

η2

∥∥∥2

F
+ const

(21)

where �1, �2 denote the Lagrange multipliers, η1, η2 > 0
are two penalty parameters, and const represents a generic
constant. Afterward, (21) can be alternatively and iteratively
solved via updating the following simpler subproblems.

A. Updating X

By fixing U, V, �1, �2, then, the X-subproblem is con-
verted to

arg min
X

λ
∥∥∥X − U ◦

(
P̂ � P̂L

)∥∥∥2

F
+ η1

2

∥∥∥XB − U+�1

η1

∥∥∥2

F

+ η2

2

∥∥∥X − V + �2

η2

∥∥∥2

F
(22)

which is a simple least squares problem and has a closed-form
solution under the condition of a periodic boundary, as

X := F−1

(
M + N

(2λ + η2)1 + η1F(B) ◦ F(B)†

)
(23)

with

M = 2λF
(

U ◦
(

P̂ � P̂L

))
+ η1F(U) ◦ F(B)† (24)

N = −F(�1) ◦ F(B)† + η2F(V) − F(�2) (25)

where F(·) and F−1(·) are the fast Fourier transform (FFT)
and its inverse operators, respectively, the superscript † denotes
the complex conjugate, and the division is componentwise,
as well. Exploiting MTF-based filters (generating different
blurring kernels for each spectral band), this solution can be
rearranged as a single channel-wise expression, appearing as

X(i) := F−1

(
M(i) + N(i)

(2λ + η2)1 + η1O(i) ◦ (O(i)
)†

)
(26)

for i = 1, 2, . . . , S, in which

M(i) = 2λF
(

U(i) ◦
(

P̂(i) � P̂(i)
L

))
+ η1F

(
U(i)
) ◦ (O(i)

)†

(27)

N(i) = −F(�
(i)
1 ) ◦ (O(i))† + η2F(V(i)) − F(�

(i)
2 ) (28)

where O(i) ∈ R
H×W denotes the optical transfer func-

tion (OTF) obtained by applying the FFT to hi ∈ R
r×r

matching the MS sensor’s MTF at the i th spectral channel.
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Fig. 3. Graphical illustration of (30) when r = 4. White squares with a
solid line and a blank content are zero values.

B. Updating U

Similarly, the variable U can be updated by solving the
following function:
arg min

U

1

2
�US − Y�2

F + λ
∥∥∥X − U ◦

(
P̂ � P̂L

)∥∥∥2

F

+ η1

2

∥∥∥XB − U+�1

η1

∥∥∥2

F
. (29)

Before going into the details, we provide to the readers a
definition of a novel concept, saying it decimation mask.

Definition 4.1 (Decimation Mask): Given a scale factor r ,
the decimation mask is defined as a sparse matrix K ∈ R

r×r ,
whose entry is 1 only in one position determined by the
decimation scheme, e.g., K[(3, 3)] = 1 when r = 4 (as in
our article) whereas K[l] is 0 for all the other cases.

Afterward, the following equation holds, also interpreted as
in Fig. 3

USST = U ◦ DSST (30)

with

DSST = [vec(K ⊗ 1),vec(K ⊗ 1), . . . ,vec(K ⊗ 1)]T

(31)

where the symbol ⊗ denotes the Kronecker product, vec(·)
implies the vectorization operator, and 1 ∈ R

h×w. Based on
(30) and (31), the solution of the least squares problem (29)
can be denoted as

U :=
YST + η1XB + 2λX ◦

(
P̂ � P̂L

)
+ �1

DSST + η11 + 2λ
(

P̂ � P̂L

)
◦
(

P̂ � P̂L

) . (32)

Note that the element-wise division is needed, as well.

C. Updating V

Different from the above-mentioned procedures, the
V-subproblem is simpler and has a straightforward solution
according to

arg min
V

�Wα ◦ V − Wα ◦ Xnet�2
F + η2

2

∥∥∥X − V + �2

η2

∥∥∥2

F

(33)

Algorithm 1 ADMM-Based Solver for the Proposed Pan-
sharpening Model (19)
Input: LR-MSI Y, PAN image P, Xnet, λ, α, η1, η2, r , kmit.
Initialization: X0 = �(Y, r), U0 = V0 = �0

1 = �0
2 = 0

1: while k < kmit and relcha > ε do
2: Update X via (26) - (28).
3: Update U via (31) - (32).
4: Update V via (34).
5: Update Lagrange multiplier �1 via (35).
6: Update Lagrange multiplier �2 via (36).
7: end while
Output: Fused HR-MSI X

correspondingly, the closed-form solution can be directly given
by

V := 2Wα ◦ Wα ◦ Xnet + η2X + �2

2Wα ◦ Wα + η21
. (34)

Likewise, the division is element-wise, as well.

D. Updating �1, �2

According to the ADMM framework, multipliers �1, �2

can be updated via

�1 := �1 + η1(XB − U) (35)

and

�2 := �2 + η2(X − V). (36)

The algorithm considers the termination criterion as that the
relative change (relcha) between two successive pansharpened
results less than a tolerance value, ε, that is,

relcha = �Xk+1 − Xk�F/�Xk�F < ε. (37)

The detailed algorithm solving the problem (19) is summa-
rized in Algorithm 1, in which, kmit is the maximum iteration
of execution, and � indicates the bicubic interpolation for
accelerating convergence. The convergence of the designed
iterative scheme is guaranteed [63].

V. EXPERIMENTAL RESULTS

This section is developed to compare the proposed scheme
with some state-of-the-art approaches using several data
sets collected by different sensors. Two types of validation,
i.e., qualitative and quantitative, are conducted at reduced
and full resolution, respectively. Reduced resolution data are
obtained according to Wald’s protocol [60] under the scale
invariance assumption, i.e., filtering with filters designed to
match the MS sensor’s MTFs and decimation [16], [49]. All
the experiments are implemented in MATLAB on a com-
puter of 16Gb RAM and Intel(R) Core(TM) i7-5960X CPU:
at 3.00 GHz.

For quantitative evaluation at reduced resolution, some
popular indexes exploiting a reference image are adopted,
including the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [64], which are widely used to evalu-
ate the similarity between two images in the image processing
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literature; the spectral angle mapper (SAM) index [65] and
spatial correlation coefficient (SCC) [66], which are utilized
for assessing the spectral and spatial distortions, respec-
tively; the erreur relative globale adimensionnelle de synthèse
(ERGAS) index [67] and the Q2n index (Q4 and Q8 for 4 and
8 bands fused outcomes, respectively) [68], [69], which are
employed to measure the global quality. The ideal values for
SSIM, SCC, and Q2n are 1, for SAM (degree, ◦) and ERGAS
are 0, whereas +∞ for PSNR. The quality with no reference
(QNR) [70] index is applied to assess the performance at full
resolution. It consists of a spectral distortion index Dλ and
a spatial distortion index Ds . In particular, the highest QNR
(i.e., 1) is obtained when both Dλ and Ds are 0 indicating the
best-fused image quality. Furthermore, scale factors for all the
experiments are 4, i.e., r = 4, the tolerance value is preset
to ε = 2 × 10−5, and kmit is empirically fixed to 200. The
optimum parameters are set to provide the best compromise
between the spectral and spatial distortions, measured by the
SAM and the SCC, respectively.

For a broader comparative experimental analysis, some
CNN approaches generating the Xnet are needed. Many
state-of-the-art approaches for pansharpening can be found,
see [33]–[36]. In our experiments, the PanNet proposed by
Yang et al. [33] and the DiCNN proposed by He et al. [36]
are selected to determinate the WPDI term. Then, these
WPDI terms are employed to form our final schemes, called
OursPanNet and OursDiCNN, respectively.

A. Data Sets

The satellite data sets, some of them freely available online,1

are exploited to examine the effectiveness of the proposed pan-
sharpening method, including: 1) the Tripoli and the Rio data
sets both acquired by the WorldView-3 sensor including an MS
image with 8 spectral bands and a PAN image with a spatial
resolution of 0.3 m; 2) the Stockholm and the WashingtonDC
data sets captured by the WorldView-2 satellite characterized
by an MS image with 8 spectral bands and a PAN image at
a spatial resolution of 0.4 m; and 3) the Indianapolis data set
collected by the QuickBird sensor included an MS image with
four spectral bands and a PAN image with a 0.61-m resolution
at spatial.

B. Benchmark

We compare the proposed algorithm with some recent
state-of-the-art techniques belonging to the CS, MRA, VO,
and DL families. In greater details, the following algo-
rithms are considered: EXP [55], PCA [10], GIHS [12],
GSA [71], SFIM [18], MTF-GLP-HPM [72], GLP-Reg-
FS [59], 18’TIP [3], 19’CVPR [29], PanNet [33], and
DiCNN [36]. It is rather remarkable that the source codes
of competitors are available at either of the website2 or the
authors’ homepages. For fairness, we fine-tune the parameters
of the 18’TIP and the 19’CVPR to get their best performance.

It is worth noting that the PanNet and the DiCNN are with
consistent parameter configurations as that in [33] and [36],

1http://www.digitalglobe.com/samples?search=Imagery
2http://openremotesensing.net/kb/codes/pansharpening/

respectively, and both of them are mainly re-trained on two
different training data sets. Following Wald’s protocol [37],
the training data sets are simulated, as follows.

1) Training data from WorldView-3: 8806 {PAN, MS, GT}
training samples with the size of 64 × 64, 16 × 16 × 8,
and 64 × 64 × 8, respectively, are contained.

2) Training data from QuickBird: 20685 {PAN, MS, GT}
image pairs with the size of 64 × 64, 16 × 16 × 4, and
64 × 64 × 4, respectively, are encompassed.

The PanNet and DiCNN trained based on the former are
employed for the WorldView-3 experiments and WorldView-2
(verifying generalization ability), and trained to exploit the
latter for the QuickBird experiments. Note that, all testing
samples employed in Section V are spatially disjoint from the
adopted training patches.

C. Qualitative Comparison

A true or pseudo color representation is selected for the
qualitative analysis of the pansharpened results.

1) Reduced Resolution Assessment: As aforementioned,
we give the comparative results at reduced resolution,
as shown via an RGB rendering in Figs. 4–6. Inspecting Figs. 4
and 6, only the results of PanNet, DiCNN, and ours (including
OursPanNet and OursDiCNN) can clearly retain details. Having a
look at the error maps depicted in Figs. 4 and 6, we can clearly
see that the PanNet, the DiCNN, and the proposed methods
obtain the best performance both from a spectral and a spatial
points of view compared to the GT image.

The performance in Fig. 5 differs from the ones in Fig. 4.
Specifically, the PanNet and the DiCNN achieve poorer visual
appearance with respect to many traditional methods, e.g.,
MTF-GLP-HPM [72] and GLP-Reg-FS [59], on the reduced
resolution WashingtonDC data set, since the two networks
are both trained on WorldView-3 data set (i.e., because of an
unsatisfactory network generalization). In contrast, the results
obtained by our framework show high visual quality as
depicted in the related close-ups and having a look at the
difference maps.

2) Full Resolution Assessment: Then, we corroborate the
proposed models on full resolution images in order to further
support the obtained results at reduced resolution. For these
experiments, the images used for testing are extracted from
the full resolution Rio and Stockholm data sets. All the visual
inspections are displayed in Figs. 7 and 8. It is worth noting
that the near-infrared (NIR) channel is selected to highlight the
differences in the vegetated areas. As shown in Figs. 7 and 8,
many results performed at full resolution are in line with those
obtained on the reduced resolution Washington DC data set
and our methods always obtain the details closest to the PAN
image regarded as a reference for the spatial enhancement.

From the close-ups in the two experiments, we clearly
observe that the highways and cars, which are blurred in
the EXP images but recognizable in the PAN images, are
super-resolved by our algorithms and without both visible arti-
facts and spectral distortion. Among the compared approaches,
the GIHS often provides outcomes with severe spectral dis-
tortion, clearly visible to an easy inspection of the fused
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Fig. 4. Visual results on the reduced resolution Tripoli data set (source: WorldView-3). The scale of the PAN image is 256 × 256. Top united row: the visual
inspection of the GT image and the close-ups of images fused by EXP, PCA, GIHS, GSA, SFIM, MTF-GLP-HPM, GLP-Reg-FS, 18’TIP, 19’CVPR, PanNet,
DiCNN, OursPanNet, OursDiCNN, and of the GT image, respectively. Bottom united row: the corresponding residual maps using the GT image as reference.
For a better visualization, 0.4 has been added to all channels.

Fig. 5. Visual results on the reduced resolution Washington DC data set (source: WorldView-2). The scale of the PAN image is 256 × 256. Top united
row: the visual inspection of the GT image and the close-ups of images fused by EXP, PCA, GIHS, GSA, SFIM, MTF-GLP-HPM, GLP-Reg-FS, 18’TIP,
19’CVPR, PanNet, DiCNN, OursPanNet, OursDiCNN, and of the GT image, respectively. Bottom united row: the corresponding residual maps using the GT
image as reference. For a better visualization, 0.4 has been added to all channels.

products. Thus, the superiority of the proposed framework is
corroborated at full resolution.

D. Quantitative Comparison

To further assess the performance of the proposed method,
we provide the quantitative comparisons across 75, 75, 5, 55,
and 55 images with a corresponding PAN size on the five
data sets in Figs. 4–8. These images are extracted in order
to cover all the possible features in a scene, e.g., vegetation,
water, buildings, and so forth. The statistical results for all
the metrics and the execution times (in seconds, s) are shown
in Tables I–III, IV-(a), IV-(b). We can clearly observe that
our models consistently achieve much better average values
(except for Dλ) than the other methods on both reduced and

full-resolution data sets, implying that our framework can get
competitive results. Moreover, our schemes can also achieve
comparable efficiency with respect to variation methods.

To sum up, both qualitative and quantitative experiments are
conducted indicating that the proposed scheme can get very
high performance at reduced and full resolution, with respect
to the benchmark. In particular, for the reduced resolution
Tripoli and Indianapolis data sets, although the PanNet and
the DiCNN methods also achieve excellent performance, our
schemes improve them. Instead, for the reduced resolution
WashingtonDC and the full resolution Rio and Stockholm data
sets, where the effects of these networks are relatively lower,
state-of-the-art results are still obtained by our framework.
It is noteworthy that better results can probably be produced
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Fig. 6. Visual results on the reduced resolution Indianapolis data set (source: QuickBird). (Top united row) Visual inspection of the GT image and the
close-ups of images fused by EXP, PCA, GIHS, GSA, SFIM, MTF-GLP-HPM, GLP-Reg-FS, 18’TIP, 19’CVPR, PanNet, DiCNN, OursPanNet, OursDiCNN, and
of the GT image, respectively. (Bottom united row) Corresponding residual maps using the GT image as reference. For a better visualization, 0.4 has been
added to all channels.

TABLE I

QUANTITATIVE RESULTS FOR ALL THE COMPARED METHODS ON 75 IMAGES FROM THE REDUCED RESOLUTION TRIPOLI DATA SET

(SOURCE: WORLDVIEW-3). ALL THE CNN METHODS ARE EXECUTED ON GPU (G), WHEREAS THE OTHER APPROACHES
USE THE CPU (C). (BOLD: BEST; UNDERLINE: SECOND BEST)

TABLE II

QUANTITATIVE RESULTS FOR ALL THE COMPARED APPROACHES ON 75 IMAGES FROM THE REDUCED RESOLUTION WASHINGTON

DC DATA SET (SOURCE: WORLDVIEW-2). ALL THE CNN METHODS ARE EXECUTED ON GPU (G), WHEREAS THE OTHER
APPROACHES USE THE CPU (C). (BOLD: BEST; UNDERLINE: SECOND BEST)
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TABLE III

QUANTITATIVE RESULTS FOR ALL THE COMPARED APPROACHES ON 5 IMAGES FROM THE REDUCED RESOLUTION INDIANAPOLIS
DATA SET (SOURCE: QUICKBIRD). ALL THE CNN METHODS ARE EXECUTED ON GPU (G), WHEREAS THE

OTHER APPROACHES USE THE CPU (C). (BOLD: BEST; UNDERLINE: SECOND BEST)

Fig. 7. Pseudo color (NIR(7th), G(3rd), and B(2nd) bands as R, G, and B channels) compositions for the full resolution Rio data set (source: WorldView-3).
The scale of the PAN image is 400 × 400. Close-ups are exhibited in the down-left corners, zooming in to see the details.

Fig. 8. False color [NIR(7th), G(3rd), and B(2nd) bands as R, G, and B channels] compositions for the full resolution Stockholm data set (source:
WorldView-2). The scale of the PAN image is 400 × 400. Close-ups are exhibited in the down-left corners, zooming in to see the details.

via fine-tuning the parameters of our schemes for different
experiments on the same data set, but a fixed set of parameters
is adopted for showing the algorithm robustness by varying the
test cases.

E. Discussions
In this section, some discussions about the proposed

scheme, see e.g., the parameters analysis and the ablation
study, are given. All the discussions are about the proposed
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TABLE IV

QUANTITATIVE RESULTS FOR ALL THE COMPARED METHODS ON (A) 55 IMAGES FROM THE FULL RESOLUTION RIO DATA SET (SOURCE: WORLDVIEW-
3). (B) 55 IMAGES FROM THE FULL RESOLUTION STOCKHOLM DATA SET (SOURCE: WORLDVIEW-2), RESPECTIVELY. ALL THE CNN METHODS

ARE EXECUTED ON GPU (G), WHEREAS THE OTHER APPROACHES USE CPU (C). (BOLD: BEST; UNDERLINE: SECOND BEST)

Fig. 9. SAM, SCC, ERGAS, Q8 curves for: the regularization parameters
(a) λ and (b) α, the penalty parameters (c) η1 and (d) η2 on a reduced
resolution Tripoli data (source: WorldView-3). The best points are pointed
out with a black star. Note that, for better distinguishing the slight difference
and reflecting the changing trend, we process the obtained indexes by
(index−Mean(index))/Std(index), where Mean(·) and Std(·) represent the
mean and standard deviation operations, respectively. Besides, the mean and
standard deviation for SAM, SCC, ERGAS and Q8 are (a) 3.0783 ± 0.2293;
0.9847 ± 0.0041; 2.0113 ± 0.2824; 0.9670 ± 0.0091; (b) 2.9458 ± 0.0185;
0.9870 ± 0.0003; 1.8529 ± 0.0350; 0.9718 ± 0.0007; (c) 3.0243 ± 0.1015;
0.9858 ± 0.0017; 1.9360 ± 0.1164; 0.9695 ± 0.0030; (d) 3.0390 ± 0.1583;
0.9854 ± 0.0028; 2.1918 ± 0.6798; 0.9682 ± 0.0060.

OursPanNet approach using the reduced resolution Tripoli data
(as well as other images if needed) for brevity.

1) Parameters Analysis: Four parameters are involved in
the proposed model, i.e., λ, α, η1, η2. Fig. 9 depicts the
performance varying these parameters on a reduced resolution
Tripoli data. We fix all the parameters except for the one to be
analyzed, aiming to make the parameter selection step simpler.
It is clear that the combination of λ = 3×10−4, α = 1.1×10−3,
η1 = 10−2 and η2 = 3 × 10−2 is the best choice whatever the
adopted quality metric. Figs. 9(a)–(d) only show slight changes

TABLE V

QUANTITATIVE RESULTS FOR THE ABLATION EXPERIMENT USING THE
REDUCED RESOLUTION TRIPOLI DATA (SOURCE: WORLDVIEW-3).

(BOLD: BEST; UNDERLINE: SECOND BEST)

for all the considered indexes, thus confirming the robustness
of our scheme related to its parameters. The same policy
can be applied to other remote sensing data sets in order to
determine the corresponding optimal parameter configuration.

2) Ablation Study: We conduct an ablation study on our
model for a deeper insights, and then, three sub-models are
generated as follows:

Submodel-I

min
X

1

2

∥∥XBS − Y
∥∥2

F
+ λ
∥∥∥X − XB ◦

(
P̂ � P̂L

)∥∥∥2

F
. (38)

Submodel-II

min
X

1

2

∥∥XBS − Y
∥∥2

F
+
∥∥∥Wα ◦ (X − Xnet)

∥∥∥2

F
. (39)

Submodel-III

min
X

1

2

∥∥∥X − XB ◦
(

P̂ � P̂L

)∥∥∥2

F
+
∥∥∥Wα ◦ (X − Xnet)

∥∥∥2

F
.

(40)

We perform the tests corresponding to Fig. 4, again, using
these models with optimal parameters. The quantitative results
are reported in Table V. We can observe that the models
involving the WPDI term (i.e., Submodels-II and -III) get
better performance than the ones of the PanNet, which is
used to determinate the WPDI term. Furthermore, the fusion
performance of the Submodel-II is comparable to that of the
OursPanNet (see Table V) indicating the dominant role of the
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TABLE VI

QUANTITATIVE RESULTS FOR THE DWDR EXPERIMENTS. (BOLD: BEST; UNDERLINE: SECOND BEST)

TABLE VII

QUANTITATIVE RESULTS OBTAINED ON FOUR IMAGES EXTRACTED FROM THE REDUCED RESOLUTION TOULOUSE DATA SET

(SOURCE: IKONOS) AND 16 IMAGES EXTRACTED FROM THE REDUCED RESOLUTION PLéIADES2 DATA SET
(SOURCE: PLéIADES). (BOLD: BEST; UNDERLINE: SECOND BEST)

spectral fidelity term. Moreover, all the three terms in our
model contribute to the final results, none of them can be
removed without decreasing performance. Finally, it is note-
worthy that the quality metrics of Submodel-I (the variational
model without the WPDI term) are aligned to the ones of
the PanNet, thus overcoming the performance of the other
traditional methods in the benchmark.

3) Weighting Effect: In order to assess the improvement in
using the proposed DWDR, we show in Table VI all the quality
metrics on the reduced resolution Tripoli and Washington DC
data sets, respectively. The performance of both weighted and
unweighted (i.e., Wα = √

α1) models are reported in Table VI.
The advantages of using the proposed schemes based on the
DWDR are clear. Besides, a better improvement (i.e., in the
case of the WashingtonDC data set) is achieved thanks to
a higher STDR. This further verifies our initial cue. Thus,
the rationale of using a WPDI term relied upon DWDR is
experimentally proved.

4) Generalization Ability: The Washington DC and Stock-
holm data sets collected by the WorldView-2 satellite are
used to feeding the proposed OursPanNet model showing a
higher generalization ability in a previously reported analysis.
To further evaluate the generalization ability, we perform
additional experiments using exactly the same parameters on
both 4 IKONOS data and 16 Pléiades data. In these tests,
the PanNet is trained on the 2nd (blue), the 3rd (green), the 5th
(red), and the 7th (near-infrared) bands of a WorldView-3
data set, thus considering the spectral responses of both the
IKONOS and the Pléiades sensors and the WorldView-3 ones.
The visualization for two examples is shown in Fig. 10
and the mean indicators are depicted in Table VII. It is
extremely obvious that our scheme significantly exceeds the
PanNet in all the cases and for all the quality metrics. Thus,
the generalization ability of the proposed framework is clearly
confirmed compared to a method relied upon a training by
example philosophy as the PanNet.

Fig. 10. (Top row) Visual results for the Toulouse data set at reduced reso-
lution (source: IKONOS). (Bottom row) Visual results for the Pléiades2 data
set at reduced resolution (source: Pléiades).

Fig. 11. Computational analysis on a full resolution Tripoli data (source:
WorldView-3). (a) PAN image cropped into multiple scales. (b) Log2 runtimes
with different scale of the PAN image.

5) Computational Burden: All the computational analysis
of our schemes, i.e., OursPanNet and OursDiCNN, are validated
on the optimization model (19) in Section III. However,
a complete calculation process should also include another
non-negligible load, i.e., generating Xnet in advance exploiting
the GPU (indicating only the testing time). In this case,
the total computational load is naturally divided into two parts
depending on VO and DL, respectively. Thus, we performed
a computational analysis on the experimental data size using
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TABLE VIII

COMPUTATION LOAD OF THE SUBPROBLEMS OF ALGORITHM 1 (TAKING
FOR INSTANCE THE OURSPANNET SCHEME) USING THE FULL RESOLU-

TION TRIPOLI DATA (SOURCE: WORLDVIEW-3). THE PAN IMAGE

IS PRESENTED IN FIG. 11 (A) WITH THE SCALE OF 256 × 256

OursPanNet scheme, as displayed in Fig. 11. Furthermore,
we further explored a deeper perspective on the computa-
tional burden of Algorithm 1 focusing on each subproblem,
as reported in Table VIII. It is obvious that sub-problem
V, which is related to the deep prior, takes up very little
computational load of Algorithm 1, instead, multiplier �1

occupies the main load, owing to the call of the MTF filter
(filter size of 41 × 413).

VI. CONCLUSION

In this article, we have proposed a powerful weighted fusion
scheme that combines VO with DL techniques to address the
pansharpening problem, expecting to obtain higher accuracy,
better modeling interpretability, and generalization ability. The
novelty of the given model mainly included two aspects: 1) the
use of the HPM scheme for spatial fidelity, resulting in a new
details-injection term; and 2) the introduction of an adaptively
weighted regularizer for considering the outcome of a DL
method as a prior linking VO and DL classes. An efficient
ADMM-based algorithm has been developed to pursue a
global optimum solution. Both the reduced and full-resolution
experiments are analyzed on several acknowledged data sets,
qualitatively and quantitatively, and have indicated the superi-
ority of our framework compared to a benchmark consisting of
several state-of-the-art methods belonging to the four classes
of pansharpening algorithms. Finally, the robustness with
respect to the involved parameters, a generalization ability,
an ablation study, the evaluation of the effects of using
the proposed DWDR, and computational analysis have been
pointed out in the discussions section of this article.
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