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Abstract— Hyperspectral images (HSIs) are of crucial
importance in order to better understand features from a large
number of spectral channels. Restricted by its inner imaging
mechanism, the spatial resolution is often limited for HSIs.
To alleviate this issue, in this work, we propose a simple
and efficient architecture of deep convolutional neural networks
to fuse a low-resolution HSI (LR-HSI) and a high-resolution
multispectral image (HR-MSI), yielding a high-resolution HSI
(HR-HSI). The network is designed to preserve both spatial
and spectral information thanks to a new architecture based
on: 1) the use of the LR-HSI at the HR-MSI’s scale to get an
output with satisfied spectral preservation and 2) the application
of the attention and pixelShuffle modules to extract information,
aiming to output high-quality spatial details. Finally, a plain
mean squared error loss function is used to measure the per-
formance during the training. Extensive experiments demon-
strate that the proposed network architecture achieves the best
performance (both qualitatively and quantitatively) compared
with recent state-of-the-art HSI super-resolution approaches.
Moreover, other significant advantages can be pointed out by
the use of the proposed approach, such as a better network
generalization ability, a limited computational burden, and the
robustness with respect to the number of training samples.

Manuscript received November 1, 2020; revised February 2, 2021 and
April 20, 2021; accepted May 24, 2021. This work was supported
in part by the National Natural Science Foundation of China under
Grant 61772003, Grant 61702083, Grant 12001446, and Grant 61876203;
in part by the National Key Research and Development Program of China
under Grant 2020YFA0714001; in part by the Key Projects of Applied
Basic Research in Sichuan Province under Grant 2020YJ0216; and in part
by the Fundamental Research Funds for the Central Universities under
Grant JBK2102001; and in part by MIAI@Grenoble Alpes under Grant ANR-
19-P3IA-0003. (Corresponding authors: Ting-Zhu Huang; Liang-Jian Deng.)

Jin-Fan Hu, Ting-Zhu Huang, and Liang-Jian Deng are with the School
of Mathematical Sciences, University of Electronic Science and Tech-
nology of China, Chengdu 611731, China (e-mail: hujf0206@163.com;
tingzhuhuang@126.com; liangjian.deng@uestc.edu.cn).

Tai-Xiang Jiang is with the FinTech Innovation Center, Financial Intel-
ligence and Financial Engineering Research Key Laboratory of Sichuan
Province, School of Economic Information Engineering, Southwestern
University of Finance and Economics, Chengdu 610074, China (e-mail:
taixiangjiang@gmail.com).

Gemine Vivone is with the National Research Council—Institute of Method-
ologies for Environmental Analysis, CNR-IMAA, 85050 Tito Scalo, Italy
(e-mail: gvivone@unisa.it).

Jocelyn Chanussot is with the Aerospace Information Research Insti-
tute, Chinese Academy of Sciences, Beijing 100094, China, and also with
Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble,
France (e-mail: jocelyn.chanussot@grenoble-inp.fr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3084682.

Digital Object Identifier 10.1109/TNNLS.2021.3084682

Please find the source code and pretrained models from https://
liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html.

Index Terms— Attention module (AM), deep convolutional
neural network (CNN), hyperspectral image (HSI) super-
resolution, image fusion, pixelShuffle (PS).

I. INTRODUCTION

TRADITIONAL multispectral images (MSIs, e.g., RGB
images) usually contain a limited number of spectral

bands providing a limited spectral information. Since hyper-
spectral imaging obtains more spectral bands containing more
information of the spectral structure, it has become a non-
negligible technology that can capture the intrinsic properties
of different materials. However, due to the physical limitation
of imaging sensors, there is a trade-off between the spatial
resolution and the spectral resolution in an HSI [1]. Therefore,
it is burdensome to obtain a HSI with a high spatial resolution.
In this condition, hyperspectral image (HSI) super-resolution
by fusing a low-resolution hyperspectral image (LR-HSI) with
a high-resolution multispectral image (HR-MSI) is a promising
way to address the problem.

Many researchers have focused on HSI super-resolution to
increase the spatial resolution of LR-HSI proposing several
algorithms. Many of them consider the following linear model:

Y = XBS, Z = RX (1)

where Y ∈ R
S×hw, Z ∈ R

s×H W and X ∈ R
S×H W represent

the mode-3 unfolding matrices of LR-HSI (Y ∈ Rh×w×S),
HR-MSI (Z ∈ RH×W×s) and the latent high-resolution hyper-
spectral image (HR-HSI) (X ∈ RH×W×S), respectively, h
and w represent the height and width of LR-HSI, H and W
denote the height and width of HR-MSI, s and S denote the
spectral band number of HR-MSI and LR-HSI, respectively.
Additionally, B ∈ R

H W×H W is the blur matrix, S ∈ R
H W×hw

denotes the downsampling matrix, and R ∈ R
s×S represents

the spectral response matrix. It is worth to be remarked that
coherently with the notation adopted above, in this article,
we denote scalar, matrix, and tensor in nonbold case, bold
upper case, and calligraphic upper case letters, respectively.

Based on the models in (1), many related approaches have
been proposed. Different prior knowledge or regularization
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terms are integrated into those methods. However, the spectral
response matrix R is usually unknown, thus the traditional
methods need to select or estimate the matrix R and other
involved parameters. Additionally, the related regularization
parameters used in these kinds of approaches are often
image-dependent.

Recently, with the tremendous development of neural net-
works, deep learning has become a promising way to deal
with the pansharpening and HSI super-resolution problems. In
the research of [2], a model of HSI fusion problems is pro-
posed. It integrates the convolutional neural network (CNN)
modules into the traditional framework, which can utilize the
automatic feature learning ability and keep the advantages of
the traditional model. Dian et al. [4] mainly focus on the
spatial detail recovery and learn image priors via a CNN.
These learned priors have been included in a traditional regu-
larization model to improve the outcomes getting better image
features than traditional regularization model-based methods.
Xie et al. [3] proposed a model-enlightened deep learning
method for HSI super-resolution. This method has exhibited
an ability to preserve spectral information and spatial details,
thus obtaining state-of-the-art HSI super-resolution results.
Liu et al. [5] design a structure with a shallow network and
a deep network that can capture features in different levels
for the pan-sharpening problem. It is proposed to obtain the
spatial details with minimal spectral distortion, and then those
details are merged into the MSIs.

However, deep learning-based approaches for HSI
super-resolution also encounter some challenges. First of
all, these methods sometimes have complicated architectures
with millions of parameters to estimate. Second, due to
the complicated architecture and large-scale training data,
expensive computation and storage are usually involved.
Third, deep learning-based methods are data-dependent,
which usually holds a weak network generalization. Thus,
the model trained on a specific dataset could poorly perform
on a different kind of dataset. Instead, the proposed network
architecture is an improvement on these above-mentioned
drawbacks.

In this article, the proposed network architecture (called
HSRnet from hereon) can be decomposed into two parts. One
part is to preserve the spectral information of HR-HSI by
upsampling the LR-HSI. The other part is mainly to get the
spatial details of HR-HSI by training a CNN with the HR-MSI
and LR-HSI as inputs. By imposing a similarity between
the network output and the reference [ground-truth (GT)]
image, we can efficiently estimate the parameters involved in
the network. In summary, this article mainly consists of the
following contributions.

1) An effective CNN with a plain architecture and few
parameters is proposed for the fusion of HSIs and
MSIs. In the proposed CNN, the spectral and spatial
information is well preserved and fused, yielding an
HR-HSI.

2) The channel attention (CA) and spatial attention (SA)
modules are designed and incorporated for refining the
spectral and spatial details. A cross-scale operation con-
ducted on the lower and the original scales is exploited

Fig. 1. First row: the schematic of HSI resolution on a test image from
the CAVE dataset (h and w represent the height and width of LR-HSI,
H and W denote the height and width of HR-MSI, s, and S denote the
spectral band number of HR-MSI and LR-HSI, respectively). The right image
is the GT HR-HSI, X . Second row: the results obtained by (a) CNN-FUS
(PSNR = 43.77 dB), (b) MHFnet (PSNR = 46.53 dB), and (c) proposed
HSRnet (PSNR = 47.78 dB), where PSNR stands for the peak signal-
to-noise ratio. Note that all the images are displayed with pseudocolor red,
green, and blue (RGB) format using R = first band, G = ninth band, and
B = second band. From the visual analysis, our HSRnet achieves the best
result, while CNN-FUS shows wrong colors and the result of MHFnet depicts
some artifacts.

in the network architecture, aiming to reduce the com-
putation and benefit the multiscale information. The
pixelShuffle (PS) module is introduced to capture details
during the upsampling process. Meanwhile, the leaky
ReLU is adopted for a more accurate estimation of the
negative part of the detail.

3) Experiments on different datasets illustrate the superior
of our method. More discussions are conducted to illus-
trate that, compared with state-of-the-art CNN-based
methods (see Fig. 1), our network: 1) is robust to the
number of training samples; 2) consumes less time in
both the training and testing stage; and 3) has better
promising generalization ability to yield competitive
results for different datasets even though the network
is trained only on a specific dataset.

The rest of this article is outlined as follows. Section II
presents the related works about the hyperspectral
super-resolution problem. Section III introduces the
proposed network architecture. In Section IV, extensive
experiments are conducted to assess the effectiveness of the
proposed architecture. Furthermore, some discussions about
the image spectral response, the network generalization,
the computational burden, the benefit of the leaky ReLU
activation function, and the use of AM and PS modules are
provided to the readers.

II. RELATED WORKS

HSI super-resolution is a popular topic, which is receiving
more and more attention. In particular, the combination of
hyperspectral data with higher spatial resolution MSIs repre-
sents a fruitful scheme leading to satisfying results. Recent
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fusion or super-resolution approaches can be roughly cate-
gorized into two families: model-based approaches and deep
learning-based methods.

Model-based approaches are classic solutions. Indeed, many
works have already been published [1], [2], [6]–[42] for
super-resolution and pansharpening problems. For instance,
Li et al. [17] utilized the tensor theory [43], which shows
a significant improvement in many image processing and
computer vision tasks [29], [30], [44]–[46]. They consider the
HR-HSI as a 3-D tensor exploiting the sparsity of the core
tensor. It is decomposed into a three-mode dictionary of sparse
core tensor multiplication. Following the baseline of tensor
decomposition, Xu et al. [18] further employ the sparsity
and the piecewise smoothness along with the width, height,
and spectral mode of the GT HR-HSI. Both of them use the
classical Tucker decomposition [47] to reformulate the fusion
problem by estimating a sparse core tensor and coefficient
dictionaries of the three modes. The super-resolution can
then be regarded as an optimization problem, which has a
satisfying solution under the well-known alternating direction
multipliers minimization (ADMM) [48] framework with var-
ious constraints. However, some parameters in these tensor
factorization or matrix factorization approaches are sensitive
to the scene under test, i.e.„ different scenarios have their own
unique optimal parameters setting.

Deep learning-based methods have recently showed excep-
tional performance in the field of image super-resolution,
see [2]–[4], [49]–[65]. A powerful example is provided by the
so-called PanNet developed in [53]. Yang et al. designed a new
architecture training the deep-learning network with high-pass
filtered details rather than original images. This is done
in order to simultaneously preserve the spatial and spectral
structures. Thanks to the use of high-pass filters, a greater gen-
eralization ability is observed. However, the PanNet roughly
absorbs the features obtained from the MSI and panchromatic
image by plain and straightforward ResNet blocks; some
deeper and more abstract features of those images are ignored.
Also, the spatial and spectral characteristics extracted by the
ResNet blocks are not differentiated. Another instance of deep
learning-based methods for solving the HSI super-resolution
issue is provided in [3], where a model-based deep learning
method is proposed. The method exhibits a great ability
to preserve structures and details obtaining state-of-the-art
results. Unlike other deep learning-based methods that mainly
regard the image super-resolution issue as a simple regression
problem, this approach is driven by the generation mechanism
of the HSI and the MSI to build a novel fusion model. It adopts
the low rankness knowledge along with the spectral mode of
the HR-HSI under analysis. Instead of solving the model by
traditional alternating iterative algorithms, the authors design
a deep network learning the proximal operators and model
parameters by exploiting CNNs. Nevertheless designing a
universal low rankness of various scenarios is quite challeng-
ing. The network performance on different cases is related
to their affinity to this prior knowledge, thus reducing the
generalization ability. In addition, this approach takes up
massive computing resources, i.e.„ a longer time for training
and greater memory requirements for storage.

III. PROPOSED HSRNET

In this section, we introduce first the regularization-based
model for the HSI super-resolution problem. Motivated by the
above-mentioned model, we propose our network architecture
that will be detailed in Section III-B.

A. Problem Formulation

Estimating the HR-HSI from LR-HSI and HR-MSI is an
ill-posed inverse problem. Thus, prior knowledge is intro-
duced exploiting regularization terms under the maximum
a posteriori (MAP) framework. Those methods can be for-
mulated as

min
X

L = λ1 f1(X, Y) + λ2 f2(X, Z) + R(X) (2)

where X, Y, and Z are the mode-3 unfolding matrices of tensor
HR-HSI, LR-HSI, and HR-MSI, respectively, which have been
introduced in Section I. λ1 and λ2 represent two regularization
parameters, f1 and f2 force the spatial and spectral consis-
tency, respectively, and R stands for the regularization term
depending on the prior knowledge. In general, f1 and f2 are
defined based on the relations in (1), that is

f1(X, Y) = �Y − XBS�2
F

f2(X, Z) = �Z − RX�2
F (3)

where �X�F = (
∑∑

x2
i j)

1/2 is the Frobenius norm.
In particular, the regularization term R is crucial for
regularization-based methods.

Deep learning can be viewed as an estimation problem of
a function mapping input data with GT (labeled) data. In our
case, starting from the input images (i.e., LR-HSI and HR-
MSI), we can estimate the mapping function f by minimizing
the following expression:

min
�

L = � f�(YZ) − X�2
F (4)

where Y and Z are the LR-HSI and the HR-MSI, respectively,
and X is the reference (GT) HR-HSI. The mapping function
f can be viewed as a deep CNN, thus � represents the
parameters of the network. Besides, the prior knowledge
can be viewed as being implicitly expressed by the learned
parameters. In Section III-B, we will present the network
architecture recasting the problem as in (4), where the function
f is estimated thanks to several examples provided to the
network during the training phase.

B. Network Architecture

Fig. 2 shows the proposed HSRnet for the HSI
super-resolution problem. From the figure, it is easy to see
that we decompose the network into two parts, such that
the two parts can preserve the most crucial characteristics
of an HSI, i.e., the spectral information and the spatial
details.

1) Spectral Preservation: The LR-HSI Y ∈ R
h×w×S1

has the same spectral band number as the GT HR-HSI
X ∈ R

H×W×S. Indeed, most of the spectral information

1We use three coordinates format to better represent the 3-D HSI, i.e.,
h × w × S.
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Fig. 2. Flowchart of the proposed network architecture (HSRnet). (a) Architecture of our HSRnet. LR-HSI Y and HR-MSI Z are the two inputs, and the O
is the final output. (b) Schematic of the CA and SA modules. GAPc ∈ R

1×1×S is obtained by the global average pooling (GAP) of the two spatial dimensions,
while GAPs ∈ R

H×W×s is obtained by the GAP along the spectral dimension. (c) Diagram of one ResNet block with two layers and 64 kernels (size 3 × 3)
for each layer and the activation function is replaced by the leaky ReLU. (d) Illustration of the PS for upsampling m times.

of the HR-HSI is contained in the LR-HSI (the remaining
part is due to the spectral information of the high-resolution
spatial details). In order to corroborate it, we plot the sampled
spectral signatures obtained by the GT HR-HSI X and by the
corresponding upsampled LR-HSI YU ∈ R

H×W×S in Fig. 3.
It is easy to be noted that the plots are very close to each
other, indicating that YU holds most of the spectral content
of X . Therefore, to guarantee spectral preservation, we simply
upsample Y getting YU by bicubic interpolation [as shown in
the top part of Fig. 2(a)].

Admittedly, YU is able to preserve most of the spectral
information, but some spatial details are lost (which can
retain part of the spectral information). Instead, the proposed
HSRnet can learn the HR-HSI’s spectral information, even
preserving the spatial counterpart. Note that the CA weights
are obtained by the original LR-HSI Y , and the global average
pooling (GAP) is along the spatial dimensions. It forces the
CA module to focus on the spectral relation. Thanks to this
module, the network can obtain the different missing spectral
information of each band. As a result, the final outcome of

Fig. 3. Sampled spectral signatures for the clay at pixel (175, 400) as obtained
by the (GT) HR-HSI, the upsampled LR-HSI YU , and the estimated version
of the high resolution HSI exploiting the proposed HSRnet.

the proposed HSRnet clearly shows an almost perfect spectral
preservation (see Fig. 3).
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Fig. 4. (a) Spatial weight map learned by the SA module of clay. (b) Channel
weight learned by the CA module.

2) Spatial Preservation: Since the HR-MSI Z ∈ R
H×W×s

contains high spatial resolution information, we aim to use Z
to extract spatial details injecting them into the final hyper-
spectral super-resolution image. Moreover, Y still contains
some spatial details. Thus we also consider employing Y to
extract them. However, we do not simply concatenate Z and
Y together taking them into the network. We calculate first
the spatial information at the LR-HSI scale. In particular,
we add other details at the same scale by extracting them
from the HR-MSI Z . The downsampled HR-MSI ZD is
obtained by convoluting HR-MSI Z with a learnable kernel of
size 6 × 6 and setting stride as downsampling factor of 4
[see Fig. 2(a) again]. Finally, we concatenate this information,
i.e., Y and ZD, to get C0 ∈ R

h×w×(S+s).
In order to acquire adequate information, the spatial details

at the HR-MSI scale are extracted, which can be concate-
nated with YU

PS. While the YU
PS is properly convoluted and

upsampled to the HR-MSI scale by the PS [66]. It designs
convolution filters for every single feature map capturing more
details during the upsampling process [see Fig. 2(d)]. Thus,
C1 ∈ R

H×W×(S+s) indicates the concatenation of the data at
two different scales (the LR-HSI one and the HR-MRI one).
This represents the input of the ResNet implementing the
well-known concept of multiresolution analysis often consid-
ered in previously developed researches (e.g. [67]–[71]) either
by designing diverse kernel sizes for convolution [67], [68]
or extracting different spatial resolutions by filtering input
data [69]–[71]. Moreover, the concatenation operator is about
adding the multispectral bands with a high spatial resolution
(three bands, RGB image) into the hyperspectral bands (as
shown in Fig. 2). In this work, the red, the green, and the blue
slices of ZD and Z are inserted as the head, the middle, and
the tail frontal slices to complement the spectral information
of the HSI.

It is worth to be remarked that we do not expect the
output details are directly learned by the input LR-HSI Y and
HR-MSI Z , so we bring the AMs [72], [73] in the architecture.
They have the ability to distinguish more noteworthy informa-
tion from the raw data, which is consistent with what we are
trying to achieve, i.e., the additional details. The SA module
helps the network to focus on noteworthy areas. See Fig. 4(a),
the edges with higher weights mean that the network needs to
pay more attention to them while the background parts with
lower weights represent lesser importance. However, the SA

Fig. 5. Residual maps at the 15th band. (a) E = O − YU and
(b) Egt = X − YU .

SA ∈ R
H×W×1 just expresses a single attention map in space.

The CA module is introduced in the network to make up for
this deficiency. Different channel weights can lead to different
interest levels for each band. Fig. 4(b) shows the channel
weights of the image clay. HR-MSI Z ∈ R

H×W×s carries more
accurate and abundant spatial information of the scenario, thus
we expect to learn the SA map from the HR-MSI, while the
LR-HSI Y ∈ R

h×w×S keeps the spectral signatures, so the CA
weights are obtained by the LR-HSI [see Fig. 2(b)].

Fig. 5 shows a comparison between E and Egt. From the
figure, it is clear that E (i.e., the details extracted by the
proposed approach) and Egt (i.e., the details extracted by using
the reference image) are very close to each other validating
the effectiveness of the proposed network design.

3) Loss Function: After obtaining the spectral preserved YU

image and the spatial preserved E image from the ResNet fed
by the image cube C1, we subsequently add the two outputs
together to get the outcome. Thus, the loss function exploited
during the training phase to drive the estimation of the function
mapping in (4) can be defined as

min
�

L = � f�(YZ) + YU − X�2
F (5)

where f�(·) is the mapping function that has as input the
details at the two different scales used to estimate the spatial
preserved image E and the upsampled LR-HSI YU . The loss
function imposes the similarity between the network output
f�(Y,Z) + YU and the reference (GT) X image.

C. Network Training

1) Training Data: In the work, we mainly use the CAVE
dataset [74] for training the network. It contains 32 HSIs with
size 512 × 512 and 31 spectral bands. Additionally, each HSI
also has a corresponding RGB image with size 512 ×512 and
three spectral bands (i.e., the HR-MSI image). We selected
20 images for training the network, and the other 11 images
to be considered for testing,2 as done for the MHFnet in [3].
The CAVE test images are shown in Fig. 6.

2) Data Simulation: We extracted 3920 overlapped patches
with a size of 64 × 64 × 31 from the 20 images of the
CAVE dataset used as GT, thus forming the HR-HSI patches.
Accordingly, the LR-HSI patches are generated starting from
the HR-HSI by applying a Gaussian blur with kernel size

2One image, i.e., “Watercolors," is discarded as it is unavailable for use.
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Fig. 6. 11 testing images from the CAVE dataset. (a) balloons, (b) cd,
(c) chart and stuffed toy, (d) clay, (e) fake and real beers, (f) fake and real
lemon slices, (g) fake and real tomatoes, (h) feathers, (i) flowers, (j) hairs,
and (k) jelly beans.

Fig. 7. Training and validation errors for the proposed HSRnet.

equal to 3 × 3 and standard deviation equal to 0.5 and then
downsampling the blurred patches to the size of 16 × 16,
i.e., with a downsampling factor of 4. Moreover, the spectral
response function of the Nikon D700 camera (the same camera
spectral response function in [2], [3], [18], [29], and [30])
is used to generate the RGB patches. Thus, 3920 patches of
size of 64 × 64 × 3 are available to represent the HR-MSI.
Following these indications, the patches for the training phase
are the 80% of the whole dataset and the rest (i.e., the 20%)
is used for the validation.

3) Training Platform and Parameters Setting: The proposed
network is trained on Python 3.7.4 with Tensorflow 1.14.0 and
Windows operating system with NVIDIA GPU GeForce GTX
2080Ti. We use Adam optimizer with a learning rate equal to
1e−4 in order to minimize the loss function (5) by 75 epochs,
and each one has 2000 iterations. 32 batches are trained at the
same time in one iteration. The ResNet block in our network
architecture is crucial. Indeed, we use six ResNet blocks.
(Each one with two layers and 64 kernels of size 3×3 for each
layer. See Fig. 2.) Fig. 7 shows the training and validation
errors of the proposed HSRnet confirming the convergence
of the proposed CNN using the above-mentioned parameters
setting.

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed HSRnet
with several state-of-the-art methods for the hyperspectral

TABLE I

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS
ON 50 PATCHES EXTRACTED FROM THE TESTING IMAGES ON THE

CAVE DATASET. THE BEST VALUES ARE

HIGHLIGHTED IN BOLDFACE

TABLE II

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE
RESULTS ON 11 TESTING IMAGES ON THE CAVE DATASETS.

THE BEST VALUES ARE HIGHLIGHTED IN BOLDFACE

super-resolution problem. In particular, the benchmark con-
sists of the CSTF method3 [17], the FUSE approach4 [75],
the GLP-HS method5 [15], the UTV technique6 [18],
the CNN-FUS approach7 [2], the MHFnet8 [3], and the pro-
posed HSRnet approach. For a fair comparison, the MHFnet
is trained on the same training data as the proposed
approach. Furthermore, the batch size and the training
iterations of the MHFnet are set to 32 and 150 000,
respectively. Three widely used benchmark datasets, i.e.,
CAVE database9 [74], Harvard database10 [76] and Chikusei
database11 [77], are selected.

For quantitative evaluation, we adopt four quality indexes
(QIs), i.e., the peak signal-to-noise ratio (PSNR), the spectral
angle mapper (SAM) [78], the erreur relative globale adi-
mensionnelle de synthèse (ERGAS) [79], and the structure
similarity (SSIM) [80]. The SAM measures the average angle
between the spectral vectors of the target and of the reference
image. Instead, the ERGAS represents the fidelity of the image
based on the weighted sum of mean squared errors. The ideal
value in both cases is zero. The lower the index, the better the
quality. Finally, PSNR and SSIM are widely used to evaluate
the similarity between the target and the reference image. The
higher the index, the better the quality. The ideal value for
SSIM is one.

3https://github.com/renweidian/CSTF
4http://wei.perso.enseeiht.fr/publications.html
5http://openremotesensing.net/knowledgebase/hyperspectral-and-

multispectral-data-fusion/
6https://liangjiandeng.github.io/
7https://github.com/renweidian/CNN-FUS
8https://github.com/XieQi2015/MHF-net
9http://www.cs.columbia.edu/CAVE/databases/multispectral/
10http://vision.seas.harvard.edu/hyperspec/download.html
11http://naotoyokoya.com/Download.html
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Fig. 8. First column: the true pseudocolor images from the original CAVE dataset and the corresponding LR-HSI images of fake and real beers (R-3,
G-13, B-2) (first and second rows), fake and real tomatoes (R-22, G-19, B-20) (third and fourth rows), and hairs (R-1, G-9, B-2) (fifth and sixth rows).
Second–eighth columns: the true pseudocolor fused products and the corresponding residuals for the different methods in the benchmark pointing out some
close-ups to facilitate the visual analysis.

A. Results on CAVE Dataset

In order to point out the effectiveness of all the methods on
different kinds of scenarios and local areas, we divide first the
remaining 11 testing images on the CAVE dataset into small
patches of size 128 × 128. Then, 50 patches are randomly
selected. We exhibit the average QIs and corresponding stan-
dard deviations of the results for the different methods on these
patches in Table I. From Table I, we can find that the proposed
HSRnet significantly outperforms the compared methods. In
particular, the SAM value of our method is much lower than
that of the compared approaches (about the half with respect
to the best compared method). This is in agreement with
our previously developed analysis, namely that the proposed
HSRnet is able to preserve the spectral features of the acquired
scene.

Afterward, we conduct the experiments on the whole
11 testing images. Table II presents the average QIs on the
11 testing images. To ease the readers’ burden, we only show
the results on fake and real beers, fake and real tomatoes,
and hairs. Table III lists the specific QIs of the results on
these three images for the different methods. The proposed
method outperforms the compared approaches. Furthermore,

the running time of the HSRnet is also the lowest one. In
Fig. 8, we display the pseudocolor images of the fusion
results and the corresponding error maps on three images.
From the error maps in Fig. 8, it can be observed that the
proposed HSRnet approach has a better reconstruction of the
high-resolution details with respect to the compared methods,
thus clearly reducing the errors in the corresponding error
maps. In particular, CSTF and UTV have strict requirements
on the parameters for different images. It is easy to observe
there are prominent stripes in the fake and real beers and
hairs from the visual analysis, while they work pretty well
on the fake and real tomatoes with the same parameter
setting. Spectral fidelity is of crucial importance when the
fusion of HSIs is considered. In order to illustrate the spectral
reconstruction provided by the different methods, we plot the
spectral vectors for three exemplary cases (see Fig. 9). It is
worth to be remarked that the spectral vectors estimated by
our method and the GT ones are very close to each other.

B. Results on Harvard Dataset

The Harvard dataset is a public dataset that has 77 HSIs
of indoor and outdoor scenes including different kinds
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Fig. 9. Selected spectral vectors for the outcomes coming from the different fusion methods and the GT. The indications of the specific dataset and the
location of the pixel under analysis are also provided. (a) Spectral vectors in fake and real beers located at (19 272). (b) Spectral vectors in fake and real
tomatoes located at (156 128). (c) Spectral vectors in hairs located at (195 165).

TABLE III

QIS OF THE RESULTS BY DIFFERENT METHODS AND THE RUNNING TIMES
ON Fake and Real Beers, Fake and Real Tomatoes, AND Hairs ON THE

CAVE DATASET. G INDICATES THAT THE METHOD IS RUNNING ON

THE GPU DEVICE, WHILE C DENOTES THE USE OF THE CPU.
THE BEST VALUES ARE HIGHLIGHTED IN BOLDFACE

TABLE IV

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS

FOR TEN TESTING IMAGES ON THE HARVARD DATASET. THE BEST
VALUES ARE HIGHLIGHTED IN BOLDFACE

of objects and buildings. Every HSI has a spatial size
of 1392 × 1040 with 31 spectral bands, and the spectral
bands are acquired at an interval of 10 nm in the range
of 420–720 nm. We select the top left part of the image
(1000 × 1000), then ten images are randomly selected for
testing.

As in the previous settings, the original data are regarded
as the GT HR-HSI. The LR-HSI data are simulated as

TABLE V

QIS OF THE RESULTS FOR THE DIFFERENT METHODS AND THE RUNNING
TIMES ON Window, Tree, AND Backpack FOR THE HARVARD DATASET.

G INDICATES THAT THE METHOD IS RUNNING ON THE GPU
DEVICE, WHILE C DENOTES THE USE OF THE CPU. THE BEST

VALUES ARE HIGHLIGHTED IN BOLDFACE

in Section III-C. The HR-MSI is also obtained by apply-
ing the spectral response of the Nikon D700 camera as in
Section III-C.

We would like to remark that both our method and the
MHFnet are trained on the CAVE dataset, and we directly
test them on the Harvard dataset without any retraining or
fine-tuning. Thus, the performance on the Harvard dataset of
these two methods could reflect their generalization abilities.

Table IV records the average QIs and the corresponding
standard deviations for the different methods using the ten
testing images. Note that the MHFnet is unstable; the ERGAS
value shows the worst result compared with other methods
because of its poor generalization ability. Table V gives the QIs
and the running times for three specific images of the Harvard
dataset. The proposed method ranks first with the lowest run-
ning time. Finally, considering the details in the pseudocolor
images in Fig. 10, we can see that the results of our method
get the highest qualitative performance, thus obtaining very
dark error maps (i.e., with errors that tend to zero everywhere).
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Fig. 10. First column: the true pseudocolor images from the original Harvard dataset and the corresponding LR-HSI images of window (R-29, G-22, B-28)
(first and second rows), trees (R-27, G-25, B-30) (third and fourth rows), and backpack (R-29, G-22, B-31) (fifth and sixth rows). Second to Eighth columns:
the true pseudocolor fused products and the corresponding residuals for the different methods in the benchmark pointing out some close-ups to facilitate the
visual analysis.

C. Results on Chikusei Dataset

In order to present our HSRnet’s performance on remote
sensed HSIs, we conduct an experiment on Chikusei dataset,
which is taken over agricultural and urban areas in Chikusei,
Ibaraki, Japan. It consists of 2517 × 2335 pixels and has
128 bands in the spectral range from 363 to 1018 nm. We
regard the original data as the GT HR-HSI and simulate the
LR-HSI in the same way as the previous experiments. As for
the HR-MSI, the corresponding RGB image is obtained by
Canon EOS 5D Mark II together with the HR-HSI. Afterward,
we select the top-left area with the spatial size 1000 × 2200 for
training and crop 64 × 64 overlapped patches from the
training part as the GT HR-HSI patches. Moreover, the input
HR-MSI and LR-HSI patches are of size 64 × 64 × 3 and
16 × 16 × 128, respectively. As for the testing data, we extract
six nonoverlap 680 × 680 × 128 area from the remaining part
of the Chikusei dataset.

Table VI shows the average QIs and corresponding standard
deviations for the testing images on all methods. It is clear
that our HSRnet outperforms the other comparing methods
on each metric. We also display the pseudocolor images of
the obtained outcomes and the corresponding error maps for a

TABLE VI

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS

FOR SIX TESTING IMAGES ON THE CHIKUSEI DATASET. THE BEST

VALUES ARE HIGHLIGHTED IN BOLDFACE

visual comparison in Fig. 11. Obviously, the fused results of
our HSRnet are the most satisfactory and the error maps are the
darkest. Table VII gives the corresponding QIs and the running
times for three selected areas. Since the spectral channels of
the Chikusei dataset are considerable, highly increasing the
computational cost of the MHFnet, we use the PCA prior
in [52] in the training process of the MHFnet to address the
issue as Xie et al. [3] did in the original work. Note that
the MHFnet gets the lowest running time on the three testing
images as our HSRnet.
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Fig. 11. First column: true pseudocolor images from the Chikusei dataset and the corresponding LR-HSI images of area 1 (R-69, G-9, B-8) (first and second
rows), area 2 (R-64, G-58, B-16) (third and fourth rows), and area 3 (R-67, G-15, B-13) (fifth and sixth rows). Second to eighth columns: true pseudocolor
fused products and the corresponding residuals for the different methods in the benchmark pointing out some close-ups to facilitate the visual analysis.

D. Ablation Study

1) AM : In order to investigate the effects of the use of
AMs, we compare our HSRnet with its variant that is similar
to the original HSRnet but without any AM. The network
is trained on the same training data of the HSRnet with the
same training settings. Table VIII presents the average QIs of
these two networks on the 11 testing images from the CAVE
dataset and the ten testing images from the Harvard dataset.
As we can see from the CAVE dataset results in Table VIII,
the mean values and standard deviations of the proposed
network are much better than that of the one without AM.
These modules do help the network to focus on more signifi-
cant features. In the Harvard dataset, however, the application
of AM has slightly weakened the generalization capability
of the network. We believe that it is still acceptable due
to the improvement in the CAVE testing images brought by
the AM.

2) PS Module: In previous research studies for
super-resolution problems of images or videos, low-resolution
input is usually upscaled by the bicubic interpolation or
simple transposed convolution. In comparison, the PS module
helps the network structure to gain useful information of
every single feature map. The data cube C0 in Fig. 2 is fed to
the PS, and then YU

PS is yielded.

TABLE VII

QIS OF THE RESULTS FOR THE DIFFERENT METHODS AND THE RUNNING

TIMES ON AREAS 1–3 FOR THE CHIKUSEI DATASET. G INDICATES

THAT THE METHOD IS RUNNING ON THE GPU DEVICE, WHILE C
DENOTES THE USE OF THE CPU. THE BEST VALUES

ARE HIGHLIGHTED IN BOLDFACE

To prove the strength of this module, we compare our
original HSRnet and the simpler architecture that only uses
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TABLE VIII

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS
ON THE CAVE AND THE HARVARD DATASETS USING THE PROPOSED

METHOD WITH AND WITHOUT THE AMS. THE BEST VALUES ARE

HIGHLIGHTED IN BOLDFACE

TABLE IX

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS
ON THE CAVE AND THE HARVARD DATASETS USING THE PROPOSED

METHOD WITH AND WITHOUT THE PS. THE BEST VALUES ARE

HIGHLIGHTED IN BOLDFACE

the transposed convolution. The results of the two compared
approaches are reported in Table IX. The QI values show the
necessity of the PS module in our HSRnet. It is relevant to the
improvement in performance measured by PSNR, especially
on Harvard testing images.

3) Activation Function Selection: The activation function
plays a vital role in deep learning researches. The ReLU [81] is
the most common one. A neuron only has an output when the
input is greater than 0. Otherwise, this output will be 0. Thus,
neural networks exploiting the ReLU tend to be very sparse.
Only a part of neurons will be involved in the computation.
The sparsity brought by the ReLU is similar to how the human
brain neurons activate, and it avoids gradient explosion and
vanishing gradient problems. However, the ReLU cannot work
well in our network; it kills each neuron’s negative inputs.
While the YU is upsampled by the nearest interpolation,
the detail injection E learned by the network will inevitably
contain positive and negative parts.

Therefore, the network will behave inadequately in absorb-
ing negative inputs if we select the normal ReLU function.
Thus, we integrate the leaky ReLU as our main activation
function to collect those abundant details, that is,

f (x) = max(0.2x, x). (6)

This activation function keeps a part of these negative inputs
and still maintains the nonlinear mapping. The results of
different activation functions are listed in Table X. From the
table, it is clear that those negative information delivered by
leaky ReLU deeply improves the performance of the detail
reconstruction phase.

4) GAP: To show the difference between the GAP and the
global max pooling (GMP) in AM, the network replacing
the GAP with GMP is retrained. We conducted experiments
on 11 CAVE testing images and ten Harvard testing images.

TABLE X

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS
ON THE CAVE AND THE HARVARD DATASETS USING THE PROPOSED

METHOD WITH DIFFERENT ACTIVATION FUNCTION. THE BEST

VALUES ARE HIGHLIGHTED IN BOLDFACE

TABLE XI

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS

ON THE CAVE AND THE HARVARD DATASETS USING THE PROPOSED

METHOD WITH GAP AND GMP. THE BEST VALUES ARE HIGH-
LIGHTED IN BOLDFACE

TABLE XII

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS

ON THE CAVE AND THE HARVARD DATASETS USING THE PROPOSED

METHOD WITH DIFFERENT AM ORDER (CA → SA INDICATES
THAT CA IS BEFORE THE SA). THE BEST VALUES ARE HIGH-

LIGHTED IN BOLDFACE

The average results of the QIs are reported in Table XI. The
use of the GMP instead of the GAP does not significantly
affect the results, thus concluding that both the strategies can
be considered acceptable.

5) AM’s Order: In the proposed HSRnet, the SA is con-
ducted on the outcome coming from the ResNet block, and
then the CA is applied to the data after a simple convolution
layer. To assess the performance varying the order between
the above-mentioned two modules, we put the SA after the
CA retraining the network. The quantitative comparison is
given in Table XII. The new structure shows slightly poorer
performance than the original one, but, generally, the order of
the two modules does not significantly affect the performance.

E. Comparison With MHFnet

To our knowledge, the MHFnet developed by Xie et al. [3]
outperforms the state of the art of the model-based and the
deep learning-based methods, actually representing the best
way to address the HSI super-resolution problem. Due to
the fact that the MHFnet and our HSRnet are both deep
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TABLE XIII

RESULTS OF THE TWO DEEP LEARNING-BASED METHODS VARYING
THE NUMBER OF THE TRAINING SAMPLES. THE BEST VALUES

ARE HIGHLIGHTED IN BOLDFACE

TABLE XIV

AVERAGE QIS AND RELATED STANDARD DEVIATIONS OF THE RESULTS

FOR THE NETWORKS TRAINED ON THE HARVARD DATASET. THE BEST

VALUES ARE HIGHLIGHTED IN BOLDFACE

learning-based methods, in this subsection, we keep on dis-
cussing about the HSRnet comparing it with the MHFnet.

1) Sensitivity to Number of Training Samples: We train the
MHFnet and our HSRnet with different numbers of training
samples to illustrate their sensitivity with respect to this para-
meter. We randomly select 500, 1000, 2000, and 3136 samples
from the training data. Testing data consists of 11 testing
images on the CAVE dataset and ten testing images on the
Harvard dataset. Table XIII reports the average QIs of the
results obtained by the MHFnet and by our HSRnet varying
the number of the training samples. From the results on the
CAVE dataset in Table XIII, we can note that our method
steadily outperforms the MHFnet in every case. Instead, from
the results on the Harvard dataset, we can remark that the
generalization ability of our method is robust with respect to
changes in the numbers of the training samples. Whereas the
MHFnet shows poor performance due to its manual predefined
parameters that are sensitive to scene changes. Noted that
HSRnet and MHFnet both get the best performance in the
case of 2000 training samples, but we still select the most fully
trained models of them. This does not prejudice the fairness
of the comparison.

2) Network Generalization: In the above content, MHFnet
and our HSRnet are both trained with CAVE data. We can
find that our HSRnet outperforms the MHFnet in all the
experiments on the testing data provided by the Harvard
dataset. This shows the remarkable generalization ability of
our network. To further corroborate it, we retrain these two

Fig. 12. Comparison of the training times for the MHFnet and the proposed
HSRnet.

networks on training samples provided by the Harvard dataset.
Namely, we extract from the Harvard dataset 3136 training
samples, in which the HR-MSI is of size 64 × 64, and the
LR-HSI is of size 16 × 16. As previously done, we select
the same 11 images from the CAVE dataset and the same ten
images from the Harvard dataset to build the testing set. We
show the QIs of the results for these two networks trained
on the Harvard dataset in Table XIV. It can be seen that the
generalization ability of the MHFnet is still limited. Instead,
the proposed approach still shows better generalization abil-
ity when used on CAVE data but trained on the Harvard
samples.

3) Parameters and Training Time: MHFnet contains
3.6 million parameters; however, only 1.9 million parameters
have to be learned by our HSRnet. In Fig. 12, we plot the
training time with respect to the epochs. We can find that
our network needs much less training time than MHFnet. The
MHFnet needs about 40 h, while our HSRnet just needs 5 h.
Actually, from Tables III and V, the testing time of our HSRnet
is also less than that of the MHFnet. Indeed, fewer parameters
result in less training and testing times, making our method
more practical.

V. CONCLUSION

In this article, a simple and efficient deep network architec-
ture has been proposed for addressing the HSI super-resolution
issue. The network architecture consists of two parts: 1) a
spectral preservation module and 2) a spatial preservation
module that aims to reconstruct the image’s spatial details
with AM and PS modules. The combination of these two
parts is performed to get the final network output. This
latter is compared with the reference (GT) image under the
Frobenius norm-based loss function. This is done with the
aim of estimating the network parameters during the training
phase.

Extensive experiments demonstrated the superiority of
our HSRnet with respect to recent state-of-the-art HSI
super-resolution approaches. Additionally, advantages of our
HSRnet have also been reported from other points of view,
such as the network generalization, the limited computational
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burden, and the robustness with respect to the number of
training samples.
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