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Abstract In this paper, we propose a multiphase image segmentation method
via solving the min-cut minimization problem under the multigrid (MG) method
framework. At each level of the multigrid method for the min-cut problem, we first
transfer it to the equivalent form, e.g., max-flow problem, then actually solve the
dual of the max-flow problem. Particularly, a classical multigrid method is used
to solve the sub-minimization problems. Several outer iterations are used for the
multigrid method. The proposed idea can be used for general min-cut/max-flow
minimization problems. We use multiphase image segmentation as an example in
this work. Extensive experiments on simulated and real images demonstrate the
efficiency and effectiveness of the proposed method.

Keywords continuous min-cut and max-flow · Multiphase image segmentation ·
Multigrid method.

1 Introduction

Image segmentation is a fundamental task in image processing that divides an im-
age into several disjoint regions such that each region shares similar features, e.g.,
texture, and intensity. By the results of image segmentation, many critical sub-
sequent image applications can be well addressed, such as recognition, detection,
and searching. Compared with two-phase image segmentation that only needs to
divide an image into two disjoint parts, multiphase image segmentation is more
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practical and challenging. In this work, we mainly focus on the task of multiphase
image segmentation.

There exist many image segmentation approaches from different perspectives,
e.g., conventional discrete optimization-based methods, learning-based methods,
and variational methods. Since our method in this work belongs to the category of
variational methods, in what follows, we will mainly introduce recent development
and trend of variational methods.

During the last two decades, variational methods have become a meaningful
way to solve problems related to image segmentation because of their flexibility
in model formulation and algorithm design. In particular, if we want to develop a
competitive segmentation model, two issues have to be considered. One is how to
depict the desired segmented region, and the other is how to model the character-
istics and noise of each region [1,2,3,4,5,6,7,8,9].

The well-known Mumford-Shah model [10] penalizes the `2 error between the
observed image and an unknown piecewise smooth function, as well as the to-
tal length of the segmentation boundaries. However, the Mumford-Shah model
is challenging to solve since the discretization of an unknown boundary is quite
complicated. Therefore, Zhu and Yuille in [11] proposed an explicit active contour
approach represent the segmentation boundaries such that the discretization of
Mumford-Shah becomes easy and practical. Furthermore, a particular case of the
Mumford-Shah model with piecewise constant approximation, called the Chan-
Vese model, was proposed by Chan and Vese [12]. In particular, we may solve the
Chan-Vese model in [12] efficiently by the level set method [13] Different from the
active contour approach, the level set method uses an implicit representation of
boundaries such that it can take some advantages, e.g., automatical dealing with
the topological change of zero level sets [14,15,16,17]. The above mentioned ex-
plicit active contour and implicit level set methods both assume that each pixel be-
longs to a unique region. Different from the two methods, a representative method
using a fuzzy membership function considers that each pixel can simultaneously
belong to several regions with probability in [0, 1], see [2,18,19,20]. This type of
method has distinct advantages, such as the convex energy functional that guar-
antees the convergence and stability of the solution, and larger feasible set to find
better segmentation results. In [2], based on fuzzy membership functions and `1
norm fidelity, Li et al. proposed a variational model for multiphase image segmen-
tation. An alternating direction method of multipliers (ADMM) is employed to
solve the proposed model efficiently. Moreover, Houhou et al. [19] presented a fast
texture segmentation model based on the specific shape operator and active con-
tour. The existence of a solution to the proposed segmentation model is proven,
and a simple yet fast algorithm is presented to solve the model.

There exist another explanation for fuzzy membership functions. They are,
in fact, the convex relaxation of binary representation, c.f [21]. In the seminal
work of Chan-Esedougla-Nikolova [22], it was observed that binary segmentation
models could be relaxed to get convex global minimization models and then get a
binary label by a threshold. This convex relaxation model is essentially the same
as the fuzzy membership function approach. Chambolle, Cremers, and Pock [23]
extended this idea to more general problems by function-lifting, i.e., transfer the
non-convex minimization problem to a higher dimensional convex minimization
problem. There are interesting extensions using graph-cut algorithms and global
minimization in [24,25,26,27,28,29]. One interesting observation in [24,25,26,27,
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28] is that the convex relaxation models of [22,23] are in fact the dual problem
of a continuous min-cut problem which is also equivalent to a continuous max-
flow problem. The dual problem and the max-flow problem are convex and thus
have global minimizers. Using this interpretation, we could also cast the lifting
technique of [23] in the framework of continuous max-flow and min-cut as in [27,
26,28]. One of the purposes of this work is to use multigrid methods to get some
fast solvers for this kind of continuous max-flow and min-cut problems.

Since our work is about the multigrid (MG) method, it is necessary to introduce
the related works of the multigrid method. The multigrid method [30] is an efficient
and recursive approach for large scale systems. It projects the large problems on
the finest level to smaller problems on the next level and does this process until
the problems can be solved suitably. Multigrid method has been considered in
many image applications, such as image restoration [31,32,33,34,35,36], image
registration [37], image segmentation [38,39]. This method is also an ideal way to
solve the signal processing problem that will also generate ill-posed linear systems
[40]. In [31], Donatelli applied the multigrid method to the task of image deblurring
with Tikhonov regularization for the case of shift-invariant point spread function
with the periodic boundary condition. In [32], Chen and Tai designed a multigrid
method to solve the total variation minimization by using piecewise linear function
spanned subspace correction. Also, Badshah and Chen [39] proposed two related
multigrid methods for solving the Chan-Vese model to address the problem of
multiphase image segmentation.

In this paper, we employ the multigrid method to deal with the min-cut model
and its equivalent form as max-flow problem. The golden section algorithm is em-
ployed to efficiently solve the dual of the max-flow (DMF) problem on each level of
the multigrid method. Besides, due to the non-smoothness of the max-flow prob-
lem, the golden section algorithm is implemented to the smoothed version of the
sub-minimization problem. In particular, to improve the computation efficiency, a
classical Backslash-cycle type of multigrid method is selected to solve the coarser
level problems. Furthermore, some outer iterations are applied to the Backslash-
cycle multigrid method, aiming to enhance convergence speed. Due to the high
efficiency of the multigrid method, the new technique could get competitively fast
speed for multiphase image segmentation, competitive with and sometimes much
faster than the max-flow based approach [24,25]. Experiments on simulated and
real examples show the competitive results of multiphase image segmentation by
the given method.

The organization of this paper is as follows. In Section 2, we introduce contin-
uous min-cut and max-flow problems which are related to the problem we intend
to solve. Section 3 will present the related notations and scheme of the multi-
grid method, and the details of how to apply the multigrid method to our model
for two-phase image segmentation. In Section 4, we will first introduce the par-
allelization of the multigrid method based on four-color subdivision, then extend
the two-phase image segmentation to multiphase cases. In Section 6, we report
the segmentation results by the given method and compare it with a state-of-the-
art approach. We also give some experimental analyses of our strategy. Finally,
Section 7 will draw some conclusions.
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2 Continuous min-cut and max-flow problems

Given an image f , Mumford and Shah in [10] minimize the following functional:

E(u,Σ) =

∫
Ω\Σ

|∇u|2dx+ λ

∫
Ω

(u− f)2dx+ µLength(Σ), (1)

with respect to the function u defined on Ω which has discontinuities on Σ. Above,
λ, µ are two positive parameters. After [10], the Chan-Vese model was proposed
for image segmentation in [12], which minimizes the following energy functional:

ECV (φ, c1, c2) =

∫
Ω

(f − c1)2H(φ) + (f − c2)2(1−H(φ)) + η

∫
Ω

|∇H(φ)|, (2)

where φ represents a level set function whose zero level curve is the segmentation
boundary, c1, c2 are two scalars that will be updated in the computing procedure,
H(·) is the Heaviside function, and η is a positive parameter. In particular, if the
minimizer of the objective functional of Mumford-Shah’s model is in the form of
u = c1H(φ) + c2(1−H(φ)), i.e. a “binary image”, then one can easily deduce the
Chan-Vese’s model. Furthermore, the minimization problem of (2) can be solved
by a simple gradient flow.

Let u = H(φ), it is easy to get a solution of (2) by the following minimization
problem

min
v∈{0,1}

ECV (u, c1, c2) =

∫
Ω

(f − c1)2v + (f − c2)2(1− v) + η

∫
Ω

|∇v|, (3)

which was proposed in [21] and referred as binary level set approach. More gen-
erally, consider

min
v∈{0,1}

Epotts(v) =

∫
Ω

f1(x)v(x) + f2(x)(1− v(x)) +

∫
Ω

g(x)|∇v(x)|, (4)

where fi are some given functions indicating the possibility of a point belonging
to phase 0 or 1. The function g(x) can be just a constant or an edge detector
function. Especially, the Chan-Vese model in [12] is actually a special case of this
model if ci are known. Recently, it was observed that this is a min-cut problem
[24,27] which is equivalent to a max-flow problem that is written as

max
ps,pt,q

∫
Ω

psdx subject to:

ps(x) ≤ f1(x), pt(x) ≤ f2(x), |q(x)| ≤ g(x),∀x ∈ Ω, (5)

divq(x)− ps(x) + pt(x) = 0,∀x ∈ Ω, q · n = 0 on ∂Ω,

where n is the unit out normal vector of ∂Ω, ps is a scalar function and is the
amount of flow from a “source” to x, pt is a scalar function representing the amount
of flow to the “sink” and q(x) = (q1(x), q2(x)) is the flow inside the domain. It is
necessary to emphasis that |q| =

√
q21 + q22 . In particular, the method also works

if using |q| = |q1|+ |q2|. In such a case, its discrete version is actually a max-flow
problem that can be easily solved by traditional graph cut method. Note that the
functions fi and g in (5) are the same as in (4). The goal is to maximize the total
amount of flow in the system (which is the domain connected with a “source” and
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a “sink”) with flow conservation governed by the last equation of (5). Note that we
also need to assume that there is no “flow” in and out from the domain boundary
∂Ω. The dual of the max-flow problem (5) can be written as follows (c.f. [27, Prop.
3.1]):

min
u(x)∈[0,1]

∫
Ω

(f1u+ f2(1− u) + g(x)|∇u|)dx. (6)

As explained in [27], the function u in (6) is actually the Lagrangian multiplier for
the flow conservation equation in (5).

Note that the above three problems are truly equivalent:

(4)⇔ (5)⇔ (6).

It is necessary to emphasize that the equivalence between (4) and (6) was
first observed in the seminal work of Chan-Esedouglu-Nikolova [22] by a differ-
ent derivation. Connections between these models with the well-known graph-cut
approaches are also explained in some recent works, see [25,24,41,26,27]. There
are two advantages of continuous min-cut and max-flow models: (i) Both (5) and
(6) are convex minimization problems; thus they are guaranteed to have global
minimizers; (ii) A number of the well developed convex minimization algorithms,
especially some operator splitting and augmented Lagrangian methods, can be
employed to solve them efficiently.

These algorithms can classify the domain into two phases. There are three
different ways to extend it to multiphase segmentation with the same kind of
advantages as outlined below, and a brief survey of these approaches can also be
found in [42].

Approach I: The first approach for multiphase min-cut/max-flow with a given
graph was explained in [25]. There exists a max-flow and min-cut problem on
the graph that are dual to each other and guaranteed to have global minimizers.
This graph is given in the continuous setting. When it is discretized, we get
the commonly used discrete graph with vertexes. The details of the graph and
the model can be found in [25, Prop. 1].

Approach II: Another multiphase image segmentation model using graphs is the
Ishikawa graph [43,44,45]. The interpretation of this graph model as a min-cut
and max-flow problem can be found in [41,46]. The interpretation of this model
as convex relaxation can be found in [23].

Approach III: A third approach for multiphase image segmentation is to use the
product of labels as in [47,29,28], which essentially extends the multiphase
Chan-Vese approach [48]. The interpretation of the product of labels as min-
cut and max-flow problems over a graph can be found in [29,28].

Later in this work, we shall use multigrid methods to solve the multiphase min-
cut problem related to Approach I. For this approach, the corresponding graph is
shown in Figure 1 in [25]. We need to copy the image domain K times and properly
connect them, see [25, p.385]. The min-cut on this graph solves the multiphase
Potts model:

min
Ωi

K∑
i=1

∫
Ωi

fi(x)dx+
K∑
i=1

∫
∂Ωi

g(x)ds s.t. ∪Mi=1 Ωi = Ω, Ωk ∩Ωl = ∅,∀k 6= l.

The corresponding max-flow problem needs to maximize an energy functional with
functions:
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Table 1 Main notations used in this work.

Notation Meaning Remark

j level # of MG method j = 0, 1, · · · , J

nj element # on j-th level nj = 4j

i index for elements on j-th level i = 1, 2, · · · , nj
τi,j i-th element on j-th level (Fig. 1) i = 1, 2, · · · , nj ; j =

0, 1, · · · , J

N a gray image with size N ×N N ∈ N+

Pi,j center points of elements over the
finest mesh that are inside τi,j

N2

4j
center points, (Fig. 1-2)

Bi,j center points of elements over the
finest mesh that are inside τi,j and
adjacent to ∂τi,j

Fig. 2

B̃i,j center points of elements over the
finest mesh that are outside τi,j and
adjacent to Bi,j

Fig. 2

p phase # p = 1, 2, · · · ,K

N (x) center points of the down and right
neighbor elements of the element cen-
tered at x over the finest mesh

N(x) = {Nd(x), Nr(x)}

1. A scalar function ps(x) which is the amount of flow from the source to x;
2. A vectorial function h(x) = (h1(x), h2(x), · · ·hK(x)) and each hi(x) is a scalar

function which is the amount of flow from a point x of the ith copy of the
image domain to the “sink”;

3. A vectorial function q(x) = (~q1(x), ~q2(x), · · · , ~qK(x)) and each ~qi(x) = (q1i (x), q2i (x)
is the flow vector function on each copy of the image domain.

The max-flow problem needs to solve

max
ps,h,q

∫
Ω

ps(x)dx, (7)

under constraints:

hi(x) ≤ fi(x), |qi(x)| ≤ g(x), (divqi − ps + hi)(x) = 0,∀x ∈ Ω, i = 1, 2 · · ·K.
(8)

The dual problem of the above max-flow problem is the following convex min-cut
problem (c.f [25, p.386]):

min
u

K∑
i=1

(∫
Ω

ui(x)fi(x)dx+

∫
Ω

g(x)|∇ui(x)|dx
)
, s.t.

k∑
i=1

ui(x) = 1, ui(x) ≥ 0.

(9)
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Fig. 1 An illustration of refinement and the finest mesh and notations of τi,j and Pi,j . Pi,j
is the set containing the center points for all the elements over the finest mesh that are inside
τi,j . If j < J , Pi,j contains multiple center points, e.g., Pi,0 containing N2 center points of
τi,0 over the finest mesh.

3 Multigrid algorithm for piecewise constant approximations for
two-phase min-cut minimization problems

In the following, we try to use the multigrid method to solve the dual problem of
the max-flow problem (6), i.e., we will consider

min
u(x)∈[0,1]

F (u), F (u) =

∫
Ω

(f1u+ f2(1− u) + g(x)|∇u|)dx.

We assume that Ω is a rectangular domain, and there is a coarse mesh partition
that divides the domain into some coarse rectangular elements. Then, we refine
each rectangular element into four equal rectangular sub-mesh elements to get the
next level of fine mesh. We continue this refinement J times, and the finest mesh
is the one that we shall use for processing an image. In practical applications for
image processing, the pixels of the given image already defined the finest mesh,
and it is always possible to produce the mesh given by the pixels from the above-
outlined refinement process.

To explain the details in the derivation of the multigrid methods, we need to
introduce some nations. We use τi,j to denote the i-th element on j-th level with
j = 0 be the coarsest mesh. Pi,j denotes the center points of the element τi,j
over the finest mesh. nj represents the number of elements on level j. The other
notations are summarized in Tab. 1 and explained in Fig. 1–2.

We regard an image to be a piecewise constant function over the finest mesh.
The multigrid method we shall use is to minimize the energy for the min-cut
problem not only on the finest mesh but also over all the coarser level meshes.
The algorithm is given in Algorithm 1, and we shall explain the details in the
following. The updating is shown as a diagram in Figure 3. The interpolation and
prolongation between the levels are implicitly handled in the subproblem updating.

This multigrid algorithm is trying to minimize the min-cut energy functional
in (6) successively over all the elements from all the mesh levels. In the following,



8 Xue-Cheng Tai et al.

Fig. 2 An illustration of Pi,j , Bi,j and B̃i,j . Pi,j (blue points) represents the center points
for all elements over the finest mesh that are inside τi,j (the region enclosed by the blue line),
Bi,j contains all the center points for element over the finest mesh that are inside τi,j and

adjacent to ∂τi,j . B̃i,j contains all the center points for elements over the finest mesh that
outside τi,j and adjacent to Bi,j .

Algorithm 1 Multigrid algorithm for the dual problem of the max-flow (6)

1: Input: Input function f , the maximum iterations maxIter, the converged threshold tol
2: Output: uout
3: Initialization: Eold = 0, an initial value u ∈ [0, 1] for u
4: for k = 1 : maxIter do
5: for j = 0 : J do
6: for i = 1 : nj do
7: ei,j = arg minc∈Ci,j F (u+ cφi,j) by (11)–(12)
8: u← u+ ei,jφi,j
9: end for

10: end for
11: Compute total energy E = E(u) via (6)
12: if |E − Eold|/|E| < tol then break;
13: else set Eold = E
14: end if
15: end for
16: Output uout = u

we explain the details in solving the minimization subproblems and also give the
definition of the constraint Ci,j .

First, we note that the piecewise constant finite element functions space over
the different mesh levels can be written as:

Vj = {v| v|τi,j ∈ R, ∀τi,j}, j = 0, 1, 2 · · · J.

The basis functions for these spaces are:

φi,j(x) =

{
1, x ∈ τi,j ,
0, else.

(10)

We have that
Vj = span({φi,j}nj

i=1), j = 0, 1, 2 · · · J.
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Fig. 3 An illustration of Backslash-cycle multigrid method with several outer iterations.

In our multigrid method, all the integrations will be done over the finest mesh.
The function u ∈ VJ is always updated over the finest mesh. For c ∈ R, we for
simplicity define

vc(x) = u(x) + cφi,j(x) =

u(x) + c, ∀x ∈ τi,j ,

u(x), else

This is also a finite element function over the finest mesh due to the fact that
φi,j ∈ Vj ⊂ VJ , ∀j ≤ J.

The minimization subproblem in Step 7 in Algorithm 1 in the discrete setting
is to solve:

ei,j = arg min
c∈Ci,j

F (vc) = arg min
c∈Ci,j

F (u+ cφi,j)

= arg min
c∈Ci,j

( ∑
x∈Pi,j

[f1(x)vc(x) + f2(x)(1− vc(x))]

+
∑

x∈Pi,j\Bi,j

g(x)

√ ∑
y∈N (x)

|vc(y)− vc(x)|2

+
∑

x∈Bi,j

g(x)
√ ∑
y∈N (x)

⋂
Bi,j

|vc(y)− vc(x)|2 +
∑

y∈N (x)
⋂
B̃i,j

|u(y)− vc(x)|2

+
∑
y∈B̃i,j

g(y)
√ ∑
x∈N (y)

⋂
Bi,j

|vc(x)− u(y)|2 +
∑

z∈N (y)
⋂
B̃i,j

|u(z)− u(y)|2
)

= arg min
c∈Ci,j

( ∑
x∈Pi,j

[f1(x)− f2(x)] c

+
∑

x∈Bi,j

g(x)
√
v(x) +

∑
y∈N (x)

⋂
B̃i,j

|u(x)− u(y) + c|2

+
∑
y∈B̃i,j

g(y)

√ ∑
x∈N (y)

⋂
Bi,j

|u(x)− u(y) + c|2 + ṽ(y),

)
(11)

where N (x) is as defined in Tab. 1 and it represents the down and right neighbor
elements center points of the element centered at x, v(x) =

∑
y∈N (x)

⋂
Bi,j
|u(x)−
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u(y)|2 with x ∈ Bi,j , and ṽ(y) =
∑
z∈N (y)

⋂
B̃i,j
|u(z) − u(y)|2 with y ∈ B̃i,j . We

have cast the terms that are independent of c in getting equalities in the above
formulas. The summations in the above formula are done over the finest mesh as
all the center points from Pi,j , Bi,j , B̃i,j are centers of elements from the finest
level.

For the minimization subproblem in Step 7 in Algorithm 1, we need to guar-
antee that all the updated values for u satisfy u ∈ [0, 1]. This gives the constraint
set Ci,j for c in Step 7 as follows:

u+ cφi,j ∈ [0, 1]⇔ − u(x)

φi,j(x)
≤ c ≤ 1− u(x)

φi,j(x)
, x ∈ τi,j

⇔ Ci,j = [− min
x∈τi,j

u(x), 1− max
x∈τi,j

u(x)].
(12)

Here are some remarks about this algorithm:

– Note that we always have u ∈ [0, 1] during the iterations, thus the constraint
in (12) is always non-empty.

– Function u(x) ∈ VJ is regarded as a finite element function defined over the
finest mesh, thus the min-max values of u(x) over τi,j in (12) is evaluated over
the finest elements that are inside τi,j .

– The updating in Step 8 is always done over the finest mesh, i.e. over mesh at
level J , and so there is a piecewise constant interpolation from the j level to
the finest mesh at level J here.

The problem (11) is a minimization problem with real number c, we may denote
the objection function as h(c), thus the minimization problem can be written as:

min
a≤c≤b

h(c), (13)

which can be solved by golden section method, c.f. [49].

4 Parallelization of Mutligrid method

Parallelization is crucial for many applications with the min-cut/max-flow ap-
proach. Here, we shall partition the elements over each level onto four colors and
do the updating with the elements of the same color in parallel. As illustrated
in Fig. 4, the element over each level j can be partition into 4 groups that are
marked with 4 colors. The elements of the same color do not intersect each other.
We use τcoli,j to denote the i-th element over the j-th level with color numbered as
col ∈ {1, 2, 3, 4}. We assume that the number of elements with the color col at the
j-th level is ncolj . Then we know that ncolj = 4j−1 and nj = 4j . Correspondingly,
we define

τcolj =
⋃ncol

j

i=1 τ
col
i,j , P

col
j =

⋃ncol
j

i=1 P
col
i,j ,

Bcolj =
⋃ncol

j

i=1 B
col
i,j , B̃

col
j =

⋃ncol
j

i=1 B̃
col
i,j ,

j = 0, 1, 2, · · · , J ; col = 1, 2, 3, 4, (14)

We emphasise again that all the center points are defined over the finest mesh. For
convenience, we use Icolj to denote the indexes of the elements of τcolj , i.e

Icolj = {i| τi,j has the color col}, j = 0, 1, 2, · · · , J ; col = 1, 2, 3, 4,
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Fig. 4 An illustration to partition the elements over each level into 4 groups marked with 4
colors.

Table 2 Main notations used in this work.

Notation Meaning Remark

col color index with the 4-color partition col = 1, 2, 3, 4

τcolj Union of elements on j-th level with col-th color see (14) and Fig. 4

ncolj number of elements in τcolj -

P colj center points for finest mesh elements inside
τcolj

see (14)

Bcolj center points for finest mesh elements inside
τcolj and adjacent to ∂τcolj

see (14)

B̃colj center points for finest mesh elements outside
τcolj and adjacent to Bcolj

see (14)

A summary with the notations with the 4-color partition is given in Tab.
2. With these notations, the colored parallel multigrid algorithm for the max-
flow/min-cut problem (6) is written in detail in Algorithm 2. Next we explain the
needed details for the minimization problem in Step 7 of Algorithm 2 in the discrete

setting. For notation simplicity, for a given vector c = (c1, c2, · · · , cncol
j

) ∈ Rncol
j ,

let us define

s(x) =
∑
i∈Icol

j

ciφi,j(x).

This function is a piecewise constant function taking the constant value ci in the
elements over the j-th level with the color col, see Fig. 5 for an illustration of
φi,j with the red color as an example. The minimization problem in Step 7 of
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j = 1 j = 2 j = 3

Fig. 5 An illustration of φi,j for the red color, i.e. col = 1. Take the level 1 to the level 3 as
example.

Algorithm 2 in the discrete setting is to solve the following problem:

ecol,j = arg min
c∈Ccolj

( ∑
x∈P col

j

[f1(x)− f2(x)] s(x)

+
∑

x∈Bcol
j

g(x)

√√√√v(x) +
∑

y∈N (x)
⋂
B̃col

j

|u(x)− u(y) + s(y)|2

+
∑

y∈B̃col
j

g(x)
√
ṽ(y) +

∑
x∈N (y)

⋂
Bcol

j

|u(x)− u(y) + s(x)|2
)
.

(15)

The minimizer ecol,j of the above problem is a vector in Rncol
j . Again, we

emphasize that the summation in the above formula is done over the finest mesh.
The good point of this algorithm is that the values of the ecol,j can be computed
in parallel, i.e. minimization problem in Step 7 of Algorithm 2 can be computed
in parallel over elements for a fixed level j and a fixed color col ∈ {1, 2, 3, 4}. The
constraint set Ccolj can be deduced in the same way as for Algorithm 1, which is:

Ccolj = {(c1, c2, · · · cncol
j

)| ci ∈ [− min
x∈τi,j

u(x), 1− max
x∈τi,j

u(x)], i = 1, 2, · · · , ncolj }.

(16)

In the following, we give some detailed explanations about Algorithm 2. For
the implementation, u will be a matrix on the finest mesh, and it will always be
stored and updated on the finest mesh.

In the Step 8 of Algorithm 2, (ecol,j)i are the values of the ith component of

the minimizer in Step 7 which is a vector in Rncol
j . We have the following remarks

about Algorithm 2:

– The minimization problem in Step 7 can be done in parallel over the elements
in τcolj , i.e. i ∈ Icolj . Our code is implemented in Matlab. By implementing
the minimization over the elements with the same color in parallel, we observe
huge computing time improvement.

– The function u(x) is a finite element function over the finest mesh. So the
updating in Step 8 is always done over the finest mesh, and there is a piecewise
constant interpolation from the j-th level to the finest mesh at level J . Even
more, they can be updated in parallel over the elements of the same color. The
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Algorithm 2 Parallel multigrid algorithm with four color partitions
1: Input: Input function f , the maximum iterations maxIter, the converged threshold tol, a

smoothing constant δ.
2: Output: uout.
3: Initialization: Eold = 0, an initial value u0 ∈ [0, 1] for u.
4: for k = 1 : maxIter do
5: for j = 0 : J do
6: for col = 1 : 4 do
7: ecol,j = arg min(c1,c2,···cncol

j
)∈Ccolj

F (u+
∑
i∈Icolj

ciφi,j)

8: u← u+
∑
i∈Icolj

(ecol,j)iφi,j

9: end for
10: end for
11: Compute total energy E = E(u) via (26)
12: if |E − Eold|/|E| < tol then break
13: else set Eold = E
14: end if
15: end for
16: Output uout = u

coloring of the elements is done over each level. The updating for u is done
over the finest mesh elements that are inside each τi,j ⊂ τcolj , i.e. we add value

(ecol,j)i to all elements over the finest mesh that are inside τi,j ⊂ τcolj . Element
τi,j is on the j-th level, and it can contain many elements over the finest mesh
on level J .

5 Multigrid method for multiphase min-cut/max-flow

In this section, we intend to use multigrid for multiphase (K phases) min-cut
problem (9). We will present the algorithm without the coloring of the elements.
The parallel colored multigrid algorithm can be deduced in a similar way as for
Algorithm 2. For the multiphase min-cut problem, we only need to replace the
scalar function u in Algorithm 1 by a vector function

u(x) = (u1(x), u2(x), · · · , uK(x)) ∈ S,

with

S = {(v1(x), v2(x), · · · , vK(x))| vk(x) ≥ 0, k = 1, 2, · · ·K,
K∑
k=1

vi(x) = 1}.

We still try to update the u values over all elements τi,j with all i and j. Let u be
a given values at a given iteration, we update by

u(x)← u(x)+cφi,j =
(
u1(x)+c1φi,j , u2(x)+c2φi,j , · · · , uK(x)+cKφi,j

)
, c ∈ RK .

To guarantee that u(x) + cφi,j ∈ S, we need
K∑
p=1

(up + cp) = 1,

0 ≤ up + cp ≤ 1.

(17)
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Here up represents the values of the vector function u of the last iteration on the
p-th phase, and thus it satisfies u ∈ S. Especially, (17) can be simplified to the
following

K∑
p=1

cp = 0, − up ≤ cp ≤ 1− up. (18)

Thus, to extend Algorithm 1 to the multiphase min-cut/max-flow problem (9),
we just need to change the scalar label function u(x) to a vector label function
u(x) ∈ S and replace the minimization problem in Step 7 by solving an approxi-
mate minimizer for

ei,j = arg min
c∈Ci,j

F (u + cφi,j), (19)

with F being the energy functional given in (9), i.e.

F (v) =
K∑
p

∫
Ω

(
vp(x)fp(x)dx+ g(x)|∇vp(x)|

)
dx, v = (v1(x), v2(x), · · · vK(x)).

(20)
From (18), the constraint set Ci,j for (19) is

Ci,j =

{
c|

K∑
p=1

cp = 0, in τi,j , −minx∈τi,j (up)(x) ≤ cp ≤ 1−maxx∈τi,j (up)(x)

}
.

(21)
In our implementations, we first solve (19) without the constraint Ci,j and then
project the minimizer to the simplex Ci,j . We just do this once and take it as an
approximate minimizer for (19). It is clear that F is separable, i.e.

F (v) =
∑
p

Fp(vp), with Fp(vp) =

∫
Ω

vp(x)fp(x)dx+ g(x)|∇vp(x)|dx. (22)

This means that the computation for minimization problem (19) without the con-
straint Ci,j can be done in parallel for each p.

If we let ei,j,p be the value of the p-th component of an approximate minimizer
of the (19), then the updating of the label functions up(x) can be done in parallel
for p = 1, 2, · · ·K by

up ← up + ei,j,pφi,j , p = 1, 2, · · ·K. (23)

From these explanations, we can see that the extension from 2-phase min-
cut/max-flow to multiphase is very easy. All the codes for the 2-phase min-cut
problem can be used for each up(x). The only extra task is to handle the extra
constraint

∑K
p=1 cp = 0 . We have tested both on the algorithm of [50,51]. Both

are rather fast. In the tests given later, we have used the algorithm of [50].
The algorithm is summarized in Algorithm 3.
The first minimization problem in Step 8 in Algorithm 3 is again solved by the

Golden section with the lower and upper bound given by the second inequality in
the definition of Ci,j in (21). It is easy to implement this algorithm with 4-color
partition of the elements over each level j = 0, 1, · · · J .
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Algorithm 3 Multigrid algorithm for the dual problem of the max-flow (9)

1: Input: Input function fi and g, the maximum iterations maxIter, the converged threshold
tol

2: Output: uout
3: Initialization: Eold = 0, an initial value up ∈ [0, 1] for p = 1, 2, · · ·K
4: for k = 1 : maxIter do
5: for j = 0 : J do
6: for i = 1 : nj do
7: Find a minimizer in parallel for p = 1, 2, · · ·K for
8: ẽi,j,p = arg mincp∈R Fp(up + cpφi,j).

9: Project (ẽi,j,p)Kp=1 into the simplex Ci,j in (21) to get (ei,j,p)Kp=1.
10: Update up in parallel for p as up ← up + ei,j,pφi,j
11: end for
12: end for
13: Compute total energy E = E(u) via (9)
14: if |E − Eold|/|E| < tol then break
15: else set Eold = E
16: end if
17: end for
18: Output uout = u

6 Numerical Results

In this section, we compare the proposed method with three state-of-the-art ap-
proaches, named FCM-L1 method [2], SLaT method [52] and max-flow method
[24]. Note that the solved model in this work is the similar as that in the max-flow
method; thus, we will do some discussions for the two approaches in this section.
Especially, the model used in the FCM-L1 and SLaT methods are different from
that of the max-flow method and the proposed method; thus, we only present the
simple visual and quantitative comparisons for the FCM-L1 approach. All exam-
ples are mainly divided into two categories, one is for synthetic images that may
be corrupted by random noise, and the other is for real images. Besides, all tests
are implemented in MATLAB(R2017a) on a laptop of 8Gb RAM and Intel(R)
Core(TM) i5 CPU: @3.10 GHz.

Parameter setting: In our experiments, it is reasonable to stop the iteration
if the following relative total energy (ReEng) is smaller than a pre-defined positive
threshold tol, i.e.,

ReEng =
|E − Eold|
|E| < tol, (24)

where tol is set as 1×10−5 in our experiments. The bigger tol will lead to the faster
stopping of the iterative method. E and Eold are with the same definitions as in
Algorithm 3. Also, we set 4 levels for the multigrid method, i.e., J = 3, which means
that the multigrid method will start from (J − 3)-th level (viewed as the coarsest
level) and end in J-th level (the finest level). Therefore, the pixel numbers for each
P coli,j on the coarsest and the finest levels are respectively 8× 8 and 1× 1 (denoted
as 8× 8→ 1× 1). Note that we also implement thresholding (with a value of 0.5
for all experiments) to the outcomes of the max-flow and the proposed methods,
which makes sure the produced results being piecewise constant [22]. Moreover, the
maximum number maxIter of outer iteration in Algorithm 3 is set as 150. Besides,
the parameters in our method are easy to select because the proposed approach is
not sensitive to the associated parameters. Actually, choosing suitable parameters
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is always a difficulty in many image algorithms. Empirical tuning is a popular way
to determine parameters; thus, we take this way to obtain the parameters in our
work.

Smoothing Implementation: Before the experiments, a smoothing imple-
mentation is taken to smooth the singularity of the model. Note that the dual
form of max-flow problem (6) in the multigrid method is non-smoothness, since
the corresponding Euler-Lagrange equation

α∇ ·
(
∇u
|∇u|

)
− (f1 − f2) = 0, (25)

contains a singularity of |∇u| = 0. To address this issue, a common strategy that
incorporates a small constant δ to eliminate the singularity is used, which makes
the new minimization problem become

min
u∈[0,1]

Fδ(u) =

∫
Ω

f1u+ f2(1− u) + α
(√
|∇u|2 + δ2 − δ

)
dx. (26)

Therefore, in practical implementation, the F function in Algorithm 1, 2 and
3 should be replaced by Fδ that is defined in (26). Additionally, the δ is fixed as
5× 10−2 in the experiments.

6.1 Segmentation results

In this section, we report the total energy changes for the max-flow method and
the proposed method in Figure 6, since they are all to solve the same model1. It
indicates that both our method and the max-flow based method get similar con-
verged total energy. Particularly, the reason why the final converged total energy of
the multigrid method is slightly bigger than that of the max-flow approach is that
the multigrid method uses the smoothed energy (26). In contrast, the max-flow
approach is only applied to the original TV minimization problem.

In Fig. 7, we test the performance of computational time for both the max-
flow method and our method with the increased image size on a noisy synthetic
image (see Fig. 7(a)). In Fig. 7(b), the image size is increased from 100 × 100 to
1000 × 1000. When the image content is simple, and the image size is small (see
e.g., smaller than 300 × 300), the max-flow method uses less computational time
than the given approach, while our method will be significantly faster than the
max-flow method when the image content is complex and the image size is bigger.

In Fig. 8, we take some simple synthetic and real images for the test of mul-
tiphase image segmentation. They include one synthetic image with the noise of
unknown level (i.e., the first image) and five real images without any corruption
(i.e., the second to the sixth image). In particular, these test images are first pre-
processed by the region force method [53,42] (see the second column in Fig. 8).
The max-flow and the proposed method are both implemented based on these
pre-processed images for fair comparisons. From the last four columns of Fig. 8, it
is easy to see that the four compared methods perform similarly well for the syn-
thetic image that only contains simple image content and some unknown noise. For

1 The models used in the FCM-L1 and SLaT methods are different, thus it is not meaningful
to discuss the energy change.
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Fig. 6 The comparison of total energy for the max-flow method and the multigrid method
implemented on a test image.
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Fig. 7 The comparison of computational time with increased image sizes. Here we synthesize
images with the sizes from 100 × 100 to 1000 × 1000. (a) An example with 3 phases (i.e.,
K = 3); (b) The comparison of computational time for both compared methods.

the segmentation of real-world images (i.e., the last five examples), the proposed
method produces competitive visual results compared with three other approaches.
For the segmentation of small objects, the max-flow method and our method are
slightly better. For instance, for the real image “zebra”, the max-flow method and
the proposed method could segment the black and white stripes well while other
two methods are much less accurate. Another example is the “strawberry”, in
which the results by our method and the max-flow method show a better visual
performance than the other two approaches. The observation on other examples
in comparison also confirm our conclusion.

Tab. 3 reports the computational time of different approaches, which may be
affected by the image size, image type, and image noise, etc. From Tab. 3, it is
clear that the multigrid method is faster than the FCM-L1 method and the max-
flow method for all compared examples. Note that the multigrid method could
get a larger leading than the max-flow method with the bigger image size and



18 Xue-Cheng Tai et al.

K = 4
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K = 4

(a) (b) (c) (d) (e) (f)

Fig. 8 The results of K-phase segmentation by various methods on the synthetic image “ball”
(size of 256 × 256 × 3), five real-world images “zebra” (size of 195 × 290 × 3), “pepper” (size
of 256 × 256 × 3), “strawberry” (size of 135 × 115 × 3), “flower” (size of 500 × 500 × 3) and
“house” (size of 474× 474× 3). From left to right are (a) Images to be segmented; (b) Initial
segmentation using the region force as the prior; (c) The results by the FCM-L1 method [2];
(d) The results by the SLaT method [52]; (e) The results by the max-flow method [24]; (f)
The results by the multigrid method.

the more complex real image structure (see the last two examples in Tab. 3). This
conclusion also holds for the FCM-L1 approach. Especially for all the examples, the
three stages’ SLaT method’s computational time is faster than the other methods.
It is mainly due to the fast algorithm (e.g., primal-dual) and the closed-form
operations used in the method. However, we observe that SLaT has problems to
segment real complex images, c.f. Fig. 8 2nd-6th examples. The simple smoothing
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Fig. 9 The computational time with the increased level number for Backslash-cycle multigrid
method on a test image “ball”.

and threshold procedures in SLaT make it fast to be solved, but this also leads to
missing details for real complex images. In summary, we could conclude that the
multigrid method could cost less computational time than the FCM-L1 method
and the max-flow method, especially with a bigger image size and a complex real
example. Although the SLaT approach gets less computational time than other
methods, it performs unsatisfactorily on the real complex examples. In Fig. 9, we
also show the computational time of each level of the multigrid method. From the
result, it is easy to see that the computational time will increase with the increased
level number.

Table 3 The comparison of computational time for the compared methods (Unit: second).

Example FCM-L1 [2] SLaT [52] Max-flow [24] Multigrid

ball (K=4) 9.12 2.05 9.65 8.24

zebra (K=3) 3.79 1.58 3.21 2.75

pepper (K=3) 14.67 3.40 9.99 9.60

strawberry (K=4) 3.58 1.19 5.71 5.16

flower (K=4) 52.50 16.46 110.23 51.37

house (K=4) 80.87 10.40 95.57 47.56

6.2 More discussions

It is observed that is often better to skip some of the coarser meshes for the
multigrid method for image segmentation. In this section’s tests, we choose the
coarsest mesh with each element containing 8× 8 finest elements. We denote this
setting as 8×8→ 1×1). In Fig. 10, it shows the performance of computational time
for our methods with the increased element size on the coarsest level. Actually, the
level number can be computed by the coarsest element size. For instance, if it is
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Fig. 10 The comparison of computational time with different element sizes on the coarsest
level (from 1× 1 to 16× 16), i.e., 1× 1→ 1× 1, 2× 2→ 1× 1, · · · , 16× 16→ 1× 1. Note that
the default setting is 8×8→ 1×1 where 1×1 represents the finest level, and the level number
is actually determined by element size of the corasest mesh. For instance, if it is 8× 8→ 1× 1
which means the level number is log28− log21 + 1 = 4. The test is implemented on the third
example in Fig. 8

8×8→ 1×1 which means the level number is log28− log21+1 = 4. From Fig. 10,
the element size on coarsest level increases from 2× 2 to 16× 16 which indicates
the level number should increase from 2 to 5. The computational time is decreased
from about 14 seconds to 9 seconds, demonstrating that the multigrid method uses
less computational time (or faster speed) than the direct method applied to the
finest level. If we use even coarser mesh, the multigrid method’s computational
time will not reduce further, which indicates that it is not necessary to use very
coarse mesh for our multigrid algorithm. .

Our tests showed that we might also skip the computation on the finest mesh
to get better computing time. For some real images, it is unnecessary to apply the
multigrid method to the finest grid, i.e., the finest level with element size 1 × 1.
We only need to use the multigrid algorithm on levels with element sizes 2 × 2
to the coarsest mesh. This strategy could significantly reduce computational time
and get good segmentation results. Fig. 11 shows the segmentation results with
K = 2 by our method with the levels of element size ranging from 8× 8→ 1× 1
and 8×8→ 2×2, respectively. From the figure, it is clear that using 8×8→ 1×1
(Fig. 10(b)) will take more computational time than that of using 8 × 8 → 2 × 2
(see Fig. 10(c)). Actually, the segmentation result using 8 × 8 → 2 × 2 is just as
good.

7 Conclusions

In this paper, a multiphase image segmentation method via the min-cut minimiza-
tion problem was proposed under the framework of the multigrid (MG) method.
We first transferred the min-cut on each level of the multigrid method to its max-
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(a) (b) time = 9.15s (c) time = 5.09s

(a) (b) time = 28.86s (c) time = 13.07s

Fig. 11 The results of real images. (a) Real image; (b) Results by our method with patch size
8× 8→ 1× 1; (c) Results by our method with patch size 8× 8→ 2× 2.

flow problem equivalent form, then solved the equivalent form by the golden sec-
tion method. A classical multigrid type of so-called Backslash-cycle was selected to
address the sub-minimization problems. Extensive experiments demonstrated the
effectiveness of the proposed method, e.g., the convergence and efficiency of the
given approach, the competitive multiphase segmentation performance, especially
the efficient multiphase segmentation of real images.
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