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Hyperspectral Image Super-resolution Using
Unidirectional Total Variation with Tucker

Decomposition
Ting Xu, Ting-Zhu Huang∗, Liang-Jian Deng∗, Xi-Le Zhao, Jie Huang

Abstract—The hyperspectral image super-resolution (HSI-SR)
problem aims to improve the spatial quality of a low spatial
resolution hyperspectral image (LR-HSI) by fusing the LR-
HSI combined with the corresponding high spatial resolution
multispectral image (HR-MSI). The generated hyperspectral
image with high spatial quality, i.e., the target HR-HSI, generally
has some fundamental latent properties, e.g., the sparsity and the
piecewise smoothness along with the three modes (i.e., width,
height, and spectral mode). However, limited works consider
both properties in the HSI-SR problem. In this work, a novel
unidirectional total variation-based approach is been proposed.
On the one hand, we consider the target HR-HSI exhibits both the
sparsity and the piecewise smoothness on the three modes, and
they can be depicted well by the `1-norm and total variation (TV),
respectively. On the other hand, we utilize the classical Tucker
decomposition to decompose the target HR-HSI (a 3-mode tensor)
as a sparse core tensor multiplied by the dictionary matrices
along with the three modes. Especially, we impose the `1-norm on
core tensor to characterize the sparsity, and the unidirectional TV
on three dictionaries to characterize the piecewise smoothness.
The proximal alternating optimization (PAO) scheme and the
alternating direction method of multipliers (ADMM) are used
to iteratively solve the proposed model. Experiments on three
common datasets illustrate the proposed approach has better
performance than some current state-of-the-art HSI-SR methods.

Index Terms—Hyperspectral image super-resolution, image
fusion, piecewise smoothness, sparsity, unidirectional total vari-
ation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain abundan-
t spectral information because of the powerful capture

ability of hyperspectral imaging sensors. Therefore, HSIs have
been involved in many applications [1], [2]. However, the
spatial resolution is inevitably decreased because of the limited
sun irradiance [3]. Thus, we need to utilize some techniques to
enhance the spatial quality of the HSIs [4]–[11]. We know that
MSIs are obtained with poor spectral resolution but abundant
spatial resolution compared with HSIs. Therefore, fusing a LR-
HSI combined with the corresponding HR-MSI to generate
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Fig. 1. The fused results reconstructed by CSTF [12] and the proposed
method.

the target HR-HSI has become an increasingly promising way
for the HSI-SR problem. The current HSI-SR approaches can
be mainly divided into three families: non-factorization based
approaches [13]–[22], matrix factorization based approaches
[23]–[33] and tensor factorization based approaches [12],
[34]–[40].

Non-factorization based HSI-SR approaches could generate
the target HR-HSI directly under suitable priors or with-
out specific priors. Fu et al. in work [13] fuse a LR-HSI
combined with the mosaic RGB by utilizing the non-local
low-rank regularization to directly get the target HR-HSI.
Qu et al. in work [14] propose an efficient unsupervised
deep convolutional neural networks (CNN) method for the
HSI-SR problem, which could generate the target HR-HSI
without specific priors. Jiang et al. in work [21] apply the
advanced residual learning based single gray/RGB image
super-resolution algorithms for the single HSI-SR. Chen et
al. in work [22] utilize a unified framework based on rank
minimization (UFRM) for super-resolution reconstruction of
hyperspectral remote sensing images.

Matrix factorization based HR-HSI approaches mainly uti-
lizing decomposing the target HR-HSI as the spectral basis
and the corresponding coefficients, therefore, the HSI-SR
problem could be equivalent to the estimation of the basis
and the corresponding coefficients. Simoẽs et al. in work [23]
exploit the low-dimensional subspace representation and the
vector total variation to effectively solve the HSI-SR problem.
Lanaras et al. in work [28] utilize the coupled non-negative
matrix decomposition to alternately update spectral basis and
coefficients to get the target HSIs. Wei et al. in work [29]
exploit the circulant and downsampling matrices related to the
HSI-SR problem to give a classical Sylvester equation, which
has a closed-form solution, and it can easily extend to the
HSI-SR problem with prior information. Note that the matrix
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is generally got from the matrix unfolding operation, therefore,
matrix factorization based approaches may not completely
exploit the spatial-spectral structures information of HSIs.

Tensors can fully exploit the inherent data structures in-
formation and there are many tools that can be used to deal
with tensors. Besides, the target HR-HSI can be treated as a
3-mode tensor. Therefore, it is effective to deal with the HSI-
SR problem from the tensor’s point of view. Dian et al. in
work [34] first propose a non-local sparse tensor factorization
approach used for the HSI-SR problem, where they first divide
the target HR-HSI as some cubes and then utilize the classical
Tucker decomposition to factorize each cube as a sparse core
tensor multiplied by dictionary matrices with three modes.
Besides, they also assume that similar cubes have the same
dictionary matrices. Then, Li et al. in work [12] present the
coupled sparse tensor factorization (CSTF) method, where
they use the Tucker decomposition to directly decompose
the target HR-HSI and then utilize the high spatial-spectral
correlation in the target HR-HSI to promote the sparsity of
the core tensor. Dian et al. in work [38] give a subspace-
based low tensor multi-rank regularization (LTMR) approach,
where they approximate the HR-HSI by spectral subspace and
the coefficients. Then, they obtain the spectral subspace by
singular value decomposition, meanwhile, the corresponding
coefficients are generated by utilizing the LTMR prior. The
above methods have achieved good results in the HSI-SR
problem, but they do not take into account the sparsity and the
piecewise smoothness of the target HR-HSIs, simultaneously.

Due to the mentioned limitations in the existing tensor
factorization based approaches. There is still much room to
improve them. We report a new tensor factorization based
approach in this work. It considers the sparsity and the
piecewise smoothness of the target HR-HSIs and is a more
comprehensive characterization of the properties of the target
HR-HSIs. Fig. 1 shows the visual effect comparison between
the CSTF [12] and the proposed method.

We organize the following parts as follows. Section II re-
ports the related works and motivations. Section III introduces
the proposed model. Section IV reports the proposed algorith-
m. Experiments and discussions are presented in Section V.
Finally, we give a conclusion in Section V.

II. RELATED WORKS AND MOTIVATIONS

A. Notations and Preliminaries

In this work, we utilize boldface lowercase letters x, bold-
face capital letters X, and calligraphic letters X to represent
vector, matrix and tensor, respectively. X ∈ RI1×I2...×IN
denotes an N-mode tensor and xi1i2...iN (1 ≤ in ≤ In) denote
it’s elements. X(n) ∈ RIn×I1I2...In−1In+1,...,IN denotes the n-
mode unfolding matrix of X . ||X ||1 =

∑
i1,...,iN

|xi1...iN | and

||X ||F =
√∑

i1,...,iN
|xi1...iN |2 denote the `1-norm and the

Frobenius norm, respectively.
X ×nC represents the n-mode product of the tensor X and

the matrix C ∈ RJn×In , and it denotes an N-dimensional ten-
sor Y ∈ RI1...×In−1×Jn×In+1...×IN , its elements are calculated

Fig. 2. Illustration the process of Tucker decomposition.

by

yi1...in−1jnin+1...iN =
∑
in

xi1...in−1inin+1...iN cjnin . (1)

The n-mode product, i.e., X ×nC, can be equivalent to matrix
multiplication, namely Y(n) = CX(n). The order of the
multiplications is independent for different modes, i.e.,

X ×m E×n F = X ×n F×m E (m 6= n), (2)

especially,

X ×m E×n F = X ×n FE (m = n). (3)

Given the set of matrices Bn ∈ RJn×In(n = 1, 2, . . . , N),
we define the tensor C ∈ RJ1×J2...JN as

C = X ×1 B1 ×2 B2 . . .×N BN , (4)

then, we have

c = (BN ⊗BN−1 ⊗ . . .⊗B1)x, (5)

where ⊗ denotes Kronecker product, c = vec(C) ∈ RJ(J =∏N
n=1 Jn), and x = vec(X ) ∈ RI(I =

∏N
n=1 In) are

generated by stacking all the 1-mode vectors of C and X ,
respectively.

B. Related Works

As mentioned in Li et al.’s work [12], the target HR-HSI
A ∈ RI1×I2×I3 as a 3-mode tensor could be factorized as a
core tensor multiplied by the dictionary matrices along with
the three modes (i.e., width mode (1-mode), height mode (2-
mode), and spectral mode (3-mode)) via the classical Tucker
decomposition, as visualized in Fig. 2. Therefore, the target
HR-HSI A ∈ RI1×I2×I3 could be decomposed as

A = G ×1 U1 ×2 U2 ×3 U3, (6)

where G ∈ Rn1×n2×n3 represents the core tensor, U1 ∈
RI1×n1 , U2 ∈ RI2×n2 , and U3 ∈ RI3×n3 denote the
dictionary matrices of the 1-mode, 2-mode, and 3-mode,
respectively.

The observed LR-HSI B ∈ Ri1×i2×I3(0 < i1 < I1, 0 <
i2 < I2) could be formulated as a spatially downsampled
form of A, i.e.,

B = A×1 D1 ×2 D2, (7)
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where D1 ∈ Ri1×I1 and D2 ∈ Ri2×I2 are downsampling
matrices of 1-mode and 2-mode, respectively. Meanwhile,
superseding A by (6), B can be rewritten by

B = G ×1 (D1U1)×2 (D2U2)×3 U3

= G ×1 Û1 ×2 Û2 ×3 U3,
(8)

where Û1 = D1U1 ∈ Ri1×n1 and Û2 = D2U2 ∈ Ri2×n2

denote the downsampled form of U1 and of U2, respectively.
Similarly, the HR-MSI C ∈ RI1×I2×i3 (0 < i3 < I3) could

be treated as a spectrally downsampled form of A, i.e.,

C = A×3 D3, (9)

where D3 ∈ Ri3×I3 denotes the downsampling matrix of 3-
mode. Similarly, superseding A by (6), C can be rewritten by

C = G ×1 U1 ×2 U2 ×3 (D3U3)

= G ×1 U1 ×2 U2 ×3 Û3,
(10)

where Û3 = D3U3 ∈ Ri3×n3 is the downsampled form of
U3.

Therefore, the estimation of A is equivalent to the estima-
tion of U1, U2, U3, and G, as visualized in Fig. 2.

C. Motivations

Based on the Tucker decomposition and the downsampled
processing along three dimensions reported in Section II-B,
the HSI-SR problem could be represented by

argmin
U1,U2,U3,G

||B − G ×1 Û1 ×2 Û2 ×3 U3||2F

+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F .
(11)

Obviously, problem (11) is a typical ill-posed inverse prob-
lem. Therefore, in order to solve the problem (11), some prior
information on the target HR-HSI A is necessary. In this paper,
we consider the sparsity and the piecewise smoothness on both
spatial and spectral modes.

The sparsity of the core tensor In the problem of HSI-
SR, the sparsity in the spatial and spectral domains has
been proven. The sparsity in the spectral dimension has been
extensively used for HSI-SR problems. Based on the classical
Tucker decomposition, Li et al. in work [12] apply the sparsity
regularization to both the spectral and spatial modes by
assuming that the core tensor exhibits sparsity. Hence, in this
work, we impose the `1-norm on core tensor to characterize the
sparsity on the spatial and spectral dimensions, simultaneously.

The piecewise smoothness of the three dictionaries In
the problem of HSI-SR, the piecewise smoothness of the
target HR-HSI has been demonstrated. Based on the classical
Tucker decomposition, we assume that it could be regarded
as the three dictionaries that exhibit the piecewise smoothness
property. Meanwhile, it can be depicted by the total variation
(TV) well. Therefore, in this work, we apply the unidirectional
TV to the three dictionaries to characterize the piecewise
smoothness of the target HR-HSI.

III. PROPOSED METHOD

A. Proposed Model

Based on the motivations noted in Section II-C, we give the
following model to solve the HSI-SR problem, i.e.,

argmin
U1,U2,U3,G

||B − G ×1 Û1 ×2 Û2 ×3 U3||2F

+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F
+ λ1||G||1 + λ2||DyU1||1
+ λ3||DyU2||1 + λ4||DyU3||1,

(12)

where λi, (i = 1, 2, 3, 4) are positive regularization parameter-
s, Dy is a finite difference operator along the vertical direction
and given by

Dy =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

...
...

... · · ·
...

0 0 · · · 0 1 −1

 .
Next, we will give the algorithm to solve the proposed

model (12) efficiently.

IV. PROPOSED ALGORITHM

The proposed model (12) is non-convex because of the cou-
pling variables G, U1, U2, and U3. However, the optimization
problem is convex for each variable when we keep the other
variables fixed. Here, we employ the PAO scheme [41], [42]
to solve it, the PAO iteration is simply shown as follows,

U1 =argmin
U1

f(U1,U2,U3,G) + β||U1 −U1
pre||2F ,

U2 =argmin
U2

f(U1,U2,U3,G) + β||U2 −U2
pre||2F ,

U3 =argmin
U3

f(U1,U2,U3,G) + β||U3 −U3
pre||2F ,

G =argmin
G

f(U1,U2,U3,G) + β||G − Gpre||2F ,
(13)

where the function f(U1,U2,U3,G) is the implicit definition
of (12), (·)pre and β denote the last iteration result and a
positive number, respectively.

Next, we will report the solution of the four optimization
problems in (13) in detail.

A. The optimization problem of U1

With fixing U2, U3, and G, the optimization problem of
U1 in (13) is given by

argmin
U1

||B − G ×1 Û1 ×2 Û2 ×3 U3||2F

+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F
+ λ2||DyU1||1 + β||U1 −U1

pre||2F ,

(14)

where U1
pre is the last estimated dictionary of 1-mode and

Dy ∈ R(I1−1)×I1 denotes the difference matrix along the
vertical direction of U1.
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Fig. 3. An overall flow chart is presented to better grasp the ideas of the work.

By 1-mode matrix unfolding, problem (14) can be repre-
sented by

argmin
U1

||B(1) −D1U1X1||2F + ||C(1) −U1Y1||2F

+ λ2||DyU1||1 + β||U1 −U1
pre||2F ,

(15)

where B(1) and C(1) are 1-mode unfolding matrixes of B and
C, respectively; X1 and Y1 are denoted by X1 = (G×2Û2×3

U3)(1) and Y1 = (G ×2 U2 ×3 Û3)(1), respectively.

B. The optimization problem of U2

With fixing U1, U3, and G, the optimization problem of
U2 in (13) is given by

argmin
U2

||B − G ×1 Û1 ×2 Û2 ×3 U3||2F

+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F
+ λ3||DyU2||1 + β||U2 −U2

pre||2F ,

(16)

where U2
pre is the last estimated dictionary of 2-mode and

Dy ∈ R(I2−1)×I2 denotes the difference matrix along the
vertical direction of U2.

By 2-mode matrix unfolding, problem (16) can be repre-
sented by

argmin
U2

||B(2) −D2U2X2||2F + ||C(2) −U2Y2||2F

+ λ3||DyU2||1 + β||U2 −U2
pre||2F ,

(17)

where B(2) and C(2) are 2-mode unfolding matrixes of B and
C, respectively; X2 and Y2 are denoted by X2 = (G×1Û1×3

U3)(2) and Y2 = (G ×1 U1 ×3 Û3)(2), respectively.

C. The optimization problem of U3

With fixing U1, U2, and G, the optimization problem of
U3 in (13) can be represented as follows:

argmin
U3

||B − G ×1 Û1 ×2 Û2 ×3 U3||2F

+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F
+ λ4||DyU3||1 + β||U3 −U3

pre||2F ,

(18)

where U3
pre is the last estimated dictionary of 3-mode and

Dy ∈ R(I3−1)×I3 denotes the difference matrix along the
vertical direction of U3.

By using 3-mode matrix unfolding, (18) can be represented
by

argmin
U3

||B(3) −U3X3||2F + ||C(3) −D3U3Y3||2F

+ λ4||DyU3||1 + β||U3 −U3
pre||2F ,

(19)

where B(3) and C(3) are 3-mode unfolding matrixes of B and
C, respectively; X3 and Y3 are denoted by X3 = (G×1Û1×2

Û2)(3) and Y3 = (G ×1 U1 ×2 U2)(3), respectively.

D. The optimization problem of G
With fixing dictionary matrices U1, U2, and U3, the

optimization problem of the core tensor G in (13) is given
by

argmin
G

||B − G ×1 Û1 ×2 Û2 ×3 U3||2F

+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F
+ λ1||G||1 + β||G − Gpre||2F ,

(20)

where Gpre is the last estimated core tensor.
Note that, problem (15), (17), (19), and (20) are all convex.

Therefore, we utilize ADMM to solve them. Since the solving
process of the problem (15), (17), and (19) are similar, to look
more concise, we put the solving details of the four problems
and each variable updating’s computational complexity to
Section VII as an appendix.

In Section VII, Algorithm 1-Algorithm 4 summarize the
solving process of the four subproblems in (13), respectively.
Fig. 3 displays the overall flowchart, which could better grasp
the ideas of the work.

E. The termination criterion for Algorithm 1 to Algorithm 4
The relative change (RelCha) is defined as

RelCha =
||X(t+1) −X(t)||F

||X(t)||F
. (21)

In this paper, for Algs. 1-4, we use the condition, that is, i)
the algorithm reaches the maximum number of iterations, or
ii) RelCha is less than the tolerance, as the stopping criterion.
Since the characteristics of different datasets are not always the
same, thus for better performance of our method, we need to
empirically set corresponding suitable tolerances for different
datasets. Table I summaries the termination conditions and
how many iterations the related algorithms need.
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TABLE I
THE DISCUSSION OF STOPPING CRITERION FOR ALGORITHM 1-ALGORITHM 4.

CAVE dataset [43] Harvard dataset [44] Pavia University dataset [45]
Maximum number of iterations 100 for Algs. 1-4 100 for Algs. 1-4 100 for Algs. 1-4

RelCha 10−2 for Algs. 1-4 10−2 for Algs. 1-4 10−4 for Algs. 1-4

Number of iterations (no more than)

25 for Alg. 1 73 for Alg. 1 6 for Alg. 1
34 for Alg. 2 29 for Alg. 2 6 for Alg. 2
3 for Alg. 3 3 for Alg. 3 100 for Alg. 3
9 for Alg. 4 35 for Alg. 4 45 for Alg. 4

F. Convergence of the proposed algorithm

Same with Li et al.’s work [12], we initialize U1 and U2

from the HR-MSI by dictionary-updates-cycles KSVD (DUC-
KSVD) algorithm [46], and U3 from the LR-HSI by simplex
identification split augmented Lagrangian (SISAL) algorithm
[47].

An outline of the proposed algorithm is presented in
Algorithm 5.

Algorithm 5 Solving the proposed model (12) by PAO
scheme.

Initializing U1, U2 via DUC-KSVD algorithm [46];
Initializing U3 via SISAL algorithm [47];
Initializing G with Alg. 4;
While not converged do

Step 1 Updating the dictionary matrix U1 by Alg. 1,
Û1 = D1U1, U1

pre = U1;
Step 2 Updating the dictionary matrix U2 by Alg. 2,

Û2 = D2U2, U2
pre = U2;

Step 3 Updating the dictionary matrix U3 by Alg. 3,
Û3 = D3U3, U3

pre = U3;
Step 4 Updating the core tensor G by Alg. 4,

Gpre = G;
end while
Estimate the target HR-HSI A by (6).

To provide the convergence of Alg. 5 conveniently, we
rewrite the function f as

f(U1,U2,U3,G) = Q(U1,U2,U3,G) + f1(G) + f2(U1)

+ f3(U2) + f4(U3),
(22)

where

Q(U1,U2,U3,G) = ||B − G ×1 Û1 ×2 Û2 ×3 U3||2F
+ ||C − G ×1 U1 ×2 U2 ×3 Û3||2F ,

(23)
and

f1(G) = λ1||G||1, (24)

f2(U1) = λ2||DyU1||1, (25)

f3(U2) = λ3||DyU2||1, (26)

f4(U3) = λ4||DyU3||1. (27)

Proposition 1: Assume that problem (14) (U1-subproblem),
problem (16) (U2-subproblem), problem (18) (U3-

subproblem), and problem (20) (G-subproblem) have
exact solutions 1.
Proposition 2: We assume that the sequence
(U1

(t),U2
(t),U3

(t),G(t))t∈N obtained by Alg. 5, is
bounded. Then, the sequence converges to some critical
points of f(U1,U2,U3,G).

Proof : Firstly, function Q(U1,U2,U3,G) is C1 with Lip-
schitz continuous gradient (the result of the boundedness
of (U1

(t),U2
(t),U3

(t),G(t))t∈N); f1(G), f2(U1), f3(U2),
and f4(U3) are lower semicontinuous and proper. Secondly,
f(U1,U2,U3,G) : RI1n1 × RI2n2 × RI3n3 × Rn1n2n3 → R
is bounded below and Kurdyka-Lojasiewicz (see [ [41], Sec.
2.2]). With the two conditions, we find that Alg. 5 is an
exemplar of (61), (62) and (63) shown in [41] with Bi = βI,
β > 0 (see [ [41], Remark 6.1]). Therefore, the proof of
convergence of Alg. 5 is an application of [ [41], Th. 6.2].

G. Computational Complexity of the Proposed Algorithm

In this work, we solve the U1-subproblem, U2-subproblem,
U3-subproblem, and G-subproblem in (13) by ADMM. For
the U1-subproblem, during each iteration of ADMM, the
most time-consuming step is updating U1 (i.e., (33)) by CG.
During each iteration of CG, the most time-consuming is that
multiplying the system matrix by a vector, it’s time complexity
is O(n21I

2
1 ), which could be reduced to O(n1I

2
1 + n21I1) due

to the matrix representation. Similar to the update of U1, in
each iteration of CG algorithm, the complexity of U2 and
U3 are O(n2I

2
2 + n22I2) and O(n3I

2
3 + n23I3), respective-

ly. For the G-subproblem, in each iteration of ADMM, the
most time-consuming are (60) and (65), whose complexity is
O(n31n

3
2n

3
3). Fortunately, the complexity could be reduced to

O(n21n2n3 + n1n
2
2n3 + n1n2n

2
3) when we utilize (61) and

(66) to do these computations. In summary, the computational
complexity of each PAO iteration is

O(NADMM (NCG(n1I
2
1 + n21I1)))+

O(NADMM (NCG(n2I
2
2 + n22I2)))+

O(NADMM (NCG(n3I
2
3 + n23I3)))+

O(NADMM (n21n2n3 + n1n
2
2n3 + n1n2n

2
3)),

where NADMM and NCG are the iteration number of ADMM
and CG, respectively.

1Actually, it is difficult to efficiently solve the closed-form solution for
each subproblem, so we use ADMM (the convergence guaranteed) to get the
approximate solution for each subproblem efficiently.
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V. EXPERIMENTS

A. Compared Algorithms

In this section, we present the comparisons between the pro-
posed approach and current state-of-the-art methods including
1) a convex formulation for hyperspectral image superreso-
lution via subspace-based regularization (HySure) proposed
by Simões et al. [23], 2) Hyperspectral super-resolution by
coupled spectral unmixing (CSU) proposed by Lanaras et al.
[28], 3) fast fusion of multi-band images based on solving a
Sylvester equation (FUSE) proposed by Wei et al. [29], and
4) fusing hyperspectral and multispectral images via coupled
sparse tensor factorization (CSTF) proposed by Li et al. [12].

B. Datasets

We introduce three simulated HSI datasets used for this
work.

The first is the Pavia University dataset with a size of
610× 340× 115 [45]. In this work, we reduce spectral bands
as 93 bands by removing low signal-to-noise ratio bands and
pick the up-left 256 × 256 block of each band as the band
of GT (i.e., the size of GT is 256 × 256 × 93). In order to
obtain the simulated LR-HSI with the size of 16×16×93, we
downsample the GT by averaging the 16×16 disjoint spatial
blocks. Besides, we acquire the four-band simulated HR-MSI
by the IKONOS-like reflectance spectral response filter.

The second is the Columbia Computer Vision Laboratory
(CAVE) [43]. It has 32 indoor HSIs and each of them is
with the size of 512 × 512 × 31. In this work, we only
choose six HSIs from the CAVE dataset as the ground truth
(GT) used for experiments reported in Section . In order to
obtain the simulated LR-HSI with the size of 32×32×31, we
downsample each of them by averaging the 16×16 disjoint
spatial blocks. Besides, the three-band simulated HR-MSIs are
generated by a Nikon D700 camera.

The third is the Harvard dataset [44], which includes 50
HSIs of both indoor and outdoor scenes featuring a diversity
of objects, materials, and scale under daylight illumination.
Each HSI has a spatial resolution of 1392×1040 and 31
spectral bands. The HSIs of the scenes are acquired at a
wavelength interval 10 nm in the range of 420-720 nm. We
randomly choose three HSIs from the Harvard dataset used for
experiments. We pick up the up-left 512× 512× 31 block of
each selected HSI as the GT. To obtain the simulated LR-HSI
with the size of 32×32×31, we downsample each of them
by averaging the 16×16 disjoint spatial blocks. Besides, the
three-band simulated HR-MSIs are generated by a Nikon D700
camera.

C. Parameters Discussion

The proposed method is mainly related to nine key parame-
ters, i.e., the number of PAO iterations K, sparsity regulariza-
tion parameter λ1, smoothness regularization parameters λ2,
λ3, λ4, the weight of proximal term β, and the number of
atoms of dictionaries n1, n2, n3. Next, we discuss them in
detail.

As reported in Algorithm 5, we take the proximal alter-
native optimization scheme to solve the problem (12). To

evaluate the influence of the number of iterations K, we run
the proposed method for different K. Fig. 4 shows the PSNR
values of the reconstructed HSI of the Pavia University, CAVE,
and Harvard dataset concerning different K. By Fig. 4, the
PSNR for the Harvard dataset has a slight increase when K
varies from 1 to 20, then has a fluctuation when K varies
from 21 to 40, finally, remains stable for K > 40. For the
CAVE dataset, the PSNR has a slow increase when K varies
from 1 to 40 and remains stable for K > 40. For the Pavia
University dataset, the PSNR has a sharp increase when K
varies from 1 to 12, and then has a slight fluctuation when
K varies from 13 to 50, finally, keeps stable for K > 50.
Thus, we set the maximum number of iterations as 60 for the
proposed algorithm.

Parameter β is the weight of proximal term in (13). To
evaluate the influence of β, we run the proposed method for
different β. Fig. 5 shows the PSNR values of the fused HSI
of the Pavia University dataset for different log β (log is base
10). In this work, we set the range of log β to [-6, 0]. As we
saw in Fig. 5, the PSNR increases in waves when log β varies
from -6 to -2, remains stable when log β belongs to [-2, -1],
and has a sharp drop when log β is greater than -1. Therefore,
we set log β to -2, that is, β=0.01 for the Pavia University
dataset. Similarly, the value of β for the CAVE and Harvard
dataset could be determined in the same way.

The regularization parameter λ1 in (12) controls the sparsity
of the core tensor and, therefore, affects the estimation of HR-
HSI. Higher values of λ1 yield sparser core tensor. Fig. 6
shows the PSNR values of the reconstructed HSI of the Pavia
University dataset to different log λ1. In this work, we set the
range of log λ1 to [-9, -1]. As Fig. 6, the PSNR remains stable
when log λ1 belongs to [-9, -5], and decreases sharply for
log λ1 >-5. Therefore, we set log λ1 as -6, that is, λ1 = 10−6

for the Pavia University dataset. Similarly, the value of λ1 for
the CAVE and Harvard dataset could be determined in the
same way.

The regularization parameter λ2, λ3, and λ4 control the
piecewise smoothness of the dictionary of width mode, height
mode, and spectral mode, respectively. Higher values of λ2,
λ3, and λ4 yield smoother dictionaries. Fig. 7 shows the PSNR
values of the reconstructed HSI of the Pavia University dataset
under different log λ2, log λ3, and log λ4. In this work, we set
the range of log λ2, log λ3, log λ4 all to [-9, 3]. As Fig. 7,
the PSNR reaches the maximum value when log λ2 = −8,
log λ3 = −7, log λ4 = 3. Therefore, we set log λ2 as -8,
log λ3 as -7, log λ4 as 3, that is, λ2 = 10−8, λ3 = 10−7,
and λ4 = 103 for the Pavia University dataset. Note that,
compared with λ2 and λ3, the best value of λ4 is relatively
large, that is because hyperspectral images are continuous in
the spectral dimension, which leads that the total variation
of the dictionary along the spectral direction could be small.
Therefore, the best value of its regularization parameter should
be relatively large. Similarly, the value of λ2, λ3, and λ4 for
the CAVE and Harvard dataset could be determined in the
same way.
n1, n2, and n3 are the number of dictionary atoms. Fig.

8 shows the PSNR values of the fused HSI of the Pavia
University dataset with different n1 and n2 and Fig. 9 shows
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TABLE II
THE DISCUSSION OF THE MAIN PARAMETERS

Parameters Tuning Ranges CAVE dataset [43] Pavia University dataset [45] Harvard dataset [44] Suggested Ranges
K [1, 60] 55 12 20 [12, 60]
β [10−6, 100] 10−2 10−2 10−4 [10−4, 10−2]
λ1 [10−9, 10−1] 10−7 10−6 10−4 [10−7, 10−4]
λ2 [10−9, 103] 10−8 10−7 10−7 [10−8, 10−7]
λ3 [10−9, 103] 10−4 10−6 10−4 [10−6, 10−4]
λ4 [10−9, 103] 102 103 102 [102, 103]
n1 [180, 320] 280 300 320 [280, 320]
n2 [180, 320] 300 300 280 [280, 320]
n3 [3, 21] 12 12 9 [9, 12]

the PSNR values of the fused HSI of the Pavia University
dataset concerning different n3. In this work, we set the range
of n1 and n2 both to [180, 320], set n3 as [3, 21]. The reason
is that the spectral signatures of HSIs live on low dimensional
subspaces. As Fig. 8, the PSNR has a sharp increase when
n1 varies within [180, 300], and reaches the maximum value
as n1 = 300. Similarly, the PSNR gets the maximum value
at n2 = 300. From Fig. 9, the PSNR decreases as n3 > 15.
Therefore, we set n1 = 300, n2 = 300, and n3 = 12 for
the Pavia University dataset. Note that the PSNR reaches the
maximum value when n3 is 15, however, we set it as 12 in
our experiments, because we also need to consider the total
performance of the other four quality indexes (i.e., ERGAS,
SAM, DD, and RMSE). Similarly, the value of n1, n2, and
n3 for the CAVE and Harvard dataset could be determined in
the same way.

In Table II, we present the tuning ranges of the nine main
parameters, give each parameter value used for the three
simulated HSI datasets mentioned in Section V-B, and also
show the suggested ranges of each parameter to adjust the
parameters conveniently.

Specifically, for the HySure [23], we set λm = 1 and
λϕ=5×10−5. For the CSTF [12], according to the parameters
used in [38], we set n1 = 260, n2 = 260, n3 = 15, and λ
= 10−5. For CSU [28] and FUSE [29], we take the default
optimal parameters used in their source codes.

Fig. 4. The PSNR values concerning different K.

D. Quantitative Metrics

To evaluate the fused outputs from the numerical results, we
utilize five metrics, namely the root mean square error (RMSE)

Fig. 5. The PSNR values for different log β.

Fig. 6. The PSNR values to different log λ1.

Fig. 7. The PSNR values under different log λ2, log λ3, and log λ4.
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Fig. 8. The PSNR values with different n1 and n2.

Fig. 9. The PSNR value concerning different n3.

to estimate the error, the degree of distortion (DD) used to
measure the spectral quality of the reconstructed outputs, the
spectral angle mapper (SAM) used to reflect the degree of
spectral distortions of the fused outputs, the peak signal to
noise ratio (PSNR) and the relative dimensionless global error
in synthesis (ERGAS) to measure the comprehensive quality
of the fused results. All of them are defined as follows,

RMSE(A, Â) =

√
||A − Â||2F
I1I2I3

,

DD(A, Â) = 1

I1I2I3
||vec(A)− vec(Â)||1,

SAM(A, Â) = 1

I1I2

I1I2∑
i=1

arcos
âi
Tai

||âi||2||ai||2
,

PSNR(A, Â) = 1

I3

I3∑
i=1

PSNR(Ai, Âi),

ERGAS(A, Â) = 100

d

√√√√ 1

I3

I3∑
i=1

MSE(Ai, Âi)

µ2
(Âi)

,

(28)

where Ai and Âi denote the i-th band of A ∈ RI1×I2×I3
and reconstructed result Â ∈ RI1×I2×I3 , respectively; Ij ,
(j=1, 2, 3) represent the dimension of the j-th mode of A;
d denotes the spatial downsampling factor; MSE(·) and µ(·)
denote the mean square error operator and the mean value
operator, respectively.

Note that the best value of the four metrics (i.e., RMSE,

SAM, DD, and ERGAS) is zero and of the metric PSNR is
positive infinity.

TABLE III
QUALITY ASSESSMENT OF THE PROPOSED AND COMPARED METHODS ON

THE PAVIA UNIVERSITY DATASET

Method Pavia University dataset [45]
RMSE PSNR DD SAM ERGAS

Best Values 0 +∞ 0 0 0
HySure [23] 3.243 38.344 2.208 2.838 1.841
FUSE [29] 3.128 38.73 2.115 2.862 1.768
CSU [28] 4.026 36.233 2.297 2.781 2.403
CSTF [12] 1.959 43.581 1.213 2.035 0.277
Proposed 1.856 44.052 1.144 1.919 0.249

E. Experimental Results

In this part, we test the proposed algorithm and the other
four compared algorithms mentioned in Section V-A on three
simulated HSI datasets noted in Section V-B. Table III presents
the quality assessment of the five methods on the Pavia
University dataset. The best values are highlighted by bold
entries. From it, we could find that our algorithm has better
performance than other compared algorithms in terms of five
quality metrics mentioned in Section V-D. The reconstructed
5th and 60th bands and corresponding error images are shown
in Fig. 10. From the 2nd and 4th row of Fig. 10, we could
easily find that the fused results generated by the proposed
approach and CSTF contain fewer errors than that by other
compared methods. Besides, the spectral curves at different
locations (i.e., (120, 120), (124, 124), (128,128)) are shown
in Fig. 11, in which, we zoom some of the spectral bands
for better comparison. We find that the spectral curve of HSI
reconstructed by our algorithm match better with the ground
truth (GT) compared with the other four algorithms.

For the CAVE dataset, Table IV reports the average and
standard deviation values of five quality metrics on the six
reconstructed HSIs. The best values are emphasized by bold
font. From it, we find that our approach has better performance
than other compared approaches in all the five quality metrics.
For visual comparison, the reconstructed 10th band of paints
(a HSI in CAVE dataset), the error images at the 10th band, the
reconstructed 29th band, and the error images at the 29th band
are presented in Fig. 12. From the 2nd and 4th row of Fig. 12,
we observe that the fused HSIs generated by the HySure, CSU,
FUSE, and CSTF have more flaws than the proposed method.
To describe the situation of spectral recovery, we show the
spectral curves in Fig. 13 for paints at different locations (i.e.,
(256, 256), (361, 339), (366, 477)), in which, we zoom some
of the spectral bands for better comparison. We could find
that the spectral curve of HSI reconstructed by our algorithm
match better with the ground truth (GT) compared with the
other four algorithms.

For the Harvard dataset, Table V reports the average and
standard deviation values of the five quality metrics on the
three fused HSIs. The bold font represents the best values.
From it, we find that our approach has better performance than
other compared approaches in terms of four quality metrics
except for ERGAS. For visual comparison, the reconstructed
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(a) LR-HSI (b) HySure (c) CSU (d) FUSE (e) CSTF (f) Proposed (g) Ground Truth

Fig. 10. The 1st row presents the reconstructed results of the Pavia University for the 5th band. The 2nd row presents the error results at the 5th band.
The 3rd row presents the reconstructed 60th band. The 4th row presents the error results at the 60th band. The 5th row shows the color bar. (a) LR-HSI, (b)
HySure [23], (c) CSU [28], (d) FUSE [29], (e) CSTF [12], (f) Proposed, (g) Ground Truth.

(a) (120, 120) (b) (124, 124) (c) (128, 128)

Fig. 11. The spectral curves between each fused output and GT (i.e., Pavia University) at different locations. Located at (a) (120, 120), (b) (124, 124), (c)
(128, 128).

TABLE IV
QUALITY ASSESSMENT OF THE PROPOSED AND COMPARED METHODS ON THE CAVE DATASET

Method CAVE dataset [43]
RMSE(±std) ERGAS(±std) DD(±std) SAM(±std) PSNR(±std)

Best Values 0 0 0 0 +∞
HySure [23] 3.322(±1.238) 0.886(±0.281) 1.976(±1.011) 14.964(±4.845) 39.512(±3.085)

CSU [28] 3.306(±1.378) 0.870(±0.261) 1.624(±0.943) 8.391(±2.490) 39.001(±3.656)
FUSE [29] 2.436(±1.068) 0.625(±0.141) 1.270(±0.747) 8.122(±1.476) 42.188(±3.410)
CSTF [12] 2.722(±1.487) 0.671(±0.195) 1.351(±0.790) 8.632(±1.459) 42.240(±4.027)
Proposed 2.306(±1.031) 0.590(±0.136) 1.167(±0.581) 7.934(±1.388) 43.126(±3.301)
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(a) LR-HSI (b) HySure (c) CSU (d) FUSE (e) CSTF (f) Proposed (g) Ground Truth

Fig. 12. The 1st row presents the results generated by the proposed and the other four compared methods for paints at the 10th band. The 2nd row presents
the error results at the 10th band. The 3rd row presents the reconstructed 29th band. The 4th row presents the error results at the 29th band. (a) LR-HSI,
(b) HySure [23], (c) CSU [28], (d) FUSE [29], (e) CSTF [12], (f) Proposed, (g) Ground Truth.

(a) (256, 256) (b) (361, 339) (c) (366, 477)

Fig. 13. The spectral curves between each fused result and GT (i.e., paints) at different locations. Located at (a) (256, 256), (b) (361,339), (c) (366,477).

TABLE V
QUALITY ASSESSMENT OF THE PROPOSED AND COMPARED METHODS ON THE HARVARD DATASET

Methods Harvard dataset [44]
RMSE(±std) ERGAS(±std) SAM(±std) DD(±std) PSNR(±std)

Best Values 0 0 0 0 +∞
HySure [23] 1.445(±0.634) 0.951(±0.566) 5.654(±1.434) 0.948(±0.499) 46.717(±2.982)

CSU [28] 1.639(±0.553) 0.866(±0.447) 4.553(±1.157) 0,844(±0.401) 45.669(±3.47)
FUSE [29] 1.179(±0.385) 0.760(±0.497) 4.330(±1.401) 0.741(±0.341) 47.973(±2.686)
CSTF [12] 1.184(±0.532) 0.740(±0.480) 4.460(±1.156) 0.758(±0.429) 48.141(±3.342)
Proposed 1.142(±0.479) 0.745(±0.486) 4.425(±1.254) 0.735(±0.398) 48.262(±3.201)
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(a) LR-HSI (b) HySure (c) CSU (d) FUSE (e) CSTF (f) Proposed (g) Ground Truth

Fig. 14. The 1st row presents the results generated by the proposed and the other four compared methods for a HSI in the Harvard dataset at the 25th

band. The 2nd row presents the error results at the 25th band. The 3rd row presents the reconstructed 31th band. The 4th row presents the error results at
the 31th band. (a) LR-HSI (b) HySure [23], (c) CSU [28], (d) FUSE [29], (e) CSTF [12], (f) Proposed, (g) Ground Truth.

TABLE VI
QUALITY ASSESSMENT OF THE THREE REGULARIZATION TERMS

Method CAVE dataset [43]
RMSE PSNR DD SAM ERGAS

Best Values 0 +∞ 0 0 0
Without λ2||DyU1||1 2.358(±1.111) 43.109(±3.317) 1.186(±0.609) 8.064(±1.240) 0.599(±0.127)
Without λ3||DyU2||1 2.460(±1.207) 42.723(±3.735) 1.242(±0.668) 8.142(±1.460) 0.618(±0.149)
Without λ4||DyU3||1 2.316(±1.031) 43.076(±3.291) 1.175(±0.582) 7.979(±1.365) 0.593(±0.138)

CSTF [12] 2.722(±1.487) 42.240(±4.027) 1.351(±0.790) 8.632(±1.459) 0.671(±0.195)
Proposed 2.306(±1.031) 43.126(±3.301) 1.167(±0.581) 7.934(±1.388) 0.590(±0.136)

25th band of a HSI in the Harvard dataset, the error images
at the 25th band, the reconstructed 31th band, and the error
images at the 31th band are presented in Fig. 14. From the
2nd and 4th row of Fig. 14, we observe that the fused HSIs
generated by the HySure, CSU, FUSE, and CSTF have more
flaws than the proposed method.

F. Discussion

1) The effectiveness of the three regularization terms: In
this part, we discuss the effectiveness of the three regulariza-
tion terms (i.e., λ2||DyU1||1, λ3||DyU2||1 and λ4||DyU3||1
). In the proposed model (12), we use the three regularization
terms to character the piecewise smoothness of the target HR-
HSI. How do the three regularization terms individually affect

the fusion results? Are among the components essential in the
proposed approach? In this part, we will consider three variants
of our model: λ2||DyU1||1, λ3||DyU2||1 and λ4||DyU3||1.
We set λ2 equal to zero to demonstrate the effectiveness of
||DyU1||1, set λ3 equal to zero to demonstrate the effective-
ness of ||DyU2||1, and λ4 equal to zero to demonstrate the
effectiveness of ||DyU3||1, it is worth note that the proposed
model degenerates to Dian et al. [12] when we set λ2, λ3,
and λ4 equal to zero at the same time. We test the above
five situations on six HSIs from CAVE dataset mentioned in
Section V-B, Table VI reports the quality assessment of the
fused results. The bold entries denote the best values. From it,
we observe that each regularization term has positive effect on
the fused outputs, especially, when they combine together to
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form the proposed method, which gives excellent performance.
2) The spatial downsampling ways and factors: In ex-

periments, we use the same spatial downsampling ways and
factors for both CAVE dataset and Pavia University dataset,
i.e., downsampling factor 16 with the average filter. In this part,
we test the proposed approach and LTMR [38] by different
downsampling ways and different downsampling factors on
the Pavia University dataset noted in Section V-B. For down-
sampling ways, we choose the average filter and Gaussian
filter with 7× 7 and standard deviation 2. The downsampling
factors are set as 4, 8, 16, and 32, respectively. Table VII and
Table VIII report the quality assessment for the average filter
and Gaussian filter, respectively, with different downsampling
factors. The best values are highlighted by bold entries. From
them, we can observe that LTMR and the proposed method are
both stable for different downsampling ways. However, each
value of the quality metrics for LTMR is changed dramatically
as the downsampling factor increasing, while the proposed
method always keeps relative stability. Just to make it a little
bit more intuitive, we show the variation trend of PSNR of
the two methods (i.e., the proposed approach and LTMR [38])
under different downsampling factors and filters in Fig. 15.

3) The convergence of the proposed model: In this work,
we utilize the PAO algorithm to deal with the proposed model
(12), in which each subproblem is solved by the ADMM. In
this part, we further verify the convergence of the proposed
model in (12) and four subproblem in (13). Fig. 16 shows
the corresponding convergence curves, in which the X-axis
represents the number of iterations (for the problem (12),
which means the number of PAO iterations; for the four
subproblems in (13), which means the number of ADMM
iterations.), and the Y-axis denotes the value of RelCha. From
Fig. 16, we can see that not only the proposed model is
convergent, but also each subproblem is convergent.

TABLE VII
AVERAGE FILTER WITH DIFFERENT DOWNSAMPLING FACTOR (DF).

Method Average Filter
PSNR SAM DD ERGAS DF

Best Values +∞ 0 0 0

LTMR [38]

46.006 1.422 0.814 0.793 4
43.585 2.084 1.202 0.541 8
37.405 4.725 2.857 0.636 16
34.035 6.796 4.419 0.469 32

Ours

44.887 1.682 0.993 0.907 4
44.283 1.836 1.097 0.486 8
44.052 1.919 1.144 0.249 16
42.873 2.224 1.366 0.145 32

VI. CONCLUSION

In this work, we have presented a novel unidirectional total
variation based approach for the HSI-SR problem. We first
consider that the target HR-HSIs exhibit both the sparsity and
the piecewise smoothness on the three modes and then utilize
the classical Tucker decomposition to decompose the target
HR-HSI as a sparse core tensor multiplied by the dictionary
matrices along with the three modes. In the proposed mod-
el, we apply the unidirectional TV on three dictionaries to
characterize the piecewise smoothness, and the `1-norm on

TABLE VIII
GAUSSIAN FILTER WITH DIFFERENT DOWNSAMPLING FACTOR (DF).

Method Gaussian Filter
PSNR SAM DD ERGAS DF

Best Values +∞ 0 0 0

LTMR [38]
46.089 1.426 0.816 0.781 4
41.274 2.594 1.517 0.735 8
35.167 5.450 3.595 0.816 16
31.908 8.197 5.544 0.611 32

Ours
44.866 1.686 0.996 0.902 4
44.332 1.797 1.075 0.484 8
43.655 1.972 1.195 0.263 16
43.284 2.083 1.276 0.137 32

(a) Average Filter (b) Gaussian Filter

Fig. 15. The variation trend of PSNR of the proposed method and LTMR
[38] under different downsampling factors and filters. (a) Average Filter, (b)
Gaussian Filter.

core tensor to characterize the sparsity. Experiments on three
public HSI datasets illustrate the superiority of the proposed
approach over some state-of-the-art approaches, and also em-
phasize the robust performance on the downsampling ways and
downsampling factors. Especially, the proposed approach also
has one unavoidable weakness that is its computation. For the
solution of the proposed model under the framework of PAO,
each subproblem has to be addressed by an inner iterative
approach, i.e., ADMM, which increases the computation and
the number of parameters. In the future, we will try to find
a closed-form solution for each subproblem even though it is
very challenging, aiming to reduce or overcome the mentioned
weakness.

VII. APPENDIX

A. The optimization problem of U1

Problem (15) is convex and can be solved by ADMM
efficiently [48], [49]. Hence, we introduce the splitting variable
V1 = DyU1 and then rewrite the problem (15) as follows,

argmin
U1

||B(1) −D1U1X1||2F + ||C(1) −U1Y1||2F

+ λ2||V1||1 + β||U1 −U1
pre||2F ,

s.t.V1 = DyU1.

(29)

The augmented Lagrangian form of equation (29) is repre-
sented by

L(U1,V1,L1) = ||B(1) −D1U1X1||2F
+ ||C(1) −U1Y1||2F
+ λ2||V1||1 + β||U1 −U1

pre||2F
+ µ1||DyU1 −V1 − L1||2F ,

(30)
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(a) U1-subproblem (b) U2-subproblem (c) U3-subproblem (d) G-subproblem (e) Problem(12)

Fig. 16. The convergence curve of the problem (12) and four subproblems. (a) U1-subproblem (14), (b) U2-subproblem (16), (c) U3-subproblem (18), (d)
G-subproblem (20), (e) Problem (12).

where L1 denotes the Lagrangian multiplier and µ1 represents
a positive penalty parameter.

ADMM iterations of problem (30) are given by

U1
(t+1) = argmin

U1

L(U1,V1
(t),L1

(t)),

V1
(t+1) = argmin

V1

L(U1
(t+1),V1,L1

(t)),

L1
(t+1) = argmin

L1

L(U1
(t+1),V1

(t+1),L1).

(31)

Next, we present the solving process of (31).
1) The U1-subproblem: From (30), we have

argmin
U1

||B(1) −D1U1X1||2F + ||C(1) −U1Y1||2F+

β||U1 −U1
pre||2F + µ1||DyU1 −V1 − L1||2F .

(32)
Problem (32) is a quadratic optimization, which has a

unique solution, and it amounts to compute the following
Sylvester matrix equation, i.e.,

D1
TD1U1X1X1

T + U1(Y1Y1
T + βI) + µ1Dy

TDyU1

= D1
TB(1)X1

T + C(1)Y1
T + βU1

pre

+ µ1Dy
T (V1 + L1).

(33)
We apply the conjugate gradient (CG) [50] to solving (33)

efficiently. Similar to Li et al.’s work [27], we give the
following remarks: 1) the system matrix associated with (33)
is symmetric and positive definite, which is a necessary and
sufficient condition to directly apply CG; 2) the step of the
heaviest computation in applying CG is the multiplication of
the system matrix times a vector, which can be carried out
very efficiently in the matrix representation, and finally, 3)
CG converges in only a few iterations. In our experiments, we
have systematically observed that 40 iterations have a pretty
good approximation of the solution of (33).

For the problem (33), during each iteration of CG, the
heaviest computational complexity is O(n21I

2
1 ), which could

be reduced to O(n21I1+n1I
2
1 ) due to the matrix representation.

2) The V1-subproblem: From (30), we have

argmin
V1

λ2||V1||1 + µ1||DyU1 −V1 − L1||2F , (34)

whose solution V1 could be computed by the following
column-wise vector-soft threshold function, i.e.,

V1 = soft(DyU1 − L1,
λ2
2µ1

), (35)

where soft(x, y) = sign(x) ∗max(|x| − y, 0).
The computational complexity of updating V1 by (35) is

O(n1(I1 − 1)(I1 + 1)).
3) The L1-subproblem: From (30), we update the La-

grangian multiplier L1 by

L1 = L1 − (DyU1 −V1). (36)

The computational complexity of updating L1 by (36) is
O(n1I1(I1 − 1)).

During each iteration of ADMM, the heaviest computation
steps, shown in (33), have complexity O(NCG(n

2
1I1+n1I

2
1 )),

where NCG is the iteration number of CG.
In Algorithm 1, we summarize the process of solving

U1-subproblem (14) by ADMM.

Algorithm 1 Solving U1-subproblem (14) via ADMM

Inputting: B, C, U2, Û2, U3, Û3, G, U1
pre, β > 0,

µ1 > 0, and λ2 > 0.
Outputting: Dictionary matrix U1.
While not converged do

Step 1 Updating the dictionary matrix U1 by (33);
Step 2 Updating the variable V1 by (35);
Step 3 Updating the Lagrangian multiplier L1 by (36);

end while

B. The optimization problem of U2

Similar to problem (15), problem (17) is convex, therefore,
we use ADMM to solve it efficiently. We first introduce the
splitting variable V2 = DyU2 and then rewrite the problem
(17) as follows,

argmin
U2

||B(2) −D2U2X2||2F + ||C(2) −U2Y2||2F

+ λ3||V2||1 + β||U2 −U2
pre||2F ,

s.t.V2 = DyU2.

(37)

The augmented Lagrangian form of equation (37) is repre-
sented by

L(U2,V2,L2) = ||B(2) −D2U2X2||2F
+ ||C(2) −U2Y2||2F
+ λ3||V2||1 + β||U2 −U2

pre||2F
+ µ2||DyU2 −V2 − L2||2F ,

(38)
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where L2 denotes the Lagrangian multiplier and µ2 > 0
represents a penalty parameter.

ADMM iterations of problem (38) are given by

U2
(t+1) = argmin

U2

L(U2,V2
(t),L2

(t)),

V2
(t+1) = argmin

V2

L(U2
(t+1),V2,L2

(t)),

L2
(t+1) = argmin

L2

L(U2
(t+1),V2

(t+1),L2).

(39)

Next, we present the solving process of (39).
1) The U2-subproblem: From (38), we have

argmin
U2

||B(2) −D2U2X2||2F + ||C(2) −U2Y2||2F+

β||U2 −U2
pre||2F + µ2||DyU2 −V2 − L2||2F .

(40)

Similar to problem (32), the solution of problem (40)
amounts to compute the following Sylvester matrix equation,
i.e.,

D2
TD2U2X2X2

T + U2(Y2Y2
T + βI) + µ2Dy

TDyU2

= D2
TB(2)X2

T + C(2)Y2
T + βU2

pre

+ µ2Dy
T (V2 + L2).

(41)
Similarly, we utilize CG to solve (41). During each iteration

of CG, similar to (33), the heaviest computational complexity
is O(n22I

2
2 ), which could be reduced to O(n22I2 + n2I

2
2 ) due

to the matrix representation.
2) The V2-subproblem: From (38), we have

argmin
V2

λ3||V2||1 + µ2||DyU2 −V2 − L2||2F , (42)

whose solution V2 could be given by the following column-
wise vector-soft threshold function, i.e.,

V2 = soft(DyU2 − L2,
λ3
2µ2

), (43)

where the definition of soft(x, y) is the same as that in (35).
The computational complexity of updating V2 by (43) is

O(n2(I2 − 1)(I2 + 1)).
3) The L2-subproblem: From (38), we update the La-

grangian multiplier L2 by

L2 = L2 − (DyU2 −V2). (44)

The computational complexity of updating L2 by (44) is
O(n2I2(I2 − 1)).

During each iteration of ADMM, the heaviest computation
steps, shown in (41), have complexity O(NCG(n

2
2I2+n2I

2
2 )),

where NCG is the iteration number of CG.
In Algorithm 2, we summarize the process of solving

U2-subproblem (16) by ADMM.

Algorithm 2 Solving U2-subproblem (16) via ADMM

Inputting: B, C, U1, Û1, U3, Û3, G, U2
pre, β > 0,

µ2 > 0, and λ3 > 0.
Outputting: Dictionary matrix U2.
While not converged do

Step 1 Updating the dictionary matrix U2 by (41);
Step 2 Updating the variable V2 by (43);
Step 3 Updating the Lagrangian multiplier L2 by (44);

end while

C. The optimization problem of U3

Similar to problem (15), problem (19) is convex, therefore,
we use ADMM to solve it efficiently. We first introduce the
splitting variable V3 = DyU3 and then rewrite the problem
(19) as follows,

argmin
U3

||B(3) −U3X3||2F + ||C(3) −D3U3Y3||2F

+ λ4||V3||1 + β||U3 −U3
pre||2F ,

s.t.V3 = DyU3.

(45)

The augmented Lagrangian form of equation (45) is given
by

L(U3,V3,L3) =||B(3) −U3X3||2F + ||C(3) −D3U3Y3||2F
+ λ4||V3||1 + β||U3 −U3

pre||2F
+ µ3||DyU3 −V3 − L3||2F ,

(46)
where L3 denotes the Lagrangian multiplier and µ3 > 0
represents a penalty parameter.

ADMM iterations of problem (46) are given by

U3
(t+1) = argmin

U3

L(U3,V3
(t),L3

(t)),

V3
(t+1) = argmin

V3

L(U3
(t+1),V3,L3

(t)),

L3
(t+1) = argmin

L3

L(U3
(t+1),V3

(t+1),L3).

(47)

Next, we present the solving process of (47).
1) The U3-subproblem: From (46), we have

argmin
U3

||B(3) −U3X3||2F + ||C(3) −D3U3Y3||2F+

β||U3 −U3
pre||2F + µ3||DyU3 −V3 − L3||2F .

(48)
Similar to (32), the solution of problem (48) amounts to

compute the following Sylvester matrix equation, i.e.,

D3
TD3U3Y3Y3

T + U3(X3X3
T + βI) + µ3Dy

TDyU3

= D3
TC(3)Y3

T + B(3)X3
T + βU3

pre

+ µ3Dy
T (V3 + L3).

(49)
Similarly, we utilize CG to solve (49). During each iteration

of CG, similar to (33), the heaviest computational complexity
is O(n23I

2
3 ), which could be reduced to O(n23I3 + n3I

2
3 ) due

to the matrix representation.
2) The V3-subproblem: From (46), we have

argmin
V3

λ4||V3||1 + µ3||DyU3 −V3 − L3||2F , (50)

whose solution V3 could be given by the following column-
wise vector-soft threshold function, i.e.,

V3 = soft(DyU3 − L3,
λ4
2µ3

), (51)

where the definition of soft(x, y) is the same as that in (35).
The computational complexity of updating V3 by (51) is

O(n3(I3 − 1)(I3 + 1)).
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3) The L3-subproblem: From (46), we update the La-
grangian multiplier L3 by

L3 = L3 − (DyU3 −V3). (52)

The computational complexity of updating L3 by (52) is
O(n3I3(I3 − 1)).

During each iteration of ADMM, the heaviest computation
steps, shown in (49), have complexity O(NCG(n

2
3I3+n3I

2
3 )),

where NCG is the iteration number of CG.
In Algorithm 3, we summarize the process of solving

U3-subproblem (18) by ADMM.

Algorithm 3 Solving U3-subproblem (18) via ADMM

Inputting: B, C, U1, Û1, U2, Û2, G, U3
pre, β > 0,

µ3 > 0, and λ4 > 0.
Outputting: Dictionary matrix U3.
While not converged do

Step 1 Updating the dictionary matrix U3 by (49);
Step 2 Updating the variable V3 by (51);
Step 3 Updating the Lagrangian multiplier L3

by (52);
end while

D. The optimization problem of G

Problem (20) is convex, hence, we utilize ADMM to solve
it. We first introduce the splitting variables G1 = G and G2 = G
and then rewrite the problem (20) as follows,

argmin
G,G1,G2

f(G) + f1(G1) + f2(G2),

s.t. G1 = G, G2 = G,
(53)

where

f(G) = λ1||G||1 + β||G − Gpre||2F ,
f1(G1) = ||B − G1 ×1 Û1 ×2 Û2 ×3 U3||2F ,
f2(G2) = ||C − G2 ×1 U1 ×2 U2 ×3 Û3||2F .

The augmented Lagrangian function of (53) is given by

L(G,G1,G2,L4,L5) = λ1||G||1 + β||G − Gpre||2F
+ ||B − G1 ×1 Û1 ×2 Û2 ×3 U3||2F
+ µ4||G − G1 − L4||2F
+ ||C − G2 ×1 U1 ×2 U2 ×3 Û3||2F
+ µ4||G − G2 − L5||2F ,

(54)
where µ4 represents a penalty parameter, L4 and L5 denote
the Lagrangian multipliers.

ADMM iterations of (54) are given by

G(t+1) = argmin
G

L(G,G(t)1 ,G(t)2 ,L(t)
4 ,L(t)

5 ),

G(t+1)
1 = argmin

G1
L(G(t+1),G1,G(t)2 ,L(t)

4 ,L(t)
5 ),

G(t+1)
2 = argmin

G2
L(G(t+1),G(t+1)

1 ,G2,L(t)
4 ,L(t)

5 ),

L(t+1)
4 = argmin

L4

L(G(t+1),G(t+1)
1 ,G(t+1)

2 ,L4,L(t)
5 ),

L(t+1)
5 = argmin

L5

L(G(t+1),G(t+1)
1 ,G(t+1)

2 ,L(t+1)
4 ,L5).

(55)
Next, we present the solving process of (55).
1) The G-subproblem: From (54), we have

argmin
G

λ1||G||1 + β||G − Gpre||2F+

µ4||G − G1 − L4||2F + µ4||G − G2 − L5||2F ,
(56)

whose solution G could be represented by the following
column-wise vector-soft threshold function, i.e.,

G = soft[
µ4(G1 + L4 + G2 + L5) + βGpre

2µ4 + β
,

λ1
4µ4 + 2β

],

(57)
where the definition of soft(x, y) is the same as that in (35).

The computational complexity of updating G by (57) is
O(n1n2n3).

2) The G1-subproblem: From (54), we have

argmin
G1

µ4||G1 − G + L4||2F+

||B − G1 ×1 Û1 ×2 Û2 ×3 U3||2F .
(58)

Problem (58) is equal to

argmin
g1

µ4||g1 − g + l4||2F + ||b−M1g1||2F , (59)

where the vectors g1 = vec(G1), l4 = vec(L4), g = vec(G),
and b = vec(B) are generated by vectorizing the tensors G1,
L4, G and B, respectively, and M1 = U3 ⊗ Û2 ⊗ Û1.

Problem (59) has the following closed-form solution, i.e.,

g1 = (M1
TM1 + µ4I)

−1(M1
Tb + µ4g − µ4l4). (60)

Note that M1 ∈ Ri1i2I3×n1n2n3 is relatively large, there-
fore, it is difficult to solve (60). Fortunately, we find that

(M1
TM1 + µ4I)

−1 = (D3 ⊗D2 ⊗D1)(Σ3 ⊗Σ2 ⊗Σ1

+ µ4I)
−1 × (D3

T ⊗D2
T ⊗D1

T ),
(61)

where Σi and Di (i=1, 2, 3) are diagonal matrices and
unitary matrices containing the eigenvalues and eigenvectors
of, respectively, Û1

T
Û1, Û2

T
Û2, and U3

TU3. Therefore,
(Σ3 ⊗ Σ2 ⊗ Σ1 + µ4I)

−1 is a diagonal matrix and could
be computed easily. Besides, the term M1

Tb in (60) can be
computed by

M1
Tb = vec(B ×1 Û1

T
×2 Û2

T
×3 U3

T ), (62)

where vec(·) is the vectorization operation.
Therefore, we could compute (60) easily.
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3) The G2-subproblem: From (54), we have

argmin
G2

µ4||G2 − G + L5||2F+

||C − G2 ×1 U1 ×2 U2 ×3 Û3||2F .
(63)

Problem (63) is equal to

argmin
g2

µ4||g2 − g + l5||2F + ||c−M2g2||2F , (64)

where the vectors g2 = vec(G2), l5 = vec(L5), g = vec(G),
and c = vec(C) are obtained by vectorizing the tensors G2,
L5, G and C, respectively, and M2 = Û3 ⊗U2 ⊗U1.

Problem (64) has the closed-form solution, i.e.,

g2 = (M2
TM2 + µ4I)

−1(M2
T c + µ4g − µ4l5). (65)

Note that M2 ∈ RI1I2i3×n1n2n3 is relatively large, there-
fore, it is difficult to solve (65). Fortunately, similar to (61),
we have

(M2
TM2 + µ4I)−1 = (D̃3 ⊗ D̃2 ⊗ D̃1)(Σ̃3 ⊗ Σ̃2 ⊗ Σ̃1

+ µ4I)
−1 × (D̃3

T ⊗ D̃2
T ⊗ D̃1

T
),
(66)

where Σ̃i and D̃i ( i=1, 2, 3) are diagonal matrices and
unitary matrices containing the eigenvalues and eigenvectors
of, respectively, U1

TU1, U2
TU2, and Û3

T
Û3. Therefore,

(Σ̃3 ⊗ Σ̃2 ⊗ Σ̃1 + µ4I)
−1 is a diagonal matrix and could be

computed easily.
4) The L4 and L5-subproblem: From (54), we update the

Lagrangian multipliers L4 and L5 by

L4 = L4 − (G − G1),
L5 = L5 − (G − G2).

(67)

Same with that in Li et al.’s work [12], during each itera-
tion of ADMM, the two heaviest computation steps, shown
in (60) and (65), have time complexity of O(n31n

3
2n

3
3). If

we use (61) and (66) to carry out those computations and
tensor i-mode products, the time complexity is reduced to
O(n21n2n3 + n1n

2
2n3 + n1n2n

2
3).

In Algorithm 4, we summarize the process of solving
G-subproblem (47) by ADMM.

Algorithm 4 Solving G-subproblem (20) via ADMM

Inputting: B, C, U1, Û1, U2, Û2, U3, Û3, Gpre,
β > 0, µ4 > 0, and λ1 > 0.
Outputting: Core tensor G.
While not converged do

Step 1 Updating G by (57);
Step 2 Updating G1 by (60);
Step 3 Updating G2 by (65);
Step 4 Updating L4 and L5 by (67);

end while
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