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Abstract— Sparse unmixing is an important technique for
analyzing and processing hyperspectral images (HSIs). Simul-
taneously exploiting spatial correlation and sparsity improves
substantially abundance estimation accuracy. In this article,
we propose to exploit nonlocal spatial information in the HSI for
the sparse unmixing problem. Specifically, we first group similar
patches in the HSI, and then unmix each group by imposing
simultaneous a low-rank constraint and joint sparsity in the cor-
responding third-order abundance tensor. To this end, we build
an unmixing model with a mixed regularization term consisting
of the sum of the weighted tensor trace norm and the weighted
tensor �2,1-norm of the abundance tensor. The proposed model
is solved under the alternating direction method of multipliers
framework. We term the developed algorithm as the nonlocal
tensor-based sparse unmixing algorithm. The effectiveness of
the proposed algorithm is illustrated in experiments with both
simulated and real hyperspectral data sets.

Index Terms— Hyperspectral unmixing, joint sparsity, low-
rank, nonlocal similarity, tensor.

I. INTRODUCTION

SPECTRAL unmixing of hyperspectral images (HSIs) has
received much attention in recent years [1], [2]. Its basic

task is to identify the spectral signatures of the materials
(endmembers) and also the fractions (abundances) of these
endmembers in each mixed HSI pixel. In the literature,
a plethora of geometrical and statistical methods have been
put forward to identifying the spectral signatures of end-
members, known as endmembers’ extraction; see [3]–[7] and
references therein. On the other hand, nonnegative matrix
factorization-based blind hyperspectral algorithms have been
well studied for the task [8]–[10]. In addition, another attrac-
tive research topic is to assume the spectral signatures of
endmembers available and belonging to a predefined set usu-
ally called endmembers’ dictionary, then diverse abundance
estimation algorithms have been proposed in a semisupervised
fashion [11]–[14].
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The mixing process in numerous state-of-the-art unmixing
algorithms is either characterized as linear [2] or nonlinear
[15]. Linear mixture model (LMM) assumes that the spec-
tral signature of each pixel in HSI is a linear combination
of the spectral signatures of the endmembers, weighted by
their corresponding abundances. Due to its simplicity and
tractability, LMM has been widely adopted by diverse spectral
unmixing algorithms (see [1], [2] and reference therein). For
the remainder of this article, we will focus on the linear model
in a semisupervised way.

Incorporating a prior information improves the abundance
estimation accuracy. The sparsity assumption plays a key role
in many semisupervised algorithms. Its adoption is justified
by the fact that only a few of spectral signatures participate in
the linear mixture process of each pixel, particularly compared
with large-scale available dictionaries [11]. Practically, sparsity
is imposed on abundances via the standard �1-norm regular-
ization [11] and its variants [8], [16]–[19]. Collaborative (or
joint) sparsity scheme provides a refinement by simultaneously
imposing the sparsity on all pixel in the scene [12], [20]–[22].

Exploiting spatial correlation in sparse unmixing frame-
work has offered stimulating results. Typically, the total
variation (TV) is included in sparse unmixing to promote
piecewise smooth in each abundance map [13], [23]–[26].
The low-rank property is another structural characteristic that
has been recently adopted for abundances [22], [27], [28].
It transfers the spatial correlation among pixels’ spectral
signatures into linear dependence among their corresponding
abundance vectors. The resulting abundance matrix therefore
admits a low-rank behavior and its rank is usually approx-
imated by the weighted nuclear norm in practice. Nonlocal
sparse unmixing presents an alternative way of modeling the
spatial correlation. Nonlocal means method is incorporated
into the TV regularization to exploit the similar patterns and
structures in abundance maps [29], [30]. As an improvement of
nonlocal means TV spatial consideration, an adaptive nonlocal
Euclidean medians approach is proposed to better utilize the
spatial information by means of filtering [31]. In addition, the
nonlocal means method has been used in a collaborative sparse
unmixing framework to suppress the abundance estimation
error [32]. Recently, the nonlocal similarity of abundance
maps is employed in unmixing problem by first grouping
nonlocal similar abundance patches and then imposing a
low-rank constraint [33], [34]. These nonlocal methods in
[29], [31]–[34] mainly focus on exploring the nonlocal spatial
information in abundance maps. Note that the abundances are
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estimated iteratively, so the nonlocal spatial information is
correspondingly updated as soon as the latest estimation of
abundances is acquired.

In this article, we introduce a novel idea for exploring the
nonlocal spatial information and spectral correlation. Depart-
ing from the usual paradigm, we explore the nonlocal spa-
tial similarity in the HSI for hyperspectral unmixing. That
said, we first group similar patches in the HSI and each
group is stacked to be a third-order tensor. The technique
of exploiting the spatial nonlocal similarity in HSIs has been
well studied for HSI denoising [35]–[39]. It helps to improve
the denoising performance, in which repetitive patches can
provide more complementary information especially under
heavy noise. Following this technique, we incorporate nonlocal
spatial similarity and spectral correlation of HSIs into the
unmixing process in an attempt to achieve better abundance
estimation results. To the best of our knowledge, it is new
for hyperspectral unmixing. Particularly, there is no need
to recalculate the nonlocal spatial information in abundance
maps at each iteration round. Then, we unmix each group
by transferring the spatial and spectral correlation in each
group into the low-rank property and the joint sparsity in the
corresponding third-order abundance tensor. The low-rank and
joint-sparsity constraints give rise to a mixed penalty term
that regularizes a least squares data fitting function, through
the weighted tensor trace norm and the proposed weighted
tensor �2,1-norm. To minimize the cost function, we propose
an algorithm under the classic alternating direction method of
multipliers (ADMM) framework. After unmixing each group
of similar HSI patches, we reconstruct the abundance tensor
for the HSI by aggregating estimated small-size abundance
tensors. Thus, we name our algorithm nonlocal tensor-based
sparse unmixing algorithm (NL-TSUn). The proposed algo-
rithm is compared with state-of-the-art unmixing techniques,
and the efficacy is demonstrated via simulated and real-data
experiments.

Notation: We use nonbold letters for scalars, e.g., x , bold-
face lowercase letters for vectors, e.g., x, and boldface capital
letters for matrices, e.g., X . Tensors are denoted by boldface
calligraphic letters, e.g., X . Consider a third-order tensor
X ∈ R

n1×n2×n3 . The Frobenius norm of X is defined as

�X�F :=
� �

i1,i2,i3

|xi1i2i3 |2

where xi1i2 i3 s are elements of X . The inverse operator of
unfolding is denoted by “fold”, i.e., X = foldn(X (n)). We note
that different articles use different orderings of the columns
for the mode-n unfolding; see [40]–[43]. Here, we follow the
order in [40] throughout this article. Recall from [40] that the
mode-n multiplication, denoted by the symbol ×n , defines the
multiplication of an array G by a matrix S along mode n
of the array and the outcome G̃ is equivalent to the matrix
multiplication G̃(n) = SG(n). In addition, Table I lists the
notations of the variables that we usually use in this article.

The rest of this article is organized as follows. Section II
briefly reviews sparse unmixing models. Section III derives the
proposed algorithm. Then, the effectiveness of the proposed
algorithm is demonstrated by both simulated experiments in

TABLE I

SOME NOTATIONS USED IN THIS ARTICLE

Section IV and a real-data experiment in Section V. Finally,
Section VI gives some concluding remarks.

II. SPARSE UNMIXING MODEL

Let Yo ∈ R
n1×n2×J denote the observed HSI with n1 × n2

pixels and J spectral bands. Then, the third-order tensor Yo

is rearranged to a matrix Y ∈ R
J×N with N = n1 × n2 [34],

[40]. Let A ∈ R
J×m denote the dictionary with m spectral

signatures. The classic LMM can be described as

Y = AX + E (1)

where X ∈ R
m×N is the fractional abundance matrix whose

columns correspond with the abundance vectors of N pixels
in Y , and E ∈ R

J×N is an independent and identically
distributed (i.i.d.) zero-mean Gaussian noise matrix. With large
and available A, sparse unmixing aims to find a relatively
small number of spectral signatures to linearly mix every pixel
in Y . Exploiting a prior information helps to improve the
estimation accuracy. The so-called abundance nonnegativity
constraint (ANC) and the abundance sum-to-one constraint
(ASC)

X ≥ 0, 1T X = 1T

respectively, are widely considered for physical meaning [44].
Here, X ≥ 0 denote that each element is nonnegative and 1 is a
column vector of 1’s. Nevertheless, we relax the ASC to focus
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on the exploitation of structural characters of X , similarly as
in [13], [12], [28], and [22]; see more details in [11].

To explore the sparsity of each abundance vector, the classic
sparse regression model for hyperspectral unmixing problem
is as follows:

min
X

1

2
�Y − AX�2

F + λ�X�1,1

s.t. X ≥ 0 (2)

where �X�1,1 = �m
i=1

�N
j=1 |xi, j | is the �1-norm of X , xi, j

denotes the (i, j)th element of X , and λ ≥ 0 is the regular-
ization parameter. A sparse unmixing by variable splitting and
augmented Lagrangian (SUnSAL) algorithm is introduced to
solve the above model in [11]. In addition, the �p-norm-based
regularization has been considered to promote sparseness in
the abundance and also in other HSI processing problems, see
[16], [17], [45] and reference therein.

With the assumption that all pixels in the data set share
the same active set of endmembers, the collaborative sparse
regression framework is

min
X

1

2
�Y − AX�2

F + λ�X�2,p

s.t. X ≥ 0 (3)

where p ∈ {0, 1} and λ ≥ 0 is the regularization parameter.
Denote x[i] be the i th row of X . Suppose p = 1, then
�X�2,1 = �m

i=1 �x[i]�2 is the so-called �2,1-norm of X . It
follows a convex optimization problem and the corresponding
algorithm is termed as collaborative SUnSAL (CLSUnSAL) in
[12]. Consider instead p = 0 and �X�2,0 = �m

i=1 1(�x[i]�2 >
0) is the �2,0 quasi-norm of X , it is shown in [21] that
the �0 quasi-norm regularization provides sparser and more
accurate estimations. The corresponding algorithm is termed
as the collaborative sparse hyperspectral unmixing algorithm
using �0 quasi-norm (CSUnL0). In addition, a more general
�2,p-norm (0 < p < 1) regularization has been considered in
[20] to promote sparsity along rows of the abundance matrix.

To exploit local collaborative sparsity property, a joint-
sparse-blocks regression model has been proposed to encour-
age that similar adjacent pixels share the same support set of
endmembers [22]. To this end, the abundance matrix is viewed
as a block matrix

X = [X1, . . . , X s] (4)

where the column number of X j ∈ R
m×d j satisfies

∑s
j=1 d j =

N and the block number s is a positive integer for 1 ≤ s ≤ N .
Then, each block X j is assumed joint-sparse. The so-called
�2,1-blocks regularized hyperspectral unmixing model is

min
X

1

2
�Y − AX�2

F + λ

s�
j=1

�X j�2,1

s.t. X ≥ 0 (5)

where λ ≥ 0 is the regularization parameter. Particularly, the
model in (5) generalizes both the SUnSAL model by setting
s = N and the CLSUnSAL model by setting s = 1.

Recently, imposing the low-rank property on the abundance
matrix provides a new perspective for exploiting spatial infor-
mation [22], [27], [28]. Simultaneously imposing the sparsity

and the low-rank representation on the abundance leads to an
unmixing model as follows:

min
X

1

2
�Y − AX�2

F + λ�X�Z,1 + τ�X�w,∗
s.t. X ≥ 0 (6)

where λ and τ are nonnegative regularization parameters

�X�Z,1 =
m�

i=1

N�
j=1

zi, j |xi, j |, �X�w,∗ =
r�

i=1

wiσi

are the weighted �1-norm and the weighted nuclear norm of X ,
respectively, Z = [zi, j ] ∈ R

m×N and w = [w1, . . . , wr ] ∈ R
r

are nonnegative weighting arrays, σi is the i th singular value
of X , and r is the rank of X . The model in (6) can be solved
by an algorithm termed as the alternating direction sparse
and low-rank unmixing algorithm (ADSpLRU) [28]. Instead
simultaneously imposing the joint-sparse-blocks structure and
the low-rank representation on the fractional abundance, the
unmixing model becomes

min
X

1

2
�Y − AX�2

F + λ

s�
j=1

�X j�z j ,2,1 + τ�X�w,∗

s.t. X ≥ 0 (7)

where X j is the j th column block of X in (4), �X j�z j ,2,1 is
the weighted �2,1-norm of X j defined as

�X j�z j ,2,1 =
m�

i=1

zi, j
��x[i]

j

��
2

z j = [z1, j , . . . , zm, j ]T ∈ R
m is a nonnegative weighting

vector for X j , and x[i]
j is the i th row of X j , for i =

1, . . . , m and j = 1, . . . , s. The model in (7) is solved by the
so-called joint-sparse-blocks and low-rank unmixing algorithm
(JSpBLRU) and a reweighting strategy has been introduced to
adaptively update zi, j at each iteration [22].

Finally, it is worth mentioning that tensor
decomposition-based spectral unmixing has attracted
considerable attention in recent years. A matrix-vector
nonnegative tensor factorization (MV-NTF) has proposed for
hyperspectral unmixing [46]. It approximates a third-order
HSI tensor by sum of the outer products of an endmember
and its corresponding abundance map, providing another
explicit physical explanation of linear spectral mixture.
Under the MV-NTF framework, more spatial and spectral
prior information has been incorporated to improve the
unmixing performance in [10], [47], [48]. Note that it
can be strict to impose a low-rank characteristic on the
abundance maps and the endmembers in real-world scenarios,
so Imbiriba et al. [49] proposed a low-rank regularization
by introducing a low-dimensional spatial-spectral structure
into the abundance and the endmember tensors. In addition,
Sun et al. [34] imposed a low-rank property on nonlocal
third-order abundance tensors and develop a weighted
nonlocal low-rank tensor decomposition method for HSI
sparse unmixing. It can be observed that compared with
matrix factorization-based unmixing algorithms, tensor
decomposition-based unmixing algorithms offer stimulating
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Fig. 1. Flowchart of the NL-TSUn algorithm. It consists of three stages. 1) Search and group similar HSI patches. 2) Unmix each third-order group.
3) Aggregate to the abundance tensor.

results. In the following, we propose a tensor-based unmixing
algorithm that promotes the utilization of nonlocal spatial
information and spectral correlation in HSIs in a different
way in Section III. The advantages will be demonstrated later
in Sections IV and V.

III. NL-TSUN ALGORITHM

In this section, we will first propose a nonlocal tensor-based
unmixing optimization model and then derive an algorithm
under the ADMM framework.

A. Proposed Unmixing Model

Unlike the authors in [29], [31]–[34] utilize the nonlocal
spatial information in abundance maps, we consider directly
exploiting the nonlocal spatial similarity in HSIs to further
improve the abundance estimation performance. The process
mainly consists of three stages: 1) group similar patches
inside an HSI; 2) unmix each group by a novel tensor-based
algorithm; and 3) aggregate to the abundance tensor of the
HSI. The overall flowchart of the proposed algorithm is shown
in Fig. 1. Specifically, at the first stage, we consider each
key fullband patch (FBP), which is stacked by patches at the
same location of the HSI over all bands, and there are many
FBPs similar to the key FBP. We build a third-order tensor
by stacking these similar FBPs, named group of similar HSI
patches in Fig. 1. It is worth mentioning that utilizing the
nonlocal spatial similarity has achieved state-of-the-art per-
formance for the hyperspectral denoising problem [35]–[39].
Then, at the second stage, we unmix each group of similar HSI
patches by encoding the nonlocal spatial similarity and spectral
correlation in the corresponding abundance tensor. Finally, at
the last stage, we aggregate the estimated groups of similar
abundance patches to reconstruct the abundance tensor for the
HSI. With the flowchart in mind, we study the second stage,

that is, to unmix each group of similar HSI patches in the
following.

Denote Y(g) ∈ R
I×J×K as the third-order tensor grouped

by similar nonlocal HSI patches, where I is the number of
pixels, J is the number of spectral bands, and K is the number
of similar patches. In the following, we use Y to denote
Y(g) for notation simplicity. Notice that the mode-2 of the
third-order tensor Y is the spectral mode. Then, the LMM for
Y is written as

Y (2) = AX(2) + E(2)

which is equivalent to, under the definition of the tensor mode-
n multiplication

Y = X ×2 A + E (8)

where X is the I ×m × K fractional abundance tensor with m
being the number of endmembers, A ∈ R

J×m is the spectral
library, and E ∈ R

I×J×K is the noise tensor.
In order to exploit the structure information of the abun-

dance tensor X stacking by similar abundance patches,
we show the mode-n unfolding of X in Fig. 2. From Fig. 2, we
see that each mode-n unfolding of X is low-rank. We remark
that the low-rank property of the mode-n unfolding stems from
the spatial correlation of pixels within a small size HSI patch
for n = 1, from the high mutual coherence of the spectral
libraries for n = 2, and from the nonlocal similarity of the HSI
for n = 3. Therefore, to exploit the low-rankness characteristic
of each mode-n unfolding, we define the following weighted
tensor trace norm [50]:

�X�W ,∗ =
3�

n=1

�X(n)�wn ,∗ =
3�

n=1

rank(X(n))�
l=1

wl,nσl,n(X(n))

(9)
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Fig. 2. Illustration of the low-rank characteristic and the joint sparsity in the mode-n unfolding of a group of similar abundance patches.

where σl,n(X(n)) is the lth singular value of X (n) and wn =
[w1,n, . . . , wrank(X(n)),n]T is a nonnegative weighting vector
for X(n). Recall that the value of the weight wl,n is set to
1/3 for any l and n in [50]. Here, we propose to enhance the
sparsity of the singular values of X(n) by assigning different
weighting coefficients to different singular values, similarly
as in [28], [36], and [22]. We will show the details in
Section III-B. We note that the weighted nuclear norm has
been used to characterize a global sparsity prior inside the
tensor data in tensor completion problems [51].

We also see from Fig. 2 that each horizontal slice of the
abundance tensor X admits a joint-sparse property and it
therefore leads to a joint-sparse-blocks structure in the mode-2
unfolding matrix. This mainly due to the sparse assumption
and the spatial nonlocal similarity in the abundance tensor. It is
assumed that in sparse hyperspectral unmixing, only a small
portion of the m endmembers in the spectral library A will
be present in real HSIs. In other words, it is safe to assume
that each abundance vector along the endmember mode in
Fig. 2 has a sparse representation in terms of the potentially
very large spectral library. Then, the spatial nonlocal similarity
promotes that the corresponding abundance vectors of the
similar pixels in the same horizontal slice share the same
sparsity structure. It, therefore, follows a joint sparse structure
in each horizontal slice of the abundance tensor X . Clearly,
it is a generalization of the matrix case.

To utilize the joint sparsity of X , we define the following
weighted tensor �2,1-norm:

�X�Z,2,1 =
I�

i=1

�X i::�zi ,2,1 =
I�

i=1

m�
k=1

zk,i
��x[k]

i::
��

2 (10)

where x[k]
i:: is the kth row of X i:: and zi = [z1,i , . . . , zm,i ]T

is the i th column of the nonnegative weighting matrix
Z ∈ R

m×I . That said, we impose the joint sparsity on

each horizontal slice of X , i.e., X i:: ∈ R
m×K , via the

weighted �2,1-norm. Particularly, weighting coefficients zk,i s
are assigned differently to each row within each horizontal
slice and they will be adaptively updated, similarly as in [22].

Simultaneously imposing the low-rank property via (9)
and the joint sparsity via (10) on the abundance tensor X ,
we obtain the following tensor-based optimization problem:

min
X

1

2
�Y − X ×2 A�2

F + λ1�X�Z,2,1 + λ2�X�W ,∗
s.t. X ≥ 0 (11)

where λ1 and λ2 are nonnegative regularization parameters
and Z and W are two nonnegative weighting matrices.

B. NL-TSUn Algorithm

To unmix each group of similar HSI patches Y , we now
solve the model in (11). To begin, we let ι� be the indicator
function of a set �, i.e., ι�(x) = 0 if x ∈ � and ι�(x) = +∘
otherwise. Combining with (9) and (10), the model in (11)
becomes

min
X

1

2
�Y − X ×2 A�2

F + λ1

I�
i=1

�X i::�zi ,2,1

+λ2

3�
n=1

�X (n)�wn,∗ + ιR+(X ). (12)

Equivalently, we have

min
X ,M1,...,M6

1

2
�Y − M1 ×2 A�2

F + λ1

I�
i=1

�M2,i::�zi ,2,1

+ λ2(�M3(1)�w1,∗ + �M4(2)�w2,∗
+ �M5(3)�w3,∗)

+ ιR+(M6)

s.t. X = Ml, l = 1, . . . , 6 (13)

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 11,2020 at 09:30:46 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where M2,i:: is the i th horizontal slice of M2 and Ml(n) is the
mode-n unfolding of Ml , for l = 1, . . . , 6 and n = 1, 2, 3.

We now solve (13) under the ADMM framework. Define

Lμ(X ,M1, . . . ,M6; D1, . . . ,D6)

= 1

2
�Y − M1 ×2 A�2

F + λ1

I�
i=1

�M2,i::�zi ,2,1

+ λ2�M3(1)�w1,∗ + λ2�M4(2)�w2,∗ + λ2�M5(3)�w3,∗

+ ιR+(M6) + μ

2

6�
l=1

�X − Ml − Dl�2
F (14)

where μ > 0 is a penalty parameter. The ADMM framework
is then derived⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{Mt+1
1 , . . . ,Mt+1

6



= argmin

M1,...,M6

Lμ

�X t ,M1, . . . ,M6; Dt
1, . . . ,Dt

6

�
X t+1 = argmin

X
Lμ

�X ,Mt+1
1 , . . . ,Mt+1

6 ; Dt
1, . . . ,Dt

6

�
Dt+1

l = Dt
l − X t+1 + Mt+1

l , l = 1, . . . , 6.

(15)

It is easy to see that the minimization problem about Ml ,
l = 1, . . . , 6, can be decoupled and so we can solve these
subproblems separately.

1) For M1-subproblem, we have

min
M1

1

2
�Y − M1 ×2 A�2

F + μ

2

��X t − M1 − Dt
1

��2
F

= min
M1(2)

1

2
�Y (2) − AM1(2)�2

F

+ μ

2

∥
∥X t

(2) − M1(2) − Dt
1(2)

��2
F .

This is a least squares problem and we obtain

M t+1
1(2) = (AT A + μI)−1�AT Y (2) + μ

�
X t

(2) − Dt
1(2)

��
where I is an m × m identity matrix. With the fold
operator, we have

Mt+1
1 = fold2

�
M t+1

1(2)

�
. (16)

2) For M2-subproblem, we have

min
M2

λ1

I�
i=1

�M2,i::�zi ,2,1 + μ

2

��X t − M2 − Dt
2

��2
F .

Clearly, we can equivalently decouple the above mini-
mization problem to I parts, that is, for i th horizontal
slice of M2, we have

min
M2,i::

λ1�M2,i::�zi ,2,1 + μ

2

��X t
i:: − M2,i:: − Dt

2,i::
��2

F

(17)

for i = 1, . . . , I . Recall from [52] that each subproblem
admits a unique block solution, and the kth row of the
unique block solution M2,i::, i.e., m[k]

2,i::, of (17), can be
written explicitly as

(
mt+1

2,i::
�[k] = vect-soft λ1

μ zk,i

��
xt

i::
�[k] − �

d t
2,i::

�[k]�
(18)

for k = 1, . . . , m, i = 1, . . . , I , where (xt
i::)[k] and

(d t
2,i::)[k] are the kth rows of X t

i:: and Dt
2,i::, respectively,

and vect-softα(·) is a nonlinear operator defined by

vect-softα(x) = x
max{�x�2 − α, 0}

max{�x�2 − α, 0} + α
(19)

for ∀ x ∈ R
K and α > 0. Here, similarly as in

JSpBLRU, we employ a reweighting strategy to enhance
sparsity along rows in M t+1

2,i:: and for (18), set

zk,i = 1
∥
∥(

xt
i::

�[k] − �
d t

2,i::
�[k]��

2 + 	
(20)

where 	 = 10−16 is a small constant added to avoid
singularities. We note that the reweighting coefficient
zk,i is an extension of weights for reweighted �1 min-
imization [53]. It is shown in [22] that the abundance
estimation accuracy has been substantially improved by
using the reweighting coefficients. We will also show
the effectiveness of zk,i in (20) in Section IV-B. Then,
we get Mt+1

2 by stacking all the horizontal slices
M t+1

2,i::s, whose kth row is obtained from (18).
3) To solve the M3-subproblem, we first give some defin-

itions. For any matrix X , denote r = rank(X) and let σi

denote the i th singular value of X , for i = 1, . . . , r .
Denote elementwise ( · )+ = max( ·, 0) and X =
U Di ag(σ1, . . . , σr )V T be the singular value decompo-
sition (SVD) of X . Define the weighted singular value
thresholding operator SVTw̃,β(·) on X as

SVTw̃,β(X)

= U Di ag((σ1 − βw̃1)+, . . . , (σr − βw̃r )+)V T

with w̃ = [w̃1, . . . , w̃r ] being a nonnegative weighting
vector. We note that the weighting coefficient w̃i =
(1/(σi + 	)) has designed to increase the punishment
on smaller singular values and decrease the punishment
on large singular values simultaneously. This technique
has been widely used for many practical problems;
see, e.g., [22], [28], [51], [54], [55]. Consider the
M3-subproblem now. From (14) and (15), we get that

min
M3(1)

λ2�M3(1)�w1,∗ + μ

2

��X t
(1) − M3(1) − Dt

3(1)

��2
F .

(21)

Then, from [54] and [55], the closed-form solution
of (21) is

M t+1
3(1) = SVT

w1,
λ2
μ

�
X t

(1) − Dt
3(1)

�
. (22)

Here, similarly as in [54], [28], [55], [22], and [51],
we set w1 = [w1,1, . . . , wr1,1]T based on the singular
values of the argument of the SVT operator in (22). That
is, define σl,1 is the lth singular values of X t

(1) − Dt
3(1)

and r1 is the rank of X t
(1) − Dt

3(1), then

wl,1 = 1

σl,1 + 	
, l = 1, . . . , r1.

Then we have

Mt+1
3 = fold1

�
M t+1

3(1)

�
. (23)
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4) Note that the minimization problems with respect to M4
and M5 are similar to that of M3. Thus, we obtain that

Mt+1
4 = fold2

(
SVT

w2,
λ2
μ

�
X t

(2) − Dt
4(2)

��
Mt+1

5 = fold3
(
SVT

w3,
λ2
μ

�
X t

(3) − Dt
5(3)

��
. (24)

Here, we compute the weights w2 = [w1,2, . . . , wr2,2]T

and w3 = [w1,3, . . . , wr3,3]T similarly as w1. That is

wl,n = 1

σl,n + 	
, l = 1, . . . , rn (25)

in which σl,n is the lth singular value of X t
(n)− Dt

n+2,(n),
the argument of the SVT operator in (24), and rn is the
rank of X t

(n) − Dt
n+2,(n), for n = 1, 2, 3.

5) For M6-subproblem, we have

Mt+1
6 = argmin

M6

ιR+(M6) + μ

2

��X t − M6 − Dt
6

��2
F .

It is easy to obtain that

Mt+1
6 = max

�X t − Dt
6, 0

�
. (26)

6) For X -subproblem, it is to solve

min
X

μ

2

6�
l=1

��X − Mt+1
l − Dt

l

��2
F

and thus

X t+1 = 1

6

6�
l=1

�Mt+1
l + Dt

l

�
. (27)

7) Finally, we update Lagrange multipliers Dt+1
l , l =

1, . . . , 6, according to (15).
To make it more clear, we summarize the proposed

NL-TSUn in the following.

IV. EXPERIMENTS ON SIMULATED DATA

In this section, we illustrate the unmixing performance
of the proposed NL-TSUn algorithm on simulated hyper-
spectral data sets. We will compare NL-TSUn with five
state-of-the-art algorithms: SUnSAL [11], CLSUnSAL [12],
SUnSAL-TV1 [13], ADSpLRU2 [28], and JSpBLRU3 [22].
Our tests were done by using MATLAB R2016a on a PC with
3.7 GHz Intel Core i7 and 64 GB memory. The floating-point
precision is 10−16.

We use the signal-to-reconstruction error (SRE) and the root
mean square error (RMSE) to evaluate the performance of
unmixing results. They are defined as

SRE (dB) = 10 log10


1
N

�N
i=1 �xi�2

2
1
N

�N
i=1 �x̂i − xi�2

2

�

RMSE =
���� 1

m N

N�
i=1

�x̂i − xi�2
2

where N is the number of pixels, m is the number of
endmembers, and x̂i and xi are estimated and exact abundance

2Available online: http://members.noa.gr/parisg/demo_splr_unmixing.zip
3Available online: https://liangjiandeng.github.io

Algorithm 1 Pseudocode of NL-TSUn
1. Input: Yo and A
2. Construct groups of similar HSI patches {Y(g)}G

g=1
3. for each group Y(g) do
4. //Solve the problem (13) by ADMM
5. Initialize: X 0, D0

l , M0
l , l = 1, . . . , 6, and set t = 0

6. Select parameters: λ1, λ2, μ, maximum iterations
7. while not convergence do:
8. Compute Mt+1

1 by (16)
9. Compute Mt+1

2 by (18)
10. Compute Mt+1

3 by (23)
11. Compute Mt+1

4 and Mt+1
5 by (24)

12. Compute Mt+1
6 by (26)

13. Compute X t+1 by (27)
14. Update Lagrange multipliers Dt+1

l by (15)
17. t = t + 1
15. end while
16. Calculate X (g) = X t+1

18. end for
19. Aggregate {X (g)}G

g=1 to form the estimated abundance

tensor X̂ for Yo

vectors of the i th pixel, respectively. Generally, the higher
SRE values and lower RMSE values, the high quality of
the unmixing results. For all algorithms, the regularization
parameters are tuned to get maximum SRE values. We select
optimal regularization parameters for all compared algorithms
from the following sequence:

{0, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5,

10, 50}

and choose the optimal penalty parameter μ from {0.001, 0.01,
0.1, 1}.

We empirically set the HSI patch size 25 × 25, i.e., I = 625,
and K = 10 in NL-TSUn for all the experiments. When the
ADMM is applied to solve each group of similar HSI patches
in NL-TSUn, we adopt the termination criterion similarly as
in ADSpLRU and JSpBLRU. That is, define

r t =
���� 6�

l=1

∥
∥X t − Mt

l

��2
F , dt = μ

���� 6�
l=1

��Mt
l − Mt−1

l

��2
F

to be the Frobenius norms of the primal residual and the
dual residual at the t th ADMM iteration, respectively. Then,
we stop the iteration if both the following two conditions hold:

r t ≤ ζ, dt ≤ ζ

or when the number of iterations reached 500. Here, we set
ζ = ((3m + J )IK)1/2ζ rel and the positive relative tolerance
ζ rel is empirically set to 5·10−6. Similarly as the compared
algorithms SUnSAL, CLSUnSAL, SUnSAL-TV, ADSpLRU,
and JSpBLRU, we initialize X 0 = M0

l = fold2((AT A +
μI)−1 AT Y (2)) and D0

l = 0, for l = 1, . . . , 6.
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Fig. 3. True abundance maps of selected endmembers for Example 1. (Top
Row) Endmembers #1–#3. (Middle Row) Endmembers #4–#6. (Bottom Row)
Endmembers #7–#9.

A. Comparison With Different Algorithms

We now compare NL-TSUn with different unmixing algo-
rithms on the following two widely used simulated data cubes.

Example 1: The first data cube has 100 × 100 pix-
els with 100 bands per pixel. The spectral library A1 ∈
R

100×120 is a subset of a library of 262 spectral signatures
with 100 spectral bands generally found on satellites, from
the National Aeronautics and Space Administration (NASA)
Johnson Space Center (JSC) Spacecraft Materials Spectral
Database. According to LMM, nine endmember signatures
are randomly selected from A1 and the true correspond-
ing abundance maps are shown in Fig. 3. We note that
the exact abundance vector for each selected endmember is
obtained by stacking the corresponding abundance map. After
the above procedure, the true data cube is contaminated by
white Gaussian i.i.d. noise with SNR = 20, 30, and 40 dB,
respectively.

Example 2: The data cube contains 128 × 128 pixels
with 224 spectral bands. We use the spectral library A2 ∈
R

224×240: a randomly selected subset of the U.S. Geologi-
cal Survey (USGS) spectral library (splib06a),4 which com-
prises 498 spectral signatures with reflectance values measured
in 224 spectral bands, distributed uniformly ranging from 0.4
to 2.5 μm. We randomly choose five endmembers from A2 to
generate the true data cube by LMM. For illustrative purposes,
corresponding true abundance maps are shown in Fig. 4. Then,
the true data cube is contaminated by white Gaussian i.i.d.
noise with the same SNR values adopted for Example 1.

For different unmixing algorithms, we show true and
estimated abundance maps of endmembers #7 and #9 for
Example 1 in Figs. 5 and 6, respectively. Similar results

4Available online: http://speclab.cr.usgs.gov/spectral.lib06

Fig. 4. True abundance maps of selected endmembers for Example 2. (Top
Row) Endmembers #1–#3. (Bottom Row) Endmembers #4 and #5.

for endmembers #3 and #5 for Example 2 are shown in
Figs. 7 and 8, respectively. Other abundance maps show a
similar conclusion, so we omit here for space considerations.
In Figs. 5–8, we see that SUnSAL and CLSUnSAL give less
accurate estimations for SNR = 20 and 30 dB. It shows that
only exploiting sparsity of the abundance is hard to obtain
estimations with higher accuracy. We note that, however,
each of SUnSAL and CLSUnSAL has only one regularization
parameter and therefore costs much less computational time to
choose the optimal parameter than other compared algorithms.
SUnSAL-TV gives smoother estimations than SUnSAL and
CLSUnSAL, but the estimated maps are over-smooth for SNR
= 20 dB. ADSpLRU and JSpBLRU both delineate the regions
with high fractional abundance, but it is hard for them to
remove noise in the background for the high noise level
SNR = 20 dB. Clearly, NL-TSUn not only delineates the
high fractional abundance regions but also produces a smooth
background for all examined noise levels. The advantage is
especially clear under heavy noise. This is in line with the
observation from the HSI denoising problem that the use of
spatial nonlocal similarity helps to achieve better denoising
performance. For further comparisons, we list the SRE and
RMSE values by different unmixing algorithms in Table II. It
shows that NL-TSUn produces the best SRE and RMSE val-
ues, which is consistent with the observation from Figs. 5–8.

B. Reweighting Coefficient Choice and Effectiveness of the
Proposed Tensor-Based Regularizers

In the proposed model (11), we impose the low-rank
constraint via the weighted nuclear norm on each mode-n
unfolding of X and also impose the joint sparsity via the
weighted �2,1-norm on each horizontal slice of X . In the
following, we will first show the efficiency of reweighting
coefficients in the tensor-based regularizers and then illustrates
the low-rank and joint-sparse characters of the estimated
abundance tensors for groups of similar HSI patches.

1) Reweighting Coefficient Efficiency: Herein, we aspire to
demonstrate the merits emerging from the utilization of the
reweighting coefficients wl,n in (25) and zk,i in (20), which
are used to enhance the sparsity of the singular values of the
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Fig. 5. True and estimated abundance maps for endmember #7 by different unmixing algorithms for Example 1.

Fig. 6. True and estimated abundance maps for endmember #9 by different unmixing algorithms for Example 1.

mode-n unfolding X(n) and the joint sparsity of the horizontal
slice X i::, respectively. To this end, four cases are considered
as below.
NL-TSUn

1) with reweighting wl,n and zk,i .
2) with only reweighting zk,i , i.e., zk,i as in (20) but

wl,n = 1.
3) with only reweighting wl,n , i.e., wl,n as in (25) but

zk,i = 1.
4) without reweighting wl,n and zk,i , i.e., zk,i = wl,n = 1.

Table III lists the SRE (dB) and the RMSE values of
the above four cases for Example 1 with SNR = 20 dB.

It shows the efficiency of the reweighting coefficients zk,i

and wl,n in NL-TSUn. Recall that in the second stage of
NL-TSUn, we unmix each group of similar HSI patches
under the ADMM framework. Here, for further illustration
purpose, we study the abundance estimation accuracy when
unmixing 12 groups of similar HSI patches. In particular,
we show the SRE values obtained by NL-TSUn with different
choices of weights zk,i and wl,n in Fig. 9. It is clear that
NL-TSUn with reweighting both wl,n and zk,i gives optimal
SRE values for all considered groups, which is in line with the
observation from Table III. We also note that other simulated
tests show a similar conclusion so we omit the details for space
consideration.
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Fig. 7. True and estimated abundance maps for endmember #3 by different unmixing algorithms for Example 2.

Fig. 8. True and estimated abundance maps for endmember #5 by different unmixing algorithms for Example 2.

Fig. 9. Performance of NL-TSUn with different weighting coefficients.

2) Low-Rankness Regularizer: For the low-rank regulariza-
tion term, we plot the singular values of the mode-n unfoldings

of a true third-order abundance tensor and its estimation by
NL-TSUn for Example 1 with SNR = 20 dB in Fig. 10.
As shown in the figure that the low-rank property is clear in
the unfolding matrices, and moreover, the estimated singular
values of each mode-n unfolding are close to the exact ones. It
shows the rationality and the effectiveness of the low-rankness
constraint on the abundance tensor.

3) Joint-Sparsity Regularizer: Considering the joint-sparse
regularization, we show eight horizontal slices of a true
third-order abundance tensor and its estimations by NL-TSUn
for Example 1 with SNR = 20 dB in Fig. 11. Recall that
each group of similar abundance patches is a tensor of size
625 × 120 × 10 with 25 × 25 pixels and 120 endmembers
and ten similar patches. We note that we list eight horizontal
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TABLE II

SRE (dB) AND RMSE BY DIFFERENT UNMIXING ALGORITHMS FOR EXAMPLES 1 AND 2

TABLE III

SRE (dB) AND RMSE BY NL-TSUN WITH DIFFERENT WEIGHTING COEFFICIENTS FOR EXAMPLE 1 WITH SNR = 20 dB

Fig. 10. Singular values of the mode-n unfoldings of a true third-order abundance tensor and its estimation by NL-TSUn for Example 1 with SNR = 20 dB.
(a) Mode-1. (b) Mode-2. (c) Mode-3.

slices for the 15th abundance tensor and these horizontal slices
are selected corresponding to the fullband pixels located in
the first, in the middle, and in the last rows and columns in
the HSI patches. The results of other horizontal slices and
abundance tensors show a similar conclusion, so we omit them
here for space considerations. We clearly see from Fig. 11 that
each horizontal slice has respective joint sparsity behavior.
NL-TSUn maintains the behavior and provides satisfactory
estimations. As a result, both the low-rank property and the
joint sparsity characterize the abundance tensor. It therefore

highlights the significance of simultaneous incorporation of the
low-rank representation and the joint sparsity on the abundance
tensors for hyperspectral unmixing problem.

C. Convergence Analysis

Herein, we numerically show the convergence analysis when
the ADMM is applied to solve the optimization problem
in (13) for each group of similar HSI patches. We note that
it is hard to guarantee the theoretical convergence analysis
since the adoption of the reweighting strategies for wl,n and
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Fig. 11. Horizontal slices of (top row) a true third-order abundance tensor and (bottom row) its estimation by NL-TSUn for Example 1 with SNR = 20 dB.
The slice numbers (from left to right) are: 1, 13, 25, 313, 325, 601, 613, and 625.

Fig. 12. Objective function value versus iteration for Examples 1 and 2 when
the ADMM is applied to solve (13).

Fig. 13. Plot of SRE (dB) against iteration of NL-TSUn for Example 1 with
SNR = 20 dB.

zk,i renders the model (13) nonconvex. Fig. 12 depicts the
objective function value versus iteration for Examples 1 and 2.
Here for each noise level, the plot of one group of similar HSI
patches is presented. Other groups show similar behavior so
we omit them here. We see from Fig. 12 that, despite the fact
that the convergence is not yet theoretically guaranteed, the
convergence behavior becomes stable as the iteration number
increases.

D. Parameter Discussion

In this section, we first test different maximum iteration
numbers and then show the role of regularization parameters

Fig. 14. SRE (dB) as a function of regularization parameters λ1 and λ2 in
NL-TSUn for Example 1.

Fig. 15. USGS map showing the location of different minerals in the Cuprite
mining district in Nevada.

λ1 and λ2 in NL-TSUn. Fig. 13 plots the SRE value
against iteration for Example 1 with SNR = 20 dB. We see
from Fig. 13 that setting the maximum iteration number to
be 500 is enough to obtain satisfactory estimations. Fig. 14
plots SRE (dB) values as a function of parameters λ1 and
λ2 for Example 1. We see from the figure that both optimal
λ1 and λ2 decrease as SNR gets higher. Optimal values for
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Fig. 16. Qualitative comparison between the classification maps of the AVIRIS Cuprite subscene produced by Tetracorder 4.4 and the abundance maps
estimated by different unmixing algorithms for (top row) Alunite and (bottom row) Chalcedony. From left to right: Tetracorder 4.4, SUnSAL, CLSUnSAL,
SUnSAL-TV, ADSpLRU, JSpBLRU, and NL-TSUn.

Fig. 17. Classification maps of the regions in red boxes from Fig. 16 for (the first two rows) Alunite and (the last two rows) Chalcedony. From left to right:
Tetracorder 4.4, SUnSAL, CLSUnSAL, SUnSAL-TV, ADSpLRU, JSpBLRU, and NL-TSUn.

λ2 are greater than or equal to those for λ1. We also see
that optimal parameter values are positive for all SNR levels,
saying again the effectiveness of both low-rank and joint-
sparse-based regularizations in NL-TSUn for hyperspectral
unmixing.

V. EXPERIMENT ON REAL DATA

In this example, we test different unmixing algorithms on
the widely used Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) Cuprite data set.5 We use a subscene containing
200 ×170 pixels with 188 spectral bands. The spectral library
A3 ∈ R

188×240 is generated from the USGS library which
includes all exposed minerals of interest. Fig. 15 shows a
mineral map produced in 1995 by USGS. Since the detailed
ground truth information is unavailable, we just qualitatively
assess obtained abundance maps by different unmixing algo-
rithms, with reference to the Tetracorder 4.4 software product6

[56]. Similarly as in [11]–[13], [22], [28], the regularization

5Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
6Available online: https://speclab.cr.usgs.gov/PAPERS/tetracorder/

parameters for all algorithms are set to 0.001 except for
CLSUnSAL with λ = 0.01.

Fig. 16 shows estimated abundance maps by different
unmixing algorithms and Tetracorder 4.4 software for Alunite
and Chalcedony. Particularly, the regions in red boxes are
zoomed in and displayed in Fig. 17. We see from the two fig-
ures that all unmixing algorithms delineate the regions consid-
ered as respective materials. Nevertheless, NL-TSUn provides
fractional abundance maps with more clear backgrounds and
captures more spatial details. Generally, by exploiting nonlocal
spatial similarity of HSI and imposing the low-rankness con-
straint and the joint sparsity on fractional abundance tensors,
NL-TSUn is effective for unmixing real hyperspectral data.

VI. CONCLUSION AND FUTURE WORK

In this article, we have proposed a nonlocal tensor-based
unmixing algorithm. We propose to exploit nonlocal spatial
information in the HSI, instead of that in abundance maps. In
this vein, we first group similar patches in the HSI and then
introduce a novel unmixing model for these groups. Particu-
larly, we introduce the weighted tensor �2,1-norm to describe
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the joint sparsity of third-order abundance tensors, i.e., the
groups of similar abundances. Simultaneously, we exploit the
low-rank property of abundance tensors through the weighted
tensor trace norm. The reweighting strategies have been
employed in the weighted norms to enhance the sparsity on
singular values and the row sparsity in each horizontal slice.
Simulated and real-data experiments have demonstrated the
effectiveness of the proposed algorithm, compared with other
related state-of-the-art unmixing techniques. The derivation of
more computationally efficient nonlocal techniques is currently
under investigation.
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