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Detail Injection-based Deep Convolutional Neural
Networks for Pansharpening
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Abstract—The fusion of high spatial resolution panchromatic
data with simultaneously acquired multispectral data with lower
spatial resolution is a hot topic, which is often called pansharp-
ening. In this paper, we exploit the combination of machine
learning techniques and fusion schemes introduced to address
the pansharpening problem. In particular, deep convolutional
neural networks are proposed to solve this issue. These latter
are combined first with the traditional component substitution
and multi-resolution analysis fusion schemes in order to estimate
the non-linear injection models that rule the combination of
the upsampled low resolution multispectral image with the
extracted details exploiting the two philosophies. Furthermore,
inspired by these two approaches, we also developed another
deep convolutional neural network for pansharpening. This is
fed by the direct difference between the panchromatic image
and the upsampled low resolution multispectral image. Extensive
experiments conducted both at reduced and full resolutions
demonstrate that this latter convolutional neural network outper-
forms both the other detail injection-based proposals and several
state-of-the-art pansharpening methods.

Index Terms—Deep Convolutional Neural Network, Com-
ponent Substitution, Multi-resolution Analysis, Pansharpening,
Image Fusion, Remote Sensing.

I. INTRODUCTION

P ansharpening has become a fundamental problem in re-
mote sensing image processing, since it can fuse a high

spatial resolution panchromatic (PAN) image and a low spatial
resolution multispectral (MS) image in order to obtain an
MS image with the highest (PAN) spatial resolution. PAN
and MS images are quite common in the field of remote
sensing imaging, and they are usually simultaneously acquired
by sensors mounted on many satellites, such as IKONOS,
WorldView-2, and WorldView-3. Pansharpening has attracted
the interest of the scientific community. This is justified by
the contest launched by the Data Fusion Committee of the
IEEE Geoscience and Remote Sensing Society in 2006 [3],
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Fig. 1: First row: flowchart for pansharpening on an 8-band
WorldView-3 satellite data with a spatial resolution factor
equal to 4. The figure includes the low spatial resolution MS
image, the PAN image, and the ground-truth image. Second
and third rows: the pansharpened images and the correspond-
ing absolute error maps of three (high performance) deep
CNNs, i.e., PanNet (SAM/ERGAS/Q8 = 5.05/3.33/0.936) [1],
DiCNN1 (5.02/3.22/0.945) [2], and the proposed Fusion-Net
(4.63/3.02/0.951). In the second row, the fused products are
represented in natural colors. From the third row, it is clear that
the proposed Fusion-Net yields the darker absolute error map
implying superior performance with respect to the competitors.

[4] and many recently published review papers [5], [6]. Fur-
thermore, pansharpened products have attracted the interest of
some commercial companies, e.g., Google Earth, as well as
pansharpening has been exploited as preliminary a step for
several image processing tasks, e.g., change detection [7], [8].

Most of the pansharpening works can be divided into
four categories, i.e., component substitution (CS) meth-
ods, multi-resolution analysis (MRA) approaches, variational
optimization-based (VO) techniques, and machine learning
(ML) approaches.

CS and MRA approaches play an important role in the
community of pansharpening. They have shown promising
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performance with a balanced computational burden. The CS-
based methods rely on the concept of the projection of the
MS image into a new domain, where the spatial information
can be easily separated into a component, usually called
intensity component. Then, the (possibly equalized) PAN
image can be substituted with the intensity component. The
sharpened version of the MS image is obtained thanks to
the inverse projection bringing the data in the original mul-
tispectral domain. CS-based methods can generate outcomes
with high spatial fidelity paid by a usually greater spectral
distortion. Some powerful instances of methods belonging to
this category are the band-dependent spatial-detail with local
parameter estimation (BDSD) [9], the robust band-dependent
spatial-detail (BDSD-PC) method [10], the partial replacement
adaptive component substitution (PRACS) [11], and Gram-
Schmidt (GS) spectral sharpening [12].

MRA-based approaches inject spatial details extracted from
the PAN image through a multi-resolution analysis frame-
work into the MS image in order to get the high spatial
resolution MS image. MRA-based products preserve spectral
information, but can suffer from spatial distortion. Examples of
methods into this class are the smoothing filter-based intensity
modulation (SFIM) [13], the additive wavelet luminance pro-
portional (AWLP) [14], the “à-trous” wavelet transform [15],
the Laplacian pyramid (LP) [16], the generalized Laplacian
pyramid (GLP) [17], [18], the GLP with robust regression [19],
and the GLP with full-scale regression (GLP-Reg) [20].

Recently, VO approaches have shown competitive ability
in addressing the pansharpening issue. Techniques belonging
to this class include: Bayesian methods [21]–[23], variational
approaches [24]–[36], and compressed sensing techniques
[37]–[39]. Despite their formal mathematical elegance, VO
approaches provide only incremental performance improve-
ments with respect to the state-of-the-art of CS and MRA
methods, such an improvement comes at the cost of high
computational burden and presence of many parameters to be
tuned explaining why CS and MRA are nowadays commonly
advocated both for benchmarking and practical uses.

With the tremendous improvements of hardware, convolu-
tional neural networks (CNNs) have recently become a power-
ful tool to deal with pansharpening and its related applications,
see e.g., [1], [2], [40]–[54]. The CNN-based methods depend
on the large-scale dataset training to learn a non-linear func-
tional mapping between the low spatial resolution MS images
and the high spatial resolution multispectral images. After the
training phase, it is easy to predict/compute the pansharpened
image by the learned non-linear mapping. In [41], Masi et
al. [41] proposed first a simple and effective CNN architec-
ture with three layers called pansharpening neural network
(PNN). This architecture is mainly based on a previous CNN
architecture for single image super-resolution [55] and yields
state-of-the-art pansharpening outcomes. In [52], Liu et al.
presented a good way to inject the high-pass details of the
PAN image into the upsampled MS image, even by exploiting
classical injection gains. This way is a bit like the scheme
of traditional CS and MRA methods, but the extraction of
the high-pass details is not in agreement with the classical
procedures performed by CS and MRA approaches. In [1],

Yang et al. proposed a deeper network architecture than PNN,
which is called PanNet. The PanNet architecture incorporates
domain-specific knowledge and mainly focuses on two im-
portant issues, i.e., spectral and spatial preservation, obtaining
state-of-the-art results. Furthermore, due to the use of high-
pass filtering, the given architecture also shows the relevant
ability of network generalization. In [2], He et al. proposed a
detail injection-based convolutional neural network (DiCNN).
In particular, the authors developed two detail injection-based
architectures, i.e., DiCNN1, whose detail injection depends
on both MS and PAN images, and DiCNN2, whose detail
injection depends only on PAN images. DiCNN2 is designed
to alleviate the computational burden, instead, DiCNN1 is
more oriented to high quantitative performance getting state-
of-the-art results. However, there is still room for improvement
focusing on aspects as network complexity, training time,
robustness, and so forth.

In this paper, we propose deep CNNs to address the
pansharpening problem, even accounting for fusion schemes
proposed in literature. In particular, we focus our attention
on traditional CS and MRA frameworks. The details are
extracted using these two philosophies. Instead, the non-
linear injection model is estimated through CNNs. These
approaches are here named CS-Net and MRA-Net, respec-
tively. Inspired by these solutions, we further investigate on
this idea feeding the network with details directly extracted
by differencing the single PAN image with each MS band.
This solution allows us to avoid compromising the spatial
information with a pre-processing step using detail extraction
techniques proposed in classical pansharpening approaches
letting the CNN spectrally adjust the extracted details (e.g.,
the details are clearly biased) through the estimation of the
non-linear and local injection model. This approach will be
called Fusion-Net from hereon. The proposed approaches
are tested on several datasets acquired by WorldView-2,
WorldView-3, GaoFen (GF)-2 and QuickBird (QB) datasets.
The experimental analysis is conducted both at reduced and
full resolutions. The benchmark consists of state-of-the-art
CS and MRA approaches and machine learning methods
for pansharpening. The proposed Fusion-Net method clearly
shows state-of-the-art performance outperforming the methods
in the adopted benchmark both quantitatively and qualitatively.
Finally, discussions about network complexity, training time,
convergence, and robustness are provided to the readers for all
the compared CNN approaches.

In summary, the main contributions of this work are:
1) Two physically justified CNNs (i.e., CS-Net and MRA-

Net) have been proposed deriving them from the tradi-
tional CS and MRA frameworks.

2) Inspired by CS-Net and MRA-Net, the Fusion-Net
has also been proposed reaching state-of-the-art per-
formance, see, e.g., the comparison among the high
performance CNNs in Fig. 1 for a WorldView-3 dataset.
Moreover, the Fusion-Net has a simple architecture with
fewer network parameters, thus resulting more effective
than some previously developed network architectures
for pansharpening.

3) A broad experimental analysis has been provided based
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on several datasets. The performance is assessed both at
reduced and full resolutions. The numerical outcomes
are also corroborated by a qualitative analysis. Finally,
a deep discussion on the network generalization, conver-
gence property, computational time, and robustness on
large datasets has been provided to the readers for all
the considered CNN approaches.

The paper is organized as follows. The related works and
motivations are introduced in Sect. II. The proposed three
network architectures will be detailed in Sect. III. Sect. IV is
devoted to the description of the experimental results and the
related discussions. Finally, conclusions are drawn in Sect. V.

II. RELATED WORKS AND MOTIVATIONS

The proposed network is initially inspired by two traditional
pansharpening frameworks, i.e., CS and MRA. Therefore, we
will firstly introduce them in this section, then we will move
towards the motivations under the choice of the proposed
network architectures.

A. CS

The general fusion equation for CS-based methods is as
follows:

M̂Si = M̃Si + gi (P− IL) , i = 1, 2, · · · , B, (1)

where M̂Si ∈ RM×N is the i-th band of the high spatial
resolution MS image, M̃Si ∈ RM×N is the i-th band of the
upsampled version of the low spatial resolution MS image,
gi ∈ R is the i-th injection coefficient (a real number
for global approaches) that controls the injection of the ex-
tracted details, P ∈ RM×N represents the PAN image, and
IL ∈ RM×N is the intensity component, generally defined
as IL =

∑B
i=1 ωiM̃Si, where ωi ∈ R is the i-th weight.

Many CS-based pansharpening algorithms rely upon (1), just
changing the ways to estimate the injection coefficients gi and
the weights ωi, see, e.g., [9], [11]–[13].

Equation (1) could be further rewritten in the following
multi-band form,

M̂S = M̃S + g �
(
PD − ID

L

)
, (2)

where M̂S ∈ RM×N×B and M̃S ∈ RM×N×B are ob-
tained by stacking the bands M̂Si, i = 1, 2, · · · , B and
M̃Si, i = 1, 2, · · · , B, respectively, PD ∈ RM×N×B and
ID
L ∈ RM×N×B are yielded by duplicating along the spectral

dimension the PAN image, P, and the intensity component,
IL, respectively, g = (g1, g2, · · · , gB)T ∈ RB is a vector of
coefficients gi as in (1), and � is an operator indicating that the
i-th element of g multiplies the i-th spectral band of PD−ID

L .

B. MRA

Similar as the CS-based method, the MRA-based method
follows the following equation:

M̂S = M̃S + g �
(
PD −PD

L

)
, (3)

where M̂S, M̃S, PD, g and the operator � have the same def-
initions as in (2). Different from ID

L in (2), PD
L ∈ RM×N×B

is yielded by duplicating along the spectral dimension the PL

image that represents the low-pass spatial resolution version
of the PAN image, P. By differencing PD and PD

L , i.e.,
PD−PD

L , the PAN spatial details can be extracted. Classical
MRA approaches differ from each other in the way to extract
PAN details and how to estimate the injection coefficient g in
(3), see, e.g., [14], [15], [17].

C. Motivations

The CS and MRA approaches have achieved promising
performance in the field of pansharpening. However, a big
limitation for both the classes is the common assumption of
using linear injection models, which does not generally hold
having a look at the relative spectral responses of sensors
usually exploited for pansharpening (e.g., it is easy to note
the overlaps among the MS spectral responses).

This consideration has motivated us to avoid linear injection
models developing non-linear approaches, aiming of replacing
the detail injection phases in both CS and MRA methods. Deep
convolutional neural networks (DCNNs) can easily manage
this non-linear mapping task due to the fact that they are
able to reproduce strong nonlinearities in the data. Thus,
they represent the best solution for the problem at hand.
In particular, we still follow the general classical framework
based on two phases: i) detail extraction and ii) detail injection
into the original MS image. But, we address the issue of non-
linear and local estimation of injection coefficients leveraging
on DCNNs. Thus, in what follows, we will present the three
proposed solutions based on different DCNN architectures for
pansharpening (i.e., CS-Net, MRA-Net, and Fusion-Net).

III. PROPOSED NETWORK ARCHITECTURES

This section is devoted to the presentation of the DCNNs
proposed in this work. We will present first the two CS-
and MRA-based networks. Afterwards, the Fusion-Net will
be detailed.

A. CS-Net

Let us recall (2), in which the pansharpened product M̂S
is equal to the sum of the upsampled MS image M̃S and
the injected details g �

(
PD − ID

L

)
. In this equation, the

upsampled MS image M̃S holds the spatial information at
low resolution and

(
PD − ID

L

)
provides the high frequency

details, injected through g.
Equation (2) requires the estimation of the injection coeffi-

cients g. Instead, we ignore the injection coefficients consid-
ering the pansharpened image, M̂S, consists of the upsampled
MS image M̃S plus the details coming from the non-linear
mapping provided by a DCNN feeding it with

(
PD − ID

L

)
. In

summary, the CS-Net can be summarized as follows:

M̂S = M̃S + fΘCS
(PD − ID

L ), (4)

where fΘCS
is the non-linear mapping with the network pa-

rameter ΘCS that could be learned from a large-scale training
dataset. Several solutions to get the weights ωi, i = 1, · · · , B
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Fig. 2: The architecture of the CS-Net. The upsampling is performed using a polynomial kernel with 23 coefficients [17]. For
“NetWork”, please refer to Sect. III-D.

Fig. 3: The architecture of the MRA-Net. The upsampling is performed using a polynomial kernel with 23 coefficients [17].
For “NetWork”, please refer to Sect. III-D.

for IL are given by the pansharpening literature, from con-
stant to band-dependent (estimated) weights. From our broad
experimental analysis, comparable results can be obtained by
the CS-Net using these different intensity components.

Starting from (4), it is easy to built the corresponding
network architecture, see Fig. 2. In particular, the final loss
function for the CS-Net can be defined under the metric of
mean squared error (MSE) computed on training examples.
Hence, we have:
Loss(ΘCS) =

1

n

n∑
k=1

‖M̃S{k} + fΘCS

(
PD
{k} − ID

L{k}

)
−GT{k}‖2F ,

(5)

where n represents the number of training examples, ‖ · ‖F is
the Frobenius norm, and GT{k} is the k-th example extracted
from the ground-truth (GT) image. By minimizing the loss
function (5), the network fΘ will be enforced to automatically
learn an optimal mapping with parameters ΘCS . Thus, the
fusion can be completed by summing the weighted spatial
details to the upsampled MS image following (4).

B. MRA-Net

Similar to the analysis of the CS-Net, we derive the architec-
ture of MRA-Net. The pansharpened image M̂S in (3) consists
of the upsampled MS image M̃S plus the injected details
g�
(
PD −PD

L

)
. Again, we ignore the injection coefficients g

by imposing a non-linear mapping function estimated through
a DCNN fed by

(
PD −PD

L

)
. Therefore, the MRA-Net can

be summarized as follows:

M̂S = M̃S + fΘMRA
(PD −PD

L ), (6)

where fΘMRA
is the non-linear mapping function with network

parameters ΘMRA. Several solutions to get PL from P
are given by the pansharpening literature, from average to
Gaussian filters. Again, from our broad experimental analysis,
comparable results can be obtained by the MRA-Net using
these different ways to spatially filter the PAN image.

Using (6), it is easy to design the network architecture of
the MRA-Net, see Fig. 3. In particular, the loss function of



5

Fig. 4: The architecture of the Fusion-Net. The upsampling is performed using a polynomial kernel with 23 coefficients [17].
For “NetWork”, please refer to Sect. III-D.

the MRA-Net is defined as follows:
Loss(ΘMRA) =

1

n

n∑
k=1

‖M̃S{k} + fΘMRA

(
PD
{k} −PD

L{k}

)
−GT{k}‖2F ,

(7)

where the definitions of symbols are the same as that of (5).

C. Fusion-Net

CS-Net and MRA-Net have been developed starting from
the two classical fusion schemes related to CS and MRA.
Thus, they have a solid and physical justification rooted in
the pansharpening literature. However, in order to extract
the details, preliminary assumptions should be done either
on the shape of the spatial filters (for MRA-Net) or on the
spectral model ruling the projection of the MS image into the
PAN domain (for CS-Net). Errors in this phase can have a
great impact on the outcomes reducing the performance of
the proposed approaches. Thus, aiming of having a detail-
based architecture, but avoiding the above-mentioned issue,
the solution of subtracting the duplicated version of the PAN
image, PD, with the upsampled MS image, M̃S, is advisable.
This has also the advantage to alleviate the computation
burden of the approach avoiding to calculate ID

L or PD
L . The

limitation of this solution is instead related to the strong
spectral distortion introduced in the extracted details (e.g.,
biased details) that can be easily compensated by the network
during its training phase.

Another clear issue in the design of CS-Net and MRA-Net
is that only data projected into the PAN domain are presented
to the DCNNs. Namely, the inputs of the networks are
practically monochromatic images (i.e., without any spectral
content). Thus, both the CS-Net and the MRA-Net receive
no spectral information from these data. The networks fed in
this way are not able to adequately reconstruct image features
along the spectral direction, even training them with enough
examples and a proper number of iterations. Instead, the use of
PD−M̃S as details to feed the network has the advantage to
intrinsically introduce the spectral information. All these cues

are supported by the experimental analysis showing that the
Fusion-Net outperforms the other two proposed approaches.

Similarly to the CS-Net and the MRA-Net, we ignore
the injection coefficients g in the general fusion equation
of CS/MRA methods, allowing a DCNN to automatically
estimate the non-linear injection model. The Fusion-Net can
be summarized as follows:

M̂S = M̃S + fΘFS
(PD − M̃S), (8)

where fΘFS
is the non-linear mapping with network parame-

ters ΘFS .
Starting from (8), the network architecture of the proposed

Fusion-Net is described in Fig. 4. In particular, the loss
function for the Fusion-Net is as follows:
Loss(ΘFS) =

1

n

n∑
k=1

‖M̃S{k} + fΘFS

(
PD
{k} − M̃S{k}

)
−GT{k}‖2F ,

(9)

where the definitions of symbols are the same as that of (5).
Note that the Fusion-Net proposed in the work can be

also regarded as a support strategy for deep learning, thus
improving performance of existing methods. Please, refer to
Sect. IV for details about the performance gains.

D. Network selection

We have proposed three deep network architectures for
pansharpening, i.e., CS-Net, MRA-Net, and Fusion-Net. They
all involved a subnetwork for training, i.e., “NetWork” (see
the solid green boxes in Figs. 2-4). The main structure of
“NetWork” is presented in Fig. 5(a). Wherein, we choose
an effective network recently proposed in literature, called
ResNet [56], as the subnetwork of the proposed architectures,
since the ResNet can bring the conventional CNN to deeper
layers leading to effective and competitive performance in
many image applications. Fig. 5 shows the basic structure of
one ResNet block, in which one skip connection for every
two convolutional layers is shown. In practical experiments,
we need to empirically tune the number of ResNet blocks to
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Fig. 5: (a) The structure of “NetWork” with several ResNet
blocks, see the solid green boxes in Figs. 2-4. Note that (3×
3, 32) represents 32 convolution kernels with size 3×3, and s
depends on the number of multispectral bands (e.g., for 4-band
image s = 4 and for 8-band image s = 8). (b) The details
of one ResNet block [56] that is used in our architectures.
Each ResNet block contains two non-linear rectified linear unit
(ReLU) activation functions. In particular, the ResNet block is
slightly different in the case of “MRA-Net”, where we have
(3× 3, 64). For further details, please, refer to Tab. I.

Fig. 6: The generation process of the training dataset by Wald’s
protocol. Note that the data indicated with the red text are the
generated training data used to feed the networks, i.e., the GT,
the low spatial resolution MS (LRMS) image, the PAN, and
the upsampled MS image (M̃S).

control the final convolutional layers, aiming to achieve the
best performance (see the parameter setting in Sect. IV).

E. Generation of training data

In this work, we train the CNNs on WorldView-3 (8-bands)
satellite datasets that can be easily downloaded on the public
website1. After downloading the datasets, we simulate 12,580
PAN/MS/GT image pairs with the size 64×64, 16×16×8, and
64×64×8, respectively, then splitting them into 70/20/10% for

1http://www.digitalglobe.com/samples?search=Imagery

training (8,806 examples2)/validation (2,516 examples)/testing
(1,258 examples). Note that since the GT images are not avail-
able, we need to follow Wald’s protocol [57] to get them. The
process of simulating the training dataset by Wald’s protocol
is illustrated in Fig. 6. It mainly contains the following steps:
i) downsampling the original PAN and the original MS image
by a resolution factor 4 using modulation transfer function
(MTF) based filters, seeing the downsampled PAN image as
the training PAN image and the downsampled MS image as the
training MS image; ii) Taking the original MS image as the
training GT image; iii) Upsampling the training MS image
by using a polynomial kernel with 23 coefficients [17] and
interpreting the output as the upsampled MS image. Following
steps i)-iii), it is easy to generate the training data. The
validation and testing datasets are similarly built.

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed network archi-
tectures (i.e., CS-Net, MRA-Net and Fusion-Net) with some
recent state-of-the-art pansharpening approaches belonging to
the CS, the MRA, and the ML classes. First of all, the
employed sensors, the benchmark, and the adopted quality in-
dexes will be described. Afterwards, the experimental analysis
both at reduced and full resolutions will be described.

A. Datasets

Several datasets have been acquired by the WorldView-
2 and WorldView-3 sensors. The former provides a high-
resolution PAN channel and eight MS bands. Four standard
colors (red, green, blue, and near-infrared 1) and four new
bands (coastal, yellow, red edge, and near-infrared 2) are
acquired. Although the native spatial resolution would be
greater, the images are distributed with a pixel size of 0.5 m
and 2 m for PAN and MS, respectively. The spatial resolution
ratio is equal to 4. The radiometric resolution is 11 bits.
WorldView-3 data have the same features as WorldView-2
data, but with a spatial resolution of about 0.3 m for the
PAN channel and of about 1.2 m for the MS bands, and a
radiometric resolution of 11 bits. Moreover, we also assess the
performance on 4-band (red, green, blue, and near-infrared)
datasets. In particular, QuickBird (QB) data are considered
having a spatial resolution of 2.4 m and 0.61 m for the MS
and PAN images, respectively, and a radiometric resolution
of 11 bits. Finally, images acquired by the GaoFen (GF)-2
sensor have been exploited with a spatial resolution of 3.2 m
and 0.8 m for the MS and PAN images, respectively, and a
radiometric resolution of 10 bits (please, see Sect. IV-H for
more details).

B. Benchmark

The proposed benchmark consists of the following methods:
the MS image interpolation using a polynomial kernel with

2We tried to simulate the same training dataset as in [1] (PanNet), but, in
the original paper, the authors do not indicate which WorldView-3 datasets
are selected for the training. However, in our work, all deep learning-based
methods are trained on the same dataset for fair comparison.
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23 coefficients (EXP) [17], the Gram-Schmidt sharpening
approach (GS) [12], the smoothing filter-based intensity mod-
ulation (SFIM) [13], the partial replacement adaptive compo-
nent substitution approach (PRACS) [11], the band-dependent
spatial-detail method (BDSD) [9], the robust band-dependent
spatial-detail approach (BDSD-PC) [10], the GLP with MTF-
matched filter [58] and multiplicative injection model [59]
(GLP-HPM), the GLP with MTF-matched filter [58] and
regression-based injection model (GLP-CBD) [3], [17], the
GLP with full-scale regression (GLP-Reg) [20], the state-of-
the-art CNN-based method for pansharpening (PNN) [41]3,
the state-of-the-art CNN-based method for pansharpening
(DRPNN) [44]4, the state-of-the-art CNN-based method for
pansharpening (PanNet) [1]5, the state-of-the-art CNN-based
method for pansharpening (DiCNN1) [2]6, the state-of-the-art
CNN-based method with dilated convolution for pansharpen-
ing (DMDNet) [60]7, and the proposed CS-Net, MRA-Net,
and Fusion-Net. Note that the source codes of all CS and
MRA based methods can be found on public websites 8.

For a fair comparison, all the compared CNNs are trained on
Python 3.5.2 with Tensorflow 1.0.1 on a desktop PC equipped
with a GPU NVIDIA GeForce GTX 1080 with 8GB.

C. Quality assessment

The performance assessment is conducted both at reduced
and at full resolutions. The former is performed using the
spectral angle mapper (SAM) [61], the relative dimensionless
global error in synthesis (ERGAS) [62], the spatial correlation
coefficient (SCC) [63], and the universal image quality index
for 4-band images (Q4) and 8-band images (Q8) [64]. In
particular, the ideal value for Q4, Q8 and SCC is 1, while
for SAM and ERGAS is 0. Furthermore, to evaluate the
performance at full resolution, we employ the QNR, the Dλ,
and the Ds indexes [6]. The QNR has an ideal value of 1,
instead Dλ and Ds have an ideal value of 0.

D. Parameters tuning

Before going through the description of the experimental
results, the tuning parameters of the CNN-based approaches
are shown. As mentioned in Sect. III-E, the training data for
PanNet and DiCNN1 in this work are different from that of
their original papers, thus it may lead to slightly different
optimal parameters. We tried to do our best to have the highest
performance for both the PanNet and the DiCNN1 with a
full parameter tuning in order to have a fair comparison. We

3Note that the given source code in Open Remote Sensing does not
contain the trained models for WV2 and WV3, thus we re-implemented the
network with default parameters in Python using Tensorflow for simplicity of
comparison.

4It is not easy to find the source code, thus we re-implemented the
network with default parameters in Python using Tensorflow for simplicity
of comparison.

5code link: https://xueyangfu.github.io/
6DiCNN1 has been implemented by ourselves.
7DMDNet has been implemented by ourselves.
8http://openremotesensing.net/kb/codes/pansharpening/

summarize the optimal parameters of all CNN methods in
Tab. I9.

E. Reduced resolution assessment

After the training phase, we need to validate the perfor-
mance of the compared CNN methods on WorldView-3 testing
data. In this phase, we exclude classical CS and MRA methods
because they will be strongly penalized by the absence of a
training phase using similar samples that will be found in the
testing dataset. Thus, this analysis is only devoted to compare
CNN-based approaches trained on the same examples.

In Tab. II, we show first the average quantitative results of
the different methods on the testing dataset containing 1258
testing examples. For each testing example, the sizes of PAN,
MS, and GT images are the same as that of the training exam-
ples, i.e., 64×64 for the PAN image, 16×16×8 for the original
low spatial resolution MS image, and 64 × 64 × 8 for the
GT image. From Tab. II, it is clear that the proposed Fusion-
Net obtains the best average quantitative performance for all
the quality indexes. Furthermore, the standard deviations (std)
of all the metrics get the smallest values for all the indexes,
which also demonstrate the robustness of the proposed Fusion-
Net. In particular, having a look at Tab. II, it is clear that the
results of CS-Net and MRA-Net are worse than that of the
recent DL-based methods (see the reasons underlined in the
first two paragraphs in Sect. III-C). Hence, we will not show
the results of CS-Net and MRA-Net from hereon, considering
as a unique comparison the one with Fusion-Net. However,
the presentation of CS-Net and MRA-Net is still meaningful,
since the proposed Fusion-Net is inspired and motivated by
them.

A further test is about the use of two new WorldView-3
datasets capturing scenarios never presented to the networks
in their training phase. In this case, the whole benchmark is
used considering the comparison fair even when classical CS
and MRA approaches are used. Again, Wald’s protocol is used
to generate a reference (GT) image, as described in Sect. III-E.
The two datasets will be named Rio and Tripoli from hereon,
which both hold 30-cm resolution. Their size is 256×256×8
for the GT image, 256 × 256 for the PAN image, and
64× 64× 8 for the original low spatial resolution MS image.
Tab. III indicates that the best performance is still reached
by the proposed Fusion-Net outperforming the performance
of all the other compared pansharpening approaches for all
the quality metrics. Similar conclusions can be drawn when
Tripoli dataset is used.

The visual analysis further corroborates these numerical
results. Indeed, in Fig. 7 (Rio dataset), it is clear to see that the
visual results provided by the classical CS and MRA methods
(e.g., GS, SFIM, BDSD, BDSD-PC, GLP-Reg, and GLP-
CBD) show low spatial performance with evident blur effects.
Moreover, all the six CNN methods perform significantly bet-
ter than the classical methods (both spatially and spectrally).

9Note that PanNet, CS-Net, MRA-Net, and Fusion-Net use ResNet blocks.
If the number of layers for one of these networks is 10, that means that there
are 4 ResNet blocks (each block with two layers) and two extra input and
output layers.
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TABLE I: Optimal parameters for the compared deep convolutional neural networks. Notation: Iter. # (iteration number), Bs (mini-batch
size), Algo (optimization algorithm), Lr (learning rate), Fs (filter size for each layer), Filt. # (filter number for each layer), N (the nubmer
of ResNet blocks) and Ly. # (number of layers).

Para. PNN DRPNN CS-Net MRA-Net DiCNN1 PanNet DMDNet Proposed

Iter. # 1.12× 106 3× 105 1.8× 105 1.6× 105 3× 105 2.4× 105 2.5× 105 1.4× 105

Bs 128 64 64 32 64 32 32 32

Algo SGD SGD Adam Adam Adam Adam Adam Adam

Lr 0.00001 0.05, 0.005 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003

Fs 9× 9, 5× 5 7× 7 3× 3 3× 3 3× 3 3× 3 3× 3 3× 3

Filt. # 64, 32 64 32 64 64 32 64 32

N - - 4 8 - 4 4 4

Ly. # 3 11 10 18 3 10 10 10

(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 7: Visual comparisons in natural colors of the most representative 13 approaches on Rio dataset (WorldView-3).

TABLE II: Quantitative comparison of the compared deep networks
for the testing dataset that includes 1258 samples. Best results in
boldface.

SAM (± std) ERGAS (± std) Q8 (± std) SCC (± std)

PNN 4.4015 ± 1.3292 3.2283 ± 1.0042 0.8883 ± 0.1122 0.9215 ± 0.0464

DRPNN 4.2657 ± 1.2431 3.0317 ± 0.9507 0.9010 ± 0.1089 0.9317 ± 0.0475

DiCNN1 3.9805 ± 1.3181 2.7367 ± 1.0156 0.9096 ± 0.1117 0.9517 ± 0.0471

PanNet 4.0921 ± 1.2733 2.9524 ± 0.9778 0.8941 ± 0.1170 0.9494 ± 0.0460

DMDNet 3.9714 ± 1.2482 2.8572 ± 0.9663 0.9000 ± 0.1141 0.9527 ± 0.0446

CS-Net 4.4851 ± 1.4605 3.1036 ± 1.1241 0.8937 ± 0.1156 0.9388 ± 0.0509

MRA-Net 4.5309 ± 1.4350 3.2657 ± 1.1169 0.8865 ± 0.1180 0.9372 ± 0.0482

Fusion-Net 3.7435 ± 1.2259 2.5679 ± 0.9442 0.91353 ± 0.1122 0.9580 ± 0.0450

This demonstrates the ability of CNN methods to address the
problem of pansharpening. It is worth to be remarked that it is
not easy to distinguish the visual differences among the CNN
methods in Fig. 7. This is due to the limitations in representing
8-bits RGB images instead of 11-bits MS data. However,
exploiting the calculation of the absolute error maps (AEMs)
of Fig. 8, the visual advantages of the proposed Fusion-Net
are pointed out getting lower image residuals (see the close-up
boxes in Fig. 8). The same conclusions can be drawn for the
visual analysis of the fusion outcomes using Tripoli dataset in

Figs. 9-10.

F. Full resolution assessment

In this section, we test the performance of the proposed
benchmark at the original (full) scale. In this case, the GT im-
age is not available requiring quality indexes without reference
for performance assessment purposes. We exploited 30 image
pairs (MS and PAN) of WorldView-3 data at the original scale
for testing the approaches using the QNR as quality index.
Tab. IV shows the quantitative assessment for all the methods
in the benchmark. The six deep networks, i.e., PNN, DRPNN,
DiCNN1, PanNet, DMDNet and the proposed Fusion-Net,
outperform the classical approaches. Having a look at the
overall quality index QNR, the best average performance is
obtained by the proposed Fusion-Net, even with a limited
standard deviation implying that we got a robust result. The
same can be stated for the spectral index Dλ. Moreover, best
performance (comparable with the PanNet one) is obtained
on the spatial index Ds. Finally, Fig. 11 shows the visual
performance on a full resolution WorldView-3 dataset, here
named Tripoli-OS dataset. It is easy to remark from Fig. 11
the lower spatial performance of the classical CS and MRA
methods (e.g., GS, SFIM, BDSD, BDSD-PC, GLP-Reg, and
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(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 8: Absolute error maps of Fig. 7.

(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 9: Visual comparisons in natural colors of the most representative 13 approaches on Tripoli dataset (WorldView-3).

GLP-CBD), whereas all the CNN-based methods significantly
outperform the classical approaches, both spatially and spec-
trally. Furthermore, the proposed Fusion-Net obtains a better
spatial performance than that of the other five CNN-based
methods. In the meanwhile, Fusion-Net is also able to preserve
the spectral information.

G. Network generalization
We have demonstrated that the proposed Fusion-Net outper-

forms the other pansharpening approaches in the benchmark
on WorldView-3 data when the networks are also trained
on WorldView-3 data. In this section, we will focus on the
capability of the networks to generalize the results fusing data
acquired by different sensors. To this aim, we exploit another
dataset acquired by another 8-bands sensor, i.e. WorldView-2,
but using the networks trained on WorldView-3 data. In order
to have an accurate assessment, we still leverage on Wald’s
protocol to generate the so-called Stockholm dataset acquired
by the WorldView2 sensor. Quantitative results reported in

Tab. V indicate that the proposed Fusion-Net is again the
best approach outperforming the benchmark on the metrics of
ERGAS and Q8. The DMDNet obtains slightly better SAM
and SCC metrics than Fusion-Net, since it employs the dilated
convolution that could significantly increase the receptive field,
whereas our Fusion-Net only uses conventional convolution.
Fig. 12 corroborates this statement. It is easy to see that all
the CNN methods yield better spatial performance than the
CS and MRA approaches. In Fig. 13, the AEMs of Fig. 12
are also shown. Again, the proposed Fusion-Net exhibits the
darker residual map demonstrating its superiority with respect
to the other compared approaches even from a qualitative point
of view.

H. Assessment on 4-band datasets

In this section, we will extend the performance assessment
to 4-band datasets, i.e., acquired by the GF-2 and the QB
sensors.
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(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 10: Absolute error maps of Fig. 9.

(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) PAN

Fig. 11: Visual comparisons in natural colors of the most representative 13 approaches on Tripoli-OS dataset (WorldView-3)
at the original scale.

About the data simulation, we also follow the way described
in Sect. III-E to generate the training and testing data. For the
QB test case, we downloaded a large dataset (4906× 4906×
4) acquired over the city of Indianapolis cutting it into two
parts. The left part (4906 × 3906 × 4) is used to simulate
20685 training samples (size: 64× 64× 4), and the right part
(4906 × 1000 × 4) is used to simulate 48 testing data (size:
256×256×4). For the GF-2 test case, we downloaded a large
dataset (6907 × 7300 × 4) over the city of Beijing from the
website 10 to simulate 21607 training examples (size: 64×64×
4). Besides, a huge image acquired over the Guangzhou city is
downloaded to simulate 81 testing data (size: 256× 256× 4).

10data link: http://www.rscloudmart.com/dataProduct/sample

Fig. 14 and Fig. 15 present the visual performance of the
five representative CNN-based methods11. The visual results
provided by the six CNN methods all obtain competitive
outcomes, both spatially and spectrally. As previously said, the
RGB images shown in the first rows of Fig. 14 and Fig. 15 are
not enough to show the differences of compared methods, thus
we calculate the absolute error maps (AEMs) in the second
rows of Fig. 14 and Fig. 15 to aid the visual comparison.
From the two figures, the proposed Fusion-Net clearly shows
its spatial advantages getting lower image residuals (see the
close-up boxes). Moreover, from Tab. VI, the proposed Fusion-
Net still yields better quantitative assessments than the other
compared approaches.

11Note that, since our CS-Net and MRA-Net get weak performance
according to the results on WorldView-2 and WorldView-3 datasets. Hence,
for the sake of brevity, we excluded these two methods from the analysis.
Furthermore, for the same reason, we only show the results of the five CNN
methods.
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(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 12: Visual comparisons in natural colors of the most representative 13 approaches on Stockholm dataset (WorldView2).

(a) EXP (b) GS (c) SFIM (d) BDSD (e) BDSD-PC (f) GLP-Reg (g) GLP-CBD

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 13: Absolute error maps of Fig. 12.

I. Discussions

Based on the previously shown results, it is clear that the
CNN methods obtain better performance than the classical CS
and MRA methods. This is mainly due to the fact that these
methods exploit large-scale data for the training phase. In this
section, we will discuss more about the detail images, the
convergence, the network complexity, the computational times
in both testing and training phases, the number of parameters
and the giga floating-point operations per second (GFLOPs).
Detail Images: Unlike the previously shown absolute error
maps, Fig. 16 displays the detail images in order to point
out the differences among the compared methods. The detail
images are obtained by taking the absolute value of the
difference between the fused and the EXP images. From
Fig. 16, the Fusion-Net gets the darker detail image, which
demonstrates the effectiveness of the proposed method even
exploiting this different representation of the fused outcomes.
Convergence: Fig. 17 exhibits the training errors of all the
deep network methods with increasing iterations. It is worth

to be noted that the maximum number of iterations for each
method is the corresponding optimal iteration. It is straightfor-
ward that the training error of the proposed Fusion-Net (black
line) reaches the lower level than those of the other approaches,
which demonstrates that the Fusion-Net gets the better training
effectiveness.
Network complexity: The proposed Fusion-Net is simpler
than the PanNet. Comparing it with PanNet, Fusion-Net does
not need to calculate the high-pass filtered version of the PAN
image, thus reducing the training time with respect to PanNet.
The architecture of DMDNet is similar as that of the PanNet,
but DMDNet has a structure of grouped dilated convolution
thus is more complicated than PanNet. The architecture of
DiCNN1 is slightly simpler than the PanNet and the Fusion-
Net, but it is only a 3-layer network meaning that is not easy
to extract sufficient image features. The architecture of PNN
is a simple 3-layer network without any skip connection, thus
it is also not easy to extract enough image features from the
simple network. Additionally, the architecture of the DRPNN
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(a) PNN (b) DRPNN (c) DiCNN1 (d) PanNet (e) DMDNet (f) Fusion-Net (g) GT

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 14: Visual comparisons in natural colors of the most representative 6 approaches on the Guangzhou dataset (sensor: GF-2).
First row: visual results; Second row: absolute error maps.

(a) PNN (b) DRPNN (c) DiCNN1 (d) PanNet (e) DMDNet (f) Fusion-Net (g) GT

(h) PNN (i) DRPNN (j) DiCNN1 (k) PanNet (l) DMDNet (m) Fusion-Net (n) GT

Fig. 15: Visual comparisons in natural colors of the most representative 6 approaches on the Indianapolis dataset (sensor: QB).
First row: visual results; Second row: absolute error maps.

contains a skip connection and 11 layers, thus having a better
feature extraction ability.
Testing time: Tab. III reports the testing time of all the
compared methods on two WorldView-3 data (i.e., Rio dataset
and Tripoli dataset, both with size 256 × 256 × 8). Classical
CS and MRA methods generally reach shorter testing time
than that of the CNN methods. Furthermore, it is worth to be
noted that CNN times are calculated on a special hardware
architecture (GPU), instead, to calculate the times of the CS
and MRA approaches, a general purpose CPU has been used.
However, the testing time of the propose networks can be
considered acceptable on these data.
Training time: The training time of all the CNNs are reported
using the same training dataset. The maximum iteration for
each method is the optimal one used in the training phase.
In Tab. VII, the proposed Fusion-Net yields the shortest
training time mainly due to the less iterations when reaching

convergence.
The number of parameters and GFLOPs: The number
of parameters (NoPs) and the GFLOPs of all the compared
CNNs are reported in Tab. VIII. From Tab. VIII, it is clear
that the DiCNN gets the best performance on the NoPs
and the GFLOPs, thanks to its simple architecture with only
three convolutional layers. The proposed Fusion-Net holds the
second place, which is better than other compared DL-based
networks. The DRPNN approach gets the worse NoPs and
GFLOPs, since it involves more filters and the convolutional
kernels with a larger size, i.e., 7× 7.
Optimal iteration number for Fusion-Net: We want to
investigate on the optimal value of the iteration number for
the proposed Fusion-Net. In order to select it, we consider
an exemplary reduced resolution dataset as Rio dataset. We
calculated the performance metrics (the average of 5 runs)
as in Fig. 18 taking the number of iterations that shows the



13

(a) GS (b) SFIM (c) BDSD (d) BDSD-PC (e) GLP-Reg (f) GLP-CBD

(g) PNN (h) DRPNN (i) DiCNN1 (j) PanNet (k) DMDNet (l) Fusion-Net

Fig. 16: Detail images of the different compared methods on a sample belonging to the Indianapolis dataset (sensor: QB).

TABLE III: Quantitative results for Rio dataset and Tripoli dataset
(WorldView-3). Best results are in boldface.

SAM ERGAS Q8 SCC Time
Rio dataset

EXP 4.203 5.5976 0.6927 0.6156 0.0312
GS 4.0614 3.8956 0.8666 0.8979 0.0440
SFIM 3.9132 3.563 0.8859 0.888 0.0251
BDSD 3.9567 2.8494 0.9361 0.9077 0.0796
BDSD-PC 3.8065 2.8494 0.9363 0.9061 0.1701
PRACS 4.026 3.2501 0.9062 0.8972 0.1765
GLP-HPM 4.1349 3.4917 0.8935 0.8817 0.2037
GLP-CBD 3.7068 2.7732 0.935 0.9092 0.1069
GLP-Reg 3.6871 2.776 0.9345 0.9095 0.1476
PNN 3.3728 2.3082 0.9488 0.9409 0.5475
DRPNN 3.1216 2.1669 0.9674 0.9585 0.6163
DiCNN1 3.0248 1.9119 0.9686 0.9627 0.5527
PanNet 3.0054 1.9506 0.9651 0.964 0.5880
DMDNet 2.9355 1.8119 0.96905 0.96993 0.6198
Fusion-Net 2.8338 1.7510 0.9728 0.9714 0.5477

Tripoli dataset
EXP 6.7883 8.5719 0.7235 0.5129 0.0339
GS 7.1416 7.3237 0.7879 0.7251 0.0507
SFIM 6.3486 6.8407 0.8343 0.7341 0.0231
BDSD 6.8533 6.7863 0.8448 0.7338 0.0621
BDSD-PC 6.4985 6.7186 0.8475 0.7313 0.1615
PRACS 6.6680 7.0012 0.8266 0.7253 0.1848
GLP-HPM 6.8196 6.8881 0.8393 0.7350 0.1918
GLP-CBD 6.4178 6.5443 0.8503 0.7392 0.1102
GLP-Reg 6.4100 6.5463 0.8548 0.7394 0.1405
PNN 5.0778 3.9614 0.9214 0.9242 0.5515
DRPNN 4.8411 3.7810 0.9454 0.9468 0.6173
DiCNN1 4.7552 3.4978 0.9444 0.9482 0.5476
PanNet 4.6079 3.4227 0.9395 0.9516 0.5812
DMDNet 4.4282 3.1972 0.9458 0.9613 0.6020
Fusion-Net 4.2764 3.0568 0.9522 0.9646 0.5467

best overall quality. Thus, we refer to the value that gets the
maximum Q8 index (around 140000 iterations in Fig. 18),
thanks to the fact that the Q8 can be considered an overall
quality index. However, all the reduced resolution performance
metrics are often in agreement among each other, see again
Fig. 18.

TABLE IV: Average values of QNR, Dλ and Ds with the related
standard deviations (std) for the 30 full resolution data (WorldView-
3). Best results are in boldface.

QNR (± std) Dλ (± std) Ds (± std)
EXP 0.8032 ± 0.0612 0.0422 ± 0.0204 0.1241 ± 0.0661
GS 0.8866 ± 0.0606 0.0218 ± 0.0194 0.0944 ± 0.0458
SFIM 0.9234 ± 0.0523 0.0268 ± 0.0270 0.0518 ± 0.0292
BDSD 0.8822 ± 0.0286 0.0354 ± 0.0169 0.0852 ± 0.0264
BDSD-PC 0.8901 ± 0.0232 0.0344 ± 0.0152 0.0837 ± 0.0231
PRACS 0.8985 ± 0.0634 0.0224 ± 0.0194 0.0817 ± 0.0482
GLP-HPM 0.8834 ± 0.0323 0.0368 ± 0.0371 0.0718 ± 0.0492
GLP-CBD 0.9048 ± 0.0683 0.0333 ± 0.0285 0.0651 ± 0.0454
GLP-Reg 0.9082 ± 0.0601 0.0322 ± 0.0295 0.0629 ± 0.0521
PNN 0.9342 ± 0.0481 0.0297 ± 0.0232 0.0361 ± 0.0244
DRPNN 0.9437 ± 0.0630 0.0225 ± 0.029 0.0318 ± 0.0270
DiCNN1 0.9390 ± 0.0417 0.0214 ± 0.0210 0.0409 ± 0.0242
PanNet 0.9511 ± 0.0306 0.0221 ± 0.0137 0.0241 ± 0.0180
DMDNet 0.9587 ± 0.0310 0.0240 ± 0.0138 0.0237 ± 0.0145
Fusion-Net 0.9612 ± 0.0272 0.0180 ± 0.0158 0.0243 ± 0.0151

V. CONCLUSIONS

We investigated in this paper on new architectures of convo-
lutional neural networks for pansharpening. In particular, we
focused our attention on deep convolutional neural networks
inspired by the classical fusion schemes exploited in CS
and MRA methods. Thus, detail-based networks have been
proposed and assessed on real WorldView-2, WorldView-3,
GF-2 and QB data. The performance of the proposed machine
learning methods has been compared with several state-of-the-
art CS and MRA techniques and some powerful CNN-based
methods for pansharpening. It has been demonstrated that the
proposed Fusion-Net is able to get the best performance both
at reduced and full resolutions. Finally, interesting features
of the proposed Fusion-Net have been underlined from other
points of view (e.g., computational burden, generalization
capability, and robustness) compering it with the other CNN-
based methods.
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TABLE V: Quantitative results on Stockholm dataset (WorldView2).
Best results are in boldface.

SAM ERGAS Q8 SCC
EXP 7.8500 9.6793 0.6540 0.4505
GS 7.7296 7.3644 0.8075 0.8439
SFIM 7.1147 6.9570 0.8434 0.8562
BDSD 7.1824 6.3772 0.8798 0.860
BDSD-PC 7.0953 6.3233 0.8819 0.8578
PRACS 7.5894 7.4080 0.8314 0.8125
GLP-HPM 7.2988 6.9965 0.8527 0.8355
GLP-CBD 7.1098 6.5434 0.8752 0.8457
GLP-Reg 7.1195 6.4998 0.8776 0.8453
PNN 6.8624 5.6259 0.8642 0.8539
DRPNN 6.4798 5.6459 0.8843 0.8668
DiCNN1 6.8159 5.9773 0.8802 0.8797
PanNet 6.3916 5.6302 0.8897 0.8895
DMDNet 6.1986 5.5692 0.8903 0.8965
Fusion-Net 6.2784 5.5499 0.8969 0.8897
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Fig. 17: Convergence curves for all the compared CNN
methods on WorldView-3 training dataset. Note that we trained
the PNN method with 1.12× 106 iterations, but here we only
show MSEs of the first 3× 105 iterations for better display.

VI. ACKNOWLEDGMENT

L. -J. Deng thanks to NSFC (61702083, 61772003,
61876203) for partial support.

REFERENCES

[1] J. Yang, X. Fu, Y. Hu, Y. Huang, X. Ding, and J. Paisley, “PanNet:
A deep network architecture for pan-sharpening,” IEEE International
Conference on Computer Vision (ICCV), 2017.

[2] L. He, Y. Rao, J. Li, J. Chanussot, A. Plaza, J. Zhu, and B. Li, “Pansharp-
ening via detail injection based convolutional neural networks,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 12, no. 4, pp. 1188–1204, 2019.

[3] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M.
Bruce, “Comparison of pansharpening algorithms: Outcome of the 2006
GRSS data fusion contest,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, pp. 3012–3021, 2007.

[4] M. Dalla Mura, S. Prasad, F. Pacifici, P. Gamba, and J. Chanussot,
“Challenges and opportunities of multimodality and data fusion in
remote sensing,” Proceedings of the 22nd European Signal Processing
Conference (EUSIPCO), pp. 106–110, 2014.

[5] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, “Synthesis of
multispectral images to high spatial resolution: A critical review of
fusion methods based on remote sensing physics,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 46, pp. 1301–1312, 2008.

[6] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli,
G. Licciardi, R. Restaino, and L. Wald, “A critical comparison among
pansharpening algorithms,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 53, pp. 2565–2586, 2015.

[7] C. Souza, L. Firestone, L. Silva, and D. Roberts, “Mapping forest
degradation in the Eastern Amazon from SPOT 4 through spectral
mixture models,” Remote Sensing of Environment, vol. 87, pp. 494–
506, 2003.

[8] C. Wu, B. Du, X. Cui, and L. Zhang, “A post-classification change
detection method based on iterative slow feature analysis and bayesian
soft fusion,” Remote Sensing of Environment, vol. 199, pp. 241–255,
2017.

[9] A. Garzelli, F. Nencini, and L. Capobianco, “Optimal MMSE pan sharp-
ening of very high resolution multispectral images,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 46, pp. 228–236, 2008.

[10] G. Vivone, “Robust band-dependent spatial-detail approaches for
panchromatic sharpening,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 57, no. 9, pp. 6421–6433, 2019.

[11] J. Choi, K. Yu, and Y. Kim, “A new adaptive component-substitution
based satellite image fusion by using partial replacement,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, pp. 295–309,
2011.

[12] C. A. Laben and B. V. Brower, “Process for enhancing the spatial
resolution of multispectral imagery using pan-sharpening,” 2000, US
Patent 6011875.

[13] G. J. Liu, “Smoothing filter based intensity modulation: A spectral
preserve image fusion technique for improving spatial details,” Interna-
tional Journal of Remote Sensing, vol. 21, pp. 3461–3472, 2000.
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Fig. 18: Iteration number against quality metrics by averaging 5 runs on Rio dataset for the proposed Fusion-Net.
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