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Abstract

In this paper, we propose a tensor-based non-convex sparse modeling approach for the fusion
of panchromatic and multispectral remote sensing images, and this kind of fusion is generally
called pansharpening. We first upsample the low spatial-resolution multispectral image by
a classical interpolation method to get an initial upsampled multispectral image. Based on
the hyper-Laplacian distribution of errors between the upsampled multispectral image and
the ground-truth high resolution multispectral image on gradient domain, we formulate a
`p(0 < p < 1)-norm term to more reasonably describe the relation of these two datasets.
In addition, we also model a tensor-based weighted fidelity term for the panchromatic and
low resolution multispectral images, aiming to recover more spatial details. Moreover, total
variation regularization is also employed to depict the sparsity of the latent high resolution
multispectral image on the gradient domain. For the model solving, we design an alternating
direction method of multipliers based algorithm to efficiently solve the proposed model.
Furthermore, the involved non-convex `p subproblem is handled by an efficient generalized
shrinkage/thresholding algorithm. Finally, extensive experiments on many datasets collected
by different sensors demonstrate the effectiveness of our method when compared with several
state-of-the-art image fusion approaches.

Keywords: Pansharpening, Tensor-based sparse modeling, hyper-Laplacian, Alternating
direction method of multipliers.

1. Introduction

Pansharpening refers to fuse a high spatial-resolution panchromatic (PAN) image and
a low spatial-resolution multispectral (MS) image to generate a high spatial-resolution MS
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image. In general, the PAN and MS images are simultaneously obtained by several sensors
installed on optical devices, e.g., satellites. Due to the physical limitation, the acquired MS
image generally only holds low spatial-resolution, therefore we need to enhance the spatial
resolution of MS image with the help of PAN image, expecting to get better spatial and
spectral details. Pansharpening has important applications in our life. For instance, some
commercial products such as Google Earth consider pansharpening as a crucial preliminary
step for the subsequent applications, e.g., change detection [1], etc.

In 2006, a contest organized by the Data Fusion Committee of IEEE Geoscience and
Remote Sensing Society [2, 3] was held, from then on, pansharpening attracts more interests
in scientific community [4, 5]. More and more literature from different perspectives and
methodologies are published. Most of the pansharpening literature can be divided into
three categories, i.e., component substitution (CS) methods, multiresolution analysis (MRA)
methods and regularization methods.

The CS techniques rely upon the substitution of a component of the image with the
PAN image, after a spectral transformation of the MS data, see e.g., the intensity-hue-
saturation [6], the principal component analysis [7], and the Gram-Schmidt (GS) spectral
sharpening [8]. The approaches in this category first project the upsampled MS image into a
new space, then substitute image components by the high spatial-resolution details of PAN
image, and finally execute an inverse projection to yield the high spatial-resolution fused
image. In general, CS methods have low computational burden, however, the results are
affected by spectral distortions.

The MRA approaches are based on injecting the high spatial-resolution details obtained
from the PAN image into the upsampled MS image, see e.g., additive wavelet luminance pro-
portional [9], Laplacian pyramid [10], generalized Laplacian pyramid [11], “à-trous” wavelet
transform [12], etc. Comparing with CS techniques, MRA approaches mainly suffer from
spatial distortions but preserve spectral information well.

Recently, regularization based approaches attract more and more attention of researchers,
see e.g., [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Ballester et
al. in [13] presented a variational regularization pansharpening method depending on two
assumptions: 1) PAN image is the linear combination of high spatial-resolution multispectral
bands; 2) PAN image can provide high spatial-resolution information to the multispectral
image. However, this approach sometimes suffers from spectral distortion for hyperspectral
image pansharpening because of the first unrealistic assumption [4]. In [24], the authors
proposed a non-convex sparse regularization model for pansharpening by investigating the
distribution of PAN and HRMS images, in which a hyper-Laplacian penalty1 using `1/2 norm
is employed for spatial details preservation. This non-convex model is efficiently solved by
alternating direction method of multipliers (ADMM) approach. Besides, pansharpening
based on unmixing is also turned out as a quite effective technique, see [30] and [31]. In
[30], Yokoya et al. presented an image fusion approach from the perspective of coupled

1The hyper-Laplacian is defined as f(x) ∝ e−k|x|p where 0 < p < 1, k is a positive value, and f(x) is the
probability function. It is utilized to model the heavy-tailed distribution which has been proven as effective
priors for a range of image applications.
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nonnegative matrix factorization (CNMF) unmixing. This method can produce high-quality
fusion results, both spectrally and spatially. It can be applied to the fusion of multispectral
and hyperspectral images. In [22], the authors proposed a pansharpening approach based on
local spectral consistency and dynamic gradient sparsity. The given model is then solved by
FISTA algorithm [32]. Based on [22], Chen et al. in [23] further proposed a unified framework
of simultaneous image registration and pansharpening, as well as obtained promising results.
Besides, tensor-based regularization methods recently have been applied to many image
applications, e.g., video rain removal [33], tensor completion [34, 35, 36], hyperspectral
image restoration [37], multispectral image denoising [38], missing data recovery of remote
sensing image [39], etc, since high-dimensional data can naturally be represented as a tensor
which can overcome the drawback of the matrix-based model. In particular, our method
in this paper belongs to the category of tensor-based regularization methods. Especially,
convolutional neural networks (CNNs) based methods recently have been proposed and show
very powerful ability for the pansharpening application, see e.g., [40]. These CNNs models
are generally based on the assumption which the relationship between HR/LR multispectral
image patches is the same as that between the corresponding HR/LR panochromatic image
patches.

In this paper, we propose a hyper-Laplacian sparsity-promoting model for the fusion
of panchromatic and multispectral images via tensor modeling. The hyper-Laplacian term
depicted by `p(0 < p < 1) norm is motivated by analyzing the error distribution of the
upsampled multispectral image and ground-truth HRMS image on the gradient domain. The
resulting non-convex `p subproblem under the framework of alternating direction method of
multiplier (ADMM) can be efficiently solved by generalized shrinkage/thresholding (GST)
algorithm [41]. To recover spatial details, a linear assumption between panchromatic and
latent HRMS images is given by tensor-vector multiplication format. Moreover, we employ
total variation (TV) regularization to describe the sparsity of latent HRMS image on the
gradient domain. In the experiments, we compare our method with some recent state-of-the-
art approaches on four datasets that are from different sensors, such as Pléiades, IKONOS,
Quickbird and WorldView-2. Furthermore, some discussion on parameters selection, hyper-
Laplacian term, etc., are also presented in the experiments section. Finally, visual and
quantitative results demonstrate the effectiveness of our approach.

The main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work for pansharpening via tensor-
based non-convex modeling, which does not require any training phase and extra data.
Comparing with matrix-based methods, tensor-based techniques are more powerful
to deal with high-dimensional data, e.g., multispectral images, which can depict the
correlations between and within different dimensions better.

• By investigating the error distribution of the upsampled multispectral image and
ground-truth HRMS image on the gradient domain, we find that the errors obey
hyper-Laplacian distribution which can be depicted by `p(0 < p < 1)-norm. This
resulting `p term is a better description than `1 or `2 terms (see Fig. 1).
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• The formulated `p term can reduce the model complexity and skip blur kernel that is
generally assumed as inaccurate Gaussian one with an empirical variance. To solve
the proposed model, an ADMM based algorithm with high efficiency is designed.
Moreover, extensive experimental results demonstrate the effectiveness of our method,
both visually and quantitatively.

This paper is organized as follows. The proposed approach is detailedly exhibited in
Section 2. Section 3 is devoted to the description of experimental results, followed by some
analysis of the obtained results. Some conclusions are drawn in Section 4. Finally, an
appendix about GST method will be introduced in Section 6.

2. The proposed model and its solution

2.1. Related notations
Since this work is about tensor-based high dimensional image application, thus it is

necessary to introduce some basic tensor notations. Here, following [42], we employ low-
case letters for vectors, e.g., g, upper-case letters for matrices, e.g., G, and calligraphic
letters for tensors, e.g., G. In addition, an N -mode tensor is defined as G ∈ RI1×I2×···×IN ,
and gi1i2···iN represents its (i1, i2, · · · , iN)-th element. In what follows, the definitions of
the inner product, Frobenius norm, tensor-vector multiplication and the mode-n
unfolding of a tensor are defined as follows:

• The inner product of two same-sized tensors G and H is defined as 〈G,H〉 :=∑
i1,i2,··· ,iN

gi1i2···iN · hi1i2···iN .

• The Frobenius norm of a tensor is here defined as ‖G‖F :=
√
〈G,G〉.

• The tensor-vector multiplication is here defined as G×na := aTG(n) ∈ R1×Πi6=nIi ,
where G(n) ∈ RIn×Πi 6=nIi and a ∈ RIn×1.

• The mode-n unfolding of a tensor G is defined as Unfoldn(G) := G(n) ∈ RIn×Πi6=nIi ,
which is composed by taking the mode-n vectors of G as its columns. Similarly, we
can also fold G(n) into the tensor format by Foldn(G(n)).

Before introducing the proposed method, it is also necessary to state data notations
along this paper:

• Low spatial-resolution multispectral (LRMS) image (3 mode tensor format): MS ∈
Rm×n×z with z bands. Upsampled multispectral image: M ∈ RM×N×z with z bands,
where M = s ·m, N = s · n with the scale factor s. In this work, we generate M by
applying an interpolation method to MS (see details from the next subsection).

• Ground-truth high spatial-resolution multispectral image (HRMS) (3 mode tensor
format): U ∈ RM×N×z with z bands. Latent high spatial-resolution multispectral
(HRMS) image: U l ∈ RM×N×z with z bands, which is the one we try to compute.

• Panchromatic (PAN) image: P ∈ RM×N .
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Figure 1: Distributions of ∇i(U −M) (i = x, y, z, i.e., 1, 2, 3, respectively in Eq. (1) ), which the data
respectively comes from Pleiades (a), IKONOS (b), Quickbird (c) and World-View 2 (d) sensors. For each
sensor, we choose 4 pairs of LRMS images (All LRMS images are upsampled to M by a classical interpolation
method “interpo23tap”) and ground-truth HRMS images for experiments, which are respectively with the
size of 128× 128× 4 (or 128× 128× 8) and 512× 512× 4 (or 512× 512× 8).
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2.2. The Model

In this work, we propose a non-convex sparse image fusion model and the model is moti-
vated by some extensively statistical investigations between the ground-truth high-resolution
multispectral (HRMS) image U and the upsampled multispectral image M. Due to the
powerful representation ability of tensor, the proposed model is funded by the tensor tool.
Comparing with matrix-based image fusion model, the tensor-based model can perfectly rep-
resent the high-dimensional data, e.g., multispectral remote sensing images in this work, and
depict more latent properties of high-dimensional data better, e.g., the correlation between
spectral bands of multispectral remote sensing images.

Next, we will present our tensor-based non-convex model for the fusion of panchromatic
and multispectral remote sensing images.

1) The non-convex `p term on gradient domain: For most of image fusion models,
they require to know the blur kernel and downsampling matrix in advance. However, the
kernel is generally unknown, and people have to empirically assume it as Gaussian distri-
bution with a specific variance, which actually is not fully reasonable. In the work, we
try to skip the unknown kernel and investigate the latent distribution between the ground-
truth image and the upsampled image. In this subsection, we propose the non-convex term
mainly due to the following two reasons. First, we upsample the known LRMS image to get
an upsampled multispectral image M by a classical interpolation method. Here, we choose
“interpo23tap”2 as the interpolation method. This method is quite simple and fast, and has
been used in many fusion works, see [6, 11, 9, 43, 5]. Second, we investigate the distributions
of ∇i(U −M) on several datasets from different sensors, where ∇i is the gradient operator,
it is clear that the distributions along three dimensions all obey a hyper-Laplacian case (see
red lines of Fig. 1), neither Laplacian (black lines of Fig. 1) nor Gaussian (blue lines of
Fig. 1) distribution. Due to the two reasons, we can see that it is more reasonable to use
an `p (0 < p < 1) norm for the gradient-matching by maximum a posteriori (MAP) rule.
Therefore, the first energy term (denoted as Eng(1)) is defined as follows,

Eng(1) =
3∑
i=1

αi‖∇i(U l −M)‖p, 0 < p < 1, (1)

where αi, i = 1, 2, 3 are positive parameters. In this work, we take p = 1/2 since it can
excellently depict the distribution between M and U l on the gradient domain (see Fig. 1).

2) The linear assumption between latent HRMS and panchromatic images:
The panchromatic image P contains important high spatial-resolution information, thus we
may utilize it to increase the spatial details of LRMS image. For the correlation between
panchromatic and latent HRMS images, many types of research [44, 17, 24] assume that it
obeys a linear relation, which promotes the panchromatic image is equal to the weighted

2“interp23tap” can interpolate one image using a polynomial with 23 coefficients interpolator.
Readers can find the corresponding code from the website: http://openremotesensing.net/
knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
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summation of each spectral bands of the latent HRMS image. Therefore, this will lead to
the following fidelity term,

Eng(2) =
λ

2
‖U l×3w − p‖2

2, (2)

where λ is a positive parameter, p is the vector-form of panchromatic image P, and ×3
represents tensor-vector multiplication that has been introduced in Section 2.1.

3) The total variation assumption: Total variation (TV) is a very powerful and
efficient regularization for image processing, and it has been applied to various of image
applications, such as image denoising [45, 46], deblurring [47, 48], segmentation [49], fusion
[50, 21], etc. It is a popular and general constraint for images due to the sparsity on gradient
domain, thus we also employ it as one regularizer for the latent HRMS image. Besides, by
considering that the fused image is the multispectral image but the hyperspectral image,
which indicates the spectral curve is not continuous, thus here we only apply TV to the
spatial directions but spectral direction, avoiding to influence the spectral relations of original
multispectral image. The TV term for the latent HRMS is given as follows,

Eng(3) =
2∑
i=1

ωi‖∇iU l‖1, (3)

which is an anisotropic TV regularizer, and ωi, i = 1, 2 represents positive parameters for
the variations along two spatial directions

The final model: Combining the above three energies together, we finally formulate
tensor-based `p (p = 1/2) sparse model for the fusion of remote sensing images, see as
follows,

min
U l

3∑
i=1

αi‖∇i(U l −M)‖1/2 +
λ

2
‖U l×3w − p‖2

2 +
2∑
i=1

ωi‖∇iU l‖1, (4)

which is a non-convex and non-smooth model that involves a `1/2 term and a `1 term. In the
next subsection, we will present the solving algorithm detailedly for the proposed model.

2.3. The solution

For the solution of the model (4), there are many approaches to solve it, such as alternat-
ing direction method of multipliers (ADMM) [51, 52], primal-dual approach [53], etc. Here,
we use ADMM which has been applied to many image applications, e.g., image restoration
[41], super-resolution [54, 55], to decompose the difficult minimization problem (4) into some
simple subproblems. First of all, substituting variables by T i = ∇i(U l −M), X i = ∇iU l,
i = 1, 2, and V = U l, the augmented Lagrangian equation L(T i,V,X i,Ai,Bi,C) is ex-
hibited as follows
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L(T i,V,X i,Ai,Bi,C) =
3∑
i=1

αi‖T i‖1/2 +
3∑
i=1

ηi
2
‖T i −∇i(U l −M) + Ai‖2

F

+
2∑
i=1

ωi‖X i‖1 +
2∑
i=1

βi
2
‖X i −∇iU l + Bi‖2

F +
λ

2
‖V×3w − p‖2

2 +
γ

2
‖V − U l + C‖2

F .

(5)

1) The T i -subproblem: T i has the following minimization problem:

min
T i

αi‖T i‖1/2 +
ηi
2
‖T i −∇i(U l −M) + Ai‖2

F , (6)

which results in a non-convex `1/2 problem that can be solved by some recent excellent
algorithms [56, 57, 41, 58]. Here, we choose GST algorithm [41] (see more details from the
appendix in Section 6) to solve the non-convex problem because it has a very simple scheme
and quite fast speed, which holds the following solution:

T k+1
i = TGST1/2

(
∇i(Uk

l −M)−Ak
i ,
αi
ηi

)
, i = 1, 2, 3. (7)

Note that the algorithm summarized in Algorithm 1 needs to compute T i, i = 1, 2, 3,
separately on each image band.

2) The X i -subproblem: For X i-subproblem, it has the following minimization prob-
lem that comes from Eq. (5):

min
X i

2∑
i=1

ωi‖X i‖1 +
2∑
i=1

βi
2
‖X i −∇iU l + Bi‖2

F . (8)

This convex `1 problem is quite easy to solve, and it holds a closed-form solution by
soft-thresholding strategy [59],

X k+1
i = Shrink

(
∇iUk

l −Bk
i ,
ωi
βi

)
, (9)

where Shrink(a, b) = sgn(a).max(|a|−b, 0), and sgn(a) is the sign function that sgn(a) =
−1 for a < 0, sgn(a) = 0 for a = 0 and sgn(a) = 1 for a > 0.

3) The V -subproblem: For the V-subproblem, we need to solve the following mini-
mization problem:

min
V

λ

2
‖V×3w − p‖2

2 +
γ

2
‖V − U l + C‖2

F . (10)
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This tensor based subproblem can be easily transformed into a matrix-vector form according
to the rule of tensor-vector multiplication:

min
V(3)

λ

2
‖wTV(3) − p‖2

2 +
γ

2
‖V(3) −Ul(3) + C(3)‖2

F , (11)

where V(3),Ul(3),C(3) ∈ Rz×MN are the unfold matrices along the mode 3 of V , U l and C,
respectively. wT ∈ R1×z is the weight vector, and p ∈ R1×MN represents the vector-form
of P. The minimization problem (11) can be solved by least squares method and have the
following closed-form solution,

V k+1
(3) =

(
λwwT + γI

)−1 (
γ
(
U k

l(3) −Ck
(3)

)
− λwp

)
, (12)

where I is an identity matrix with the size z × z. Note that the computation of V k+1
(3) is

quite cheep, since it only involves an inverse computing of a small size matrix3. After getting
V k+1

(3) , it is easy to fold V k+1
(3) to yield the final tensor format result,

Vk+1 = Fold3

(
V k+1

(3)

)
. (13)

4) The U l -subproblem: According to Eq. (5), U l -subproblem is presented as follows

min
U l

3∑
i=1

ηi
2
‖T i −∇i(U l −M) + Ai‖2

F +
γ

2
‖V − U l + C‖2

F +
2∑
i=1

βi
2
‖X i −∇iU l + Bi‖2

F ,

(14)
which can be solved easily by FFT algorithm under the periodic boundary condition,

Uk+1
l = F−1

(
F(W)

F(N )

)
, (15)

where F and F−1 represent FFT and inverse FFT, respectively, and

W =
3∑
i=1

ηi∇T
i

(
∇iM + T k+1

i + Ak
i

)
+ γ

(
Vk+1 + Ck

)
+

2∑
i=1

βi∇T
i

(
X k+1

i + Bk
i

)
, (16)

and

N =
3∑
i=1

ηi∇T
i ∇i +

2∑
i=1

βi∇T
i ∇i + γO, (17)

where O is an tensor with the size M ×N × z whose all elements are 1.

3The matrix size is z×z, where z represents the number of bands of multispectral image, and is generally
not large.
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5) Update Multipliers: After finishing the computing of each subproblems, we also
need to update the Lagrangian multipliers Ai, Bi and Ci on the k + 1-th iteration by:

Ak+1
i = Ak

i +
(
T k+1
i −∇i(Uk+1

l −M)
)
, i = 1, 2, 3

Bk+1
i = Bk

i +
(
X k+1

i −∇iUk+1
l

)
, i = 1, 2

Ck+1 = Ck +
(
Vk+1 − Uk+1

l

)
.

(18)

The steps 1) - 5) represent one iteration of ADMM based framework, which decomposes
the difficult minimization problem (5) into four simpler subproblems (i.e., T i-, X i-, V- and
U l-subproblems). Note that these four subproblems all have fast and accurate techniques to
compute solutions. For instance, the T i-subproblem can be solved by fast GST algorithm
that is reported in Algorithm 2, and X i-subproblem keeps the closed-form solution by the
soft-thresholding strategy. Moreover, V-subproblem only involves a small matrix inverse
(see Eq. (12)), thus the closed-form solution can be computed efficiently. Furthermore, U l-
subproblem can be addressed by the efficient and well-known FFT technique. In particular,
the final algorithm for the proposed model (4) is summarized in Algorithm 1.

Algorithm 1: The solution of model (4) by ADMM

Input: Initial image M, panchromatic image P
Output: Fused image U l

Initialize:
1) k ← 0, U0

l ← 0, A0
i ← 0, B0

i ← 0, C0 ← 0
While not converged do

2) k ← k + 1
3) Solve T k+1

i by Algorithm 2 in the appendix
4) Solve X k+1

i by Eq. (9)
4) Solve Vk+1 by Eq. (13)
6) Solve Uk+1

l by Eq. (15)
7) Update Lagrangian multipliers Ak+1

i , Bk+1
i and

Ck+1 by Eq. (18)
Endwhile

Algorithm 1 mainly lists all steps of the ADMM based framework that are utilized to
iteratively and alternatively solve the proposed fusion model (4). In Algorithm 1, although
it involves many parameters, most of them are not sensitive to different examples, and we
will present parameters selection and discussion detailedly in the next section.

In what follows, we will compare the proposed approach with some competitive methods.

3. Results and discussions

In this section, we compare the proposed method with extensive image fusion approaches
on several datasets acquired by four different sensors, i.e., Pléiades, IKONOS, Quickbird
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and WorldView-2. These compared approaches include: three CS based methods, i.e.,
Principal Component Analysis (PCA) [7], Gram Schmidt (GS) [8], Nonlinear Intensity-Hue-
Saturation (NIHS) [60]; two MRA based methods, i.e., Additive Wavelet Luminance Pro-
portional (AWLP) [9], Generalized Laplacian Pyramid (GLP) [11]; and three regularization
based methods, i.e., Dynamic Gradient Sparsity (DGS) [23], Coupled Nonnegative Matrix
Factorization (CNMF) [30], Pansharpening based on Hyper-Laplacian Penalty (PHLP) [24].
The source codes of some compared methods are freely available on the website4. The scale
factors are all set as 4. In particular, the number of bands is 4 for Pléiades, IKONOS and
Quickbird datasets (i.e., z = 4) and 8 for WorldView-2 dataset (i.e., z = 8). All experiments
are implemented in MATLAB(R2016a) on a laptop of 8Gb RAM and Intel(R) Core(TM)
i7-7500U CPU: @2.70 GHz 2.90GHz.

Although the proposed method involves many parameters, most of them are relatively
stable. For the selection of parameters, we empirically set γ = 1× 10−3, η1 = η2 = 5× 10−3,
η3 = 1×10−3, α1 = α2 = 5×10−3, ωi = 1×10−2, βi = 1×10−2, i = 1, 2, for all datasets, and
set 1) α3 = 10, λ = 0.5 for IKONOS, Quickbird, and two real datasets, 2) α3 = 20, λ = 0.05
for Pléiades dataset, and 3) α3 = 30, λ = 0.01 for WorldView-2 dataset. Note that, fine
tuning of parameters for different datasets may lead to better results, but we unify the
parameters to illustrate the stability of our method. More discussions on the selection of
parameters can be found in Section 3.6.

To simulate LRMS images, we first apply Gaussian blur kernel to ground-truth HRMS
image and then downsample it to get simulated LRMS image by a scale factor 4 with a very
simple nearest interpolation. In the experiments, all LRMS images are obtained in the same
way. Panchromatic images are simulated by different conditions which will be detailedly
described in the following subsections.

The spectral quality of the fused multispectral images is quite importan, it is however
difficult to judge visually. To compare the spectral and spatial performance of different
fusion methods, there exist many metrics to evaluate, including universal image quality index
(QAVE) [61], Q4 for 4-band image, Q8 for 8-band image, spectral angle mapper (SAM) [2],
ERGAS [62], quality without reference (QNR) [63], correlation coefficient (CC) [2], relative
average spectral error (RASE) [64], peak signal to noise ratio (PSNR), root mean square
error (RMSE), structural similarity index (SSIM) [65], and significance study [66]. However,
some of them represent the similar meaning, thus we only select some representative metrics
such as Q4, Q8, SAM, ERGAS, QNR, PSNR and SSIM to evaluate the performance of
different methods. In particular, the larger Q4, Q8, QNR, PSNR, SSIM and the smaller
SAM, ERGAS are shown, the better performance is obtained. For fair comparisons and

4For PCA, GS, AWLP, GLP and CNMF methods, we can download
the source codes from: http://openremotesensing.net/knowledgebase/
a-critical-comparison-among-pansharpening-algorithms/; For NIHS method,
the code can be found from: http://openremotesensing.net/knowledgebase/
nonlinear-ihs-a-promising-method-for-pan-sharpening/; For DGS method, the source
code can be downloaded from: http://cchen156.web.engr.illinois.edu/SIRF.html; For PHLP
method, we write the code according to the corresponding paper.
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unified computing of metrics 5, here we rescale all computed images into the range of [0, 1],
just like the way in [24, 60], and then compute the corresponding metrics directly.

In the next subsections, we will report the visual and quantitative performance for each
datasets, as well as give more analysis about the parameters selection, the influence of
different energy terms, etc.

In particular, we divided the examples into two categories: 1) Simulated PAN image, see
the example of IKONOS, Quickbird, and Rio data; The weights for this case are predefined
(known) in advance. In particular, the PAN image for Pléiades data is also simulated, but
the weight for this case is not predefined (unknow). The estimation way is same as the
following real PAN case. 2) Real PAN image, see examples in Section 3.5. The weights
need to be estimated by an automatic strategy. For example, the PAN image with the size
512 × 512 and the LRMS image with the size 128 × 128 × 4, we could first downgrade the
PAN image by the MTF filter and a decimation operation (e.g., nearest interpolation in
our work) to get the degraded PAN image with the size 128 × 128 (named as DePAN),
then we assume that the DePAN image is obtained based on the linear spectral combination
of the spectral bands of the LRMS image: DePAN = w1·LRMS(:,:,1) + w2·LRMS(:,:,2) +
w3·LRMS(:,:,3) + w4·LRMS(:,:,4), which is easy to calculate the weight wi (see details from
[44]).

3.1. IKONOS data

We first take a data that is named “Sichuan” and acquired from IKONOS sensor to test
the performance of different methods. This data is with 16-bit and can be downloaded from
the website6. We first crop a 512×512×4 part of given multispectral image as ground-truth
HRMS image, then generate LRMS image of size 128 × 128 × 4 by the way introduced at
the beginning of this section, and finally simulate the panchromatic image of size 512× 512
via the linear combination of each band of the ground-truth HRMS image with weights [0.1
0.35 0.45 0.1], which indicates that the simulated PAN image is with the relation of: PAN
= 0.1·HRMS(:,:,1) + 0.35·HRMS(:,:,2) + 0.45·HRMS(:,:,3) + 0.1·HRMS(:,:,4).

Fig. 2 shows the visual results of different approaches, where (a), (b) and (c) stand
for ground-truth HRMS, panchromatic and LRMS images. Thereinto, the ground-truth
HRMS image contains excellent spatial details and spectral information. The panchromatic
image also contains favorite spatial details but only with single image band which results
in bad spectral performance. Although LRMS image includes good spectral preservation,
its spatial details have degenerated. From the figure, it is clear that PCA, GS, PHLP,
NIHS, and DGS preserve image details well. However, these methods fail to keep spectral
information of the multispectral image and lead to significant spectral distortion. Although
AWLP, GLP, and CNMF generate relatively good spatial and spectral preservation, they
still can not outperform our method. Tab. 1 reports quantitative comparisons on extensive
metrics. From this table, it is easy to see that the proposed method yields the competitive
performance for most of all metrics, which demonstrates the effectiveness of our approach.

5Some methods rescale image intensity into [0, 1] in the provided code, while others keep the original

12



Table 1: Quantitative results on IKONOS dataset (Sichuan) for different methods (Bold: the best; Under-
line: the second best).

PSNR SSIM QNR ERGAS Q4 SAM

GS 25.2566 0.8346 0.8246 5.2288 0.8579 5.0989

PCA 22.1698 0.7808 0.8059 8.5064 0.8332 5.9192

AWLP 25.6254 0.8151 0.8725 5.1501 0.8943 6.1350

GLP 25.3338 0.7774 0.8843 5.3411 0.8789 6.8087

CNMF 29.8108 0.9318 0.9401 2.3224 0.9461 4.5503

DGS 27.1984 0.8357 0.8945 3.5319 0.8901 7.6174

PHLP 26.2043 0.8743 0.9147 3.3241 0.9157 5.0401

NIHS 26.2449 0.8741 0.9120 3.2922 0.9035 5.3845

Our 30.0673 0.9252 0.9410 2.3085 0.9501 4.0735

Ideal value +∞ 1 1 0 1 0

3.2. Quickbird data

In this section, a data from the Quickbird sensor is employed for the experiments. This
data is with 9-bit and can be freely downloaded from the website7. We also crop a 512×512×
4 part from the downloaded multispectral image as the ground-truth HRMS and simulate
LRMS image by the same way as IKONOS data. The panchromatic image is simulated by
the linear weights [0.05 0.45 0.45 0.05] to each band of the ground-truth HRMS image. Our
goal is to get the fused high spatial-resolution HRMS image by the simulated LRMS and
panchromatic images.

From Fig. 3, the visual results by PCA and NIHS show weak spectral information
preservation. For instance, the fused image by NIHS shows bad color contrast and spectral
preservation, which are significantly not consistent with the ground-truth HRMS image (i.e.,
Fig. 3 (a)). Moreover, although GS and AWLP methods exhibit relatively good ability of
spectral preservation, they lose many spatial details that may result in the undesired visual
display. GLP and the proposed approaches both perform excellently on increasing spatial
details and preserving spectral information, but our method could hold better spatial details
than GLP approach (e.g., see cars on the road). In Tab. 2, the proposed method obtains the
promising quantitative performance for all metrics. From the results of this table, AWLP,
GLP and DGS methods show the excellent ability of spectral preservation since their SAM
values exhibit competitive performance. In particular, our method also shows promising
results.

intensity range.
6http://glcf.umd.edu/data/ikonos/
7http://www.digitalglobe.com/product-samples
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(a) REF (b) PAN (c) LRMS (d) PCA

(e) GS (f) AWLP (g) GLP (h) DGS

(i) CNMF (j) PHLP (k) NIHS (l) Proposed

Figure 2: (a) The ground-truth HRMS image (IKONOS dataset, 512 × 512 × 4); (b) PAN image; (c)
LRMS image; (d)-(l) Visual results by PCA, GS, AWLP, GLP, DGS, CNMF, PHLP, NIHS methods and
the proposed method. The weights for this example are predefined as [0.1 0.35 0.45 0.1].

3.3. Pléiades data

In this part, we take a data acquired from Pléiades sensor to compare the performance
of different approaches. We can link the website8 to download this data, which has four
available multispectral bands (with the size of 1024 × 1024 × 4) collected by the aerial
platform have 60 cm resolution. For fast computation and comparisons, here we only crop
the top-left part of size 512 × 512 × 4 as the ground-truth HRMS. In addition, the LRMS
image with spatial resolution of four times lower than that of the ground-truth HRMS image
is simulated according to the Wald’s protocol, namely by MTF filtering and decimation,
i.e., with size 128× 128× 4. Different with previous experiments, the weights are unknown

8http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
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Table 2: Quantitative results on Quickbird dataset for different methods (Bold: the best; Underline: the
second best).

PSNR SSIM QNR ERGAS Q4 SAM

GS 24.9937 0.9296 0.8097 2.9514 0.8204 2.2152

PCA 24.9388 0.9304 0.8924 2.9649 0.8152 2.1849

AWLP 29.6728 0.9360 0.9197 1.8851 0.8059 1.7772

GLP 30.6675 0.9470 0.9073 1.6694 0.9056 1.6315

CNMF 30.3471 0.9480 0.9151 1.6939 0.9551 2.5169

DGS 28.4666 0.9448 0.8875 2.1591 0.8741 1.5707

PHLP 25.9346 0.8128 0.9053 2.7770 0.8000 2.6729

NIHS 24.2877 0.8355 0.8929 3.3881 0.7644 2.7362

Our 35.3173 0.9765 0.9228 0.9793 0.9695 1.4641

Ideal value +∞ 1 1 0 1 0

Table 3: Quantitative results on Pléiades dataset for different methods (Bold: the best; Underline: the
second best).

PSNR SSIM QNR ERGAS Q4 SAM

GS 24.4189 0.7031 0.75405 6.8177 0.5939 9.5480

PCA 23.4296 0.6326 0.7614 8.0242 0.5846 10.6617

AWLP 28.9008 0.8900 0.7897 4.1960 0.7608 6.5899

GLP 29.8154 0.9148 0.8845 3.7787 0.8973 5.5111

CNMF 29.2537 0.8770 0.9472 4.0243 0.8820 5.8090

DGS 26.3182 0.9052 0.8320 4.9647 0.9105 4.1410

PHLP 25.8028 0.8736 0.9441 5.2505 0.9026 3.9697

NIHS 22.4724 0.8255 0.8642 7.3949 0.8247 5.8551

Our 33.2681 0.9490 0.9345 2.3829 0.9243 3.8409

Ideal value +∞ 1 1 0 1 0

in this experiment, thus we need to estimate the weights by the linear regression of the
multispectral image and the spatially degraded panchromatic image [44]. The estimated
weights are [0.1015, 0.4225, 0.4586, 0.0069]. In particular, the radiometric intensity is 11-
bits.

Fig. 4 shows the visual results of different approaches. We can see that PCA, GS
and AWLP methods not only fail to keep high spatial-resolution but also do not preserve
spectral information. In addition, GLP and NIHS approaches keep relatively good spectral
information, however, they can not obtain the best spatial image details (see blue close-ups).
In particular, the proposed method and CNMF method yield similarly and competitively
spatial and spectral results. Tab. 3 demonstrates the effectiveness of our approach for most
of all metrics.
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(a) REF (b) PAN (c) LRMS (d) PCA

(e) GS (f) AWLP (g) GLP (h) DGS

(i) CNMF (j) PHLP (k) NIHS (l) Proposed

Figure 3: (a) The ground-truth HRMS image (Quickbird dataset, 512 × 512 × 4); (b) PAN image; (c)
LRMS image; (d)-(l) Visual results by PCA, GS, AWLP, GLP, DGS, CNMF, PHLP, NIHS methods and
the proposed method. The weights for this example are predefined as [0.05 0.45 0.45 0.05].

3.4. WorldView-2 data

In this section, we employ a 8-band data (Rio) acquired from WorldView-2 sensor9 to test
the performance of different methods. This data that is obtained by cropping the original
image has eight available multispectral bands (with the size of 512× 512× 8). We assume
it as the ground-truth HRMS image and generate LRMS image of size 128× 128× 8 by the
same way as IKONOS data, and finally generate the panchromatic image of size 512× 512
via the ground-truth HRMS image with the linear weights [0.05 0.05 0.2 0.2 0.2 0.2 0.05
0.05]. Note that since the provided codes of GLP and PHLP methods cannot support the
computing of eight multispectral bands, thus we do not compare these two methods in this

9http://www.digitalglobe.com/product-samples
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(a) REF (b) PAN (c) LRMS (d) PCA

(e) GS (f) AWLP (g) GLP (h) DGS

(i) CNMF (j) PHLP (k) NIHS (l) Proposed

Figure 4: (a) The ground-truth HRMS image (Pleiades dataset, 512 × 512 × 4); (b) PAN image; (c)
LRMS image; (d)-(l) Visual results by PCA, GS, AWLP, GLP, DGS, CNMF, PHLP, NIHS methods and
the proposed method. The weights for this example is not predefined, but automatically estimated by the
linear regression of the multispectral image and the spatially degraded panchromatic image. The estimated
weights are [0.1015, 0.4225, 0.4586, 0.0069].

experiment.
From Fig. 5, NIHS and CNMF approaches result in significant spectral distortion al-

though they keep relatively good spatial details. PCA and DGS methods perform competi-
tively from the spectral perspective, but the quantitative results shown in Tab. 4 are not so
good compared with the proposed method. Additionally, AWLP and the proposed method
performs competitively on the visual aspect, and they also obtain competitive quantitative
results.

17



(a) REF (b) PAN (c) LRMS (d) PCA

(e) GS (f) AWLP (g) DGS

(h) CNMF (i) NIHS (j) Proposed

Figure 5: (a) The ground-truth HRMS image (WorldView-2 dataset, 512× 512× 8); (b) PAN image; (c)
LRMS image; (d)-(j) Visual results by PCA, GS, AWLP, DGS, CNMF, NIHS methods and the proposed
method. The weights for this example are predefined as [0.05 0.05 0.2 0.2 0.2 0.2 0.05 0.05].
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Table 4: Quantitative results on WorldView-2 dataset (Rio) for different methods (Bold: the best; Un-
derline: the second best).

PSNR SSIM QNR ERGAS Q8 SAM

GS 26.9012 0.8292 0.8867 5.3388 0.7706 9.0570

PCA 28.9979 0.9118 0.8543 3.6304 0.8894 6.3350

AWLP 33.2816 0.9461 0.9046 1.7738 0.9154 4.6157

CNMF 31.3842 0.9254 0.7930 2.9088 0.9045 5.7530

DGS 30.9198 0.9260 0.8830 2.8525 0.9056 4.8345

NIHS 29.1831 0.9062 0.8000 3.3903 0.8982 5.3239

Our 33.0662 0.9419 0.9257 1.9590 0.9185 4.3578

Ideal value +∞ 1 1 0 1 0

3.5. Real Data

In this subsection, we take two real datasets, i.e., WorldView-2 (town) and GeoEye-1, to
test the performance of some state-of-the-art methods. Since the proposed model needs to
estimate the linear weights for each spectral bands, here we still utilize the strategy which
has been introduced at the beginning of this section to calculate the weights. The estimated
weights for WorldView-2 (town) and GeoEye-1 are about [0.15, 0.31, 0.34, 0.16] and [0.27,
0.08, 0.33, 0.26], respectively. Due to the lack of ground-truth HRMS images, we could only
show visual results for the case of real dataset. From Fig. 6, it is clear that the proposed
method also obtains competitive visual results, while other methods such that DGS, NIHS,
PCA fail to preserve good spatial image details. Especially, the results by AWLP and GLP
also show quite competitive performance comparing with the proposed method. By this
experiment, it demonstrates the effectiveness of our method.

3.6. More discussions

In this section, we give more analysis for the proposed method based on extensive ex-
periments. For the simplicity, here we only take the Quickbird dataset for all following
tests.

• Results with different Eng(1) term: One main contribution of the proposed model
(4) is the non-convex `1/2 term which is promoted by investigating the error distri-
butions for different datasets on the gradient domain. Here, we intend to investigate
the performance with different Eng(1) terms (i.e., Eq. (1)) to the model (4), which
corresponding notations can be found from Tab. 5. All these models are similarly
solved by ADMM based algorithm. Fig. 7 presents the visual results by the proposed
model with different Eng(1) terms. For these models, Proposed-`1 and Proposed-`2

appear significant spectral distortion and fail to obtain excellent spatial details, while
Proposed-g`2 gets promising spectral preservation but results in a slight blur for spatial
details. In addition, Proposed-g`1 and Proposed-g`1/2 (i.e., the final proposed model)
approaches perform similarly and competitively on visual results. However, the final
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(a) LRMS (b) PAN (c) PCA (d) AWLP

(e) DGS (f) GLP (g) NIHS (h) Our

(a) LRMS (b) PAN (c) PCA (d) AWLP

(e) DGS (f) GLP (g) NIHS (h) Our

Figure 6: Visual comparisons on two real datasets, i.e., WorldView-2 (town) in the first example and GeoEye-
1 in the second example. (a) The upsampled LRMS image by bicubic interpolation; (b) PAN image; (c)-(h)
Visual results by PCA, AWLP, DGS, GLP, NIHS and the proposed methods.

proposed model yields the best quantitative results on most of metrics (see Tab. 6).
These visual and quantitative results are also consistent with existing common con-
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clusions, that is `2 term may result in more smoothing results and `1 term can obtain
relatively sharp edges and more high-frequency image details.

• The influence of different parameters for the proposed method: Although
our approach involves many parameters, e.g., γ, αi (i = 1, 2, 3), λ, etc., they are all
relatively stable except α3 and λ for all testing datasets. Therefore, here it is necessary
to show the influence of different parameters for the given method. Note that, since
there are only slightly quantitative changes for some parameters, here we treat the
obtained metrics by (metric−mean(metric))/std(metric) where mean and std stand
for the mean value and standard deviation, respectively, aiming to distinguish the
slight difference. In Fig. 8, we take Quickbird dataset as an example. It is clear
that the suggested parameters combination at the beginning of this section is the best
choice for the Quickbird dataset for almost of all metrics. Note that, fine tuning one
parameter may lead to better results for one specific metric, however, it may result in
worse results for other metrics. Therefore, to balance the performance of all metrics,
we take the suggested parameters. In particular, we fix other parameters but α3 and
λ. The main reason is that we tend to fix most of parameters and only change few of
them to make the parameter selection simpler. About α3, we may roughly make the
following rule: if the intensity difference between each band of a multispectral image is
small, we may set a relatively big α3; if the difference is big, the α3 should be set as a
small value. Moreover, we may also make the following rules for λ: 1) if ‖U l×3w−p‖2

2

is small, the λ should be set as a big value, e.g., the example of accurate weight w for
4-band image. 2) if ‖U l×3w−p‖2

2 is big, the λ should be set as a small value, e.g., the
example of inaccurate weight w for 8-band image.

• The influence of three energy terms in our model (4): The final proposed model
(4) includes three energy terms, here we will exhibit the influence of each term on the
final results. From Fig. 9, we know that the second term of our model, i.e., Eng(2)

that involves the linear relation between panchromatic and latent HRMS images, plays
the most important role to the final results. Moreover, the first term Eng(1) also shows
important influence on our results, which means if we discard it, the final quantitative
performance will decrease significantly. Furthermore, the third term Eng(3) in our
model slightly affects the final results (see Fig. 9), but it is also a necessary part in
the final model. In summary, all energy terms in our model (4) are quite essential to
the final results, therefore we do not remove any one of them.

• The differences between the proposed method and [57, 24]: The difference
between the proposed method and [57] mainly is explained below: 1) The method in
[57] mainly focuses on using matrix-based modeling to deal with single image (2D)
processing, i.e., image deconvolution, while the proposed method mainly focuses on
using tensor-based modeling to deal with two images application, i.e., the fusion of
panchromatic image(2D) + multispectral image (3D). 2) Our model and algorithm
are different from [57]. Therefore, they are different in modeling, algorithm and ap-
plication. Moreover, the difference between the proposed method and [24] mainly has
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the following two aspects: 1) Different modeling which includes: i) The method in
[24] considers that the LRMS image yb should approximate to a decimated version of
HRMS image xb via convolution with a blurring kernel k, i.e., ‖yb−k∗xb‖2

2. The kernel
k is unknown and need to be estimated by users, and the inaccurate kernel may affect
the final result significantly. Whereas the proposed method does not use the kernel to
avoid the issue of kernel estimation. ii) The work in [24] formulates the matrix-based
model for each band of the multispectral image, while our method utilizes the tensor-
based model to directly describe the multispectral image (not band-by-band), which
make the model and algorithm simple by some tensors tools. 2) Different algorithm:
The algorithms for the models in [24] and this paper are also quite different. Note
that, the proposed method and [57, 24] also have the similarity, that is they all use
the similar statistical analysis to investigate and discover the latent hyper-Laplacian
prior which leads to lp norms for the fidelity term in the energy functional.

• The influence of the keynote parameter p: In Fig. 10, we test the influence of the
keynote parameter p with the test range of {0.3, 0.4, 0.5, 0.6, 0.7}. From the figure,
we know that when p = 0.5, it could get the best SAM and Q4 performance for the
Quickbird example, while p = 0.4 can obtain the best ERGAS result. For convenience,
we tend to uniform p = 0.5 for all examples, even though p = 0.5 cannot get the best
performance for all examples and metrics.

• The influence of the weight w: In (2), we assume that the panchromatic image
is the linear combination of spectral bands of a latent HRMS image. The weight is a
key paramter for the proposed model. In this part, we first let the weight wi of one
band be small10, then to see what will happen for the spatial performance of this band.
Here, we take band 2 of Quickbird data as an example (with the corresponding weight
w2). From figure 11, the PSNR and SSIM, two common metrics to evaluate spatial
performance, are reduced from 40.20 and 0.9838 (figure 11(b)) to 17.03 and 0.9004
(figure 11(c)), respectively. It indicates that the spatial details if we let the weight be
small will not be preserved well and the intensity contrast also becomes worse. More
related discussions can be found from [67].

4. Conclusions

In this paper, a non-convex sparse model based on tensor format was proposed for the
fusion of panchromatic and multispectral remote sensing images. The given model mainly
included three terms, one term is to depict the investigated hyper-Laplacian distribution
between the upsampled multispectral image and the latent HRMS image, which results in
one `p (0 < p < 1) energy term; another term is to describe the linear relation between
the panchromatic image and latent HRMS image, which has been utilized in many types of

10if there are four bands, w = [w1,w2,w3,w4]
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Table 5: Notation of the proposed model (4) with different Eng(1) terms.

Notation Eng(1)

Proposed-`1

∑3
i=1 αi‖U l −M‖1

Proposed-`2

∑3
i=1 αi‖U l −M‖2

Proposed-g`1

∑3
i=1 αi‖∇i(U l −M)‖1

Proposed-g`2

∑3
i=1 αi‖∇i(U l −M)‖2

Proposed (i.e., Proposed-g`1/2 )
∑3

i=1 αi‖∇i(U l −M)‖1/2

Table 6: Quantitative results of different models for Quickbird dataset.

PSNR SSIM QNR ERGAS Q4 SAM

Proposed-`1 22.8904 0.6633 0.8190 3.9102 0.5944 4.7852

Proposed-`2 23.0484 0.6437 0.8845 3.8720 0.7053 3.0307

Proposed-g`1 35.1150 0.9690 0.9300 0.9977 0.9039 1.5213

Proposed-g`2 34.6150 0.9724 0.9105 1.0600 0.9086 1.5020

Proposed 35.2019 0.9760 0.9240 0.9853 0.9167 1.4854

research; and the last term is to model the sparsity of the latent HRMS image on the gradient
domain. In addition, the proposed non-convex model could be efficiently solved by a recent
GST algorithm based on the framework of ADMM. Extensive experiments demonstrate that
our method could outperform recent state-of-the-art fusion approaches, both visually and
quantitatively. Furthermore, we also reported more results analysis about the influences of
parameters, non-convex term, and energy terms. The analysis demonstrated the effectiveness
of the proposed method.

This method also encounters some drawbacks. For instance, although the tensor-based
modeling is a promising way for high-dimensional data processing, it is difficult to obtain
excellent results for the fusion of panchromatic and hyperspectral remote sensing images,
since the linear relation between these two images may not hold at this moment. In addition,
the related non-convex `p (0 < p < 1) model fails to hold global convergence under the
ADMM based framework.
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6. Appendix

The paper presents a tensor-based non-convex modeling approach for the fusion of
panchromatic and multispectral images. The non-convex sparse term is depicted by the

23



(a) REF (b) Proposed-`1 (c) Proposed-`2

(d) Proposed-g`1 (e) Proposed-g`2 (f) Proposed

Figure 7: Visual results of different models in Tab. 5 for Quickbird dataset. (a) The ground-truth HRMS
image; (b)-(f) The fused images by Proposed-`1, Proposed-`2, Proposed-g`1, Proposed-g`2 and the proposed
model, respectively.

`p norm where 0 < p < 1, which this term comes from the abundant distribution investi-
gation for the errors between upsampled and ground-truth HRMS images. However, due
to the non-convexity of `p (0 < p < 1) problem, it is quite difficult to design an efficient
algorithm to solve it with guarantees of global convergence. Recently, there have appeared
a number of algorithms for solving the non-convex `p problems for image applications, e.g.,
compressive sensing [56], image restoration [57, 41], face recognition [58]. Here, we choose
an efficient and effective non-convex algorithm [41] for the given non-convex model. In what
follows, we will first introduce this algorithm which is related to our final method.

Inspired by soft-thresholding, Zuo et al., [41] proposed a generalized shrinkage/thresholding
(GST) algorithm to solve the following non-convex `p minimization problem,

min
x

1

2
(x− y)2 + λ|x|p, 0 < p < 1, (19)

where y is the known 1D signal. For the minimization problem (19), if y > 0, the solution
of (19) will fall into the range of [0, y]; otherwise, into the range of [y, 0]. Without loss of
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Figure 8: The influence of different parameters for the proposed method on Quickbird dataset. We obtain
the results by varying the target parameter and fixing other ones. (a)-(f) are the quantitative results with
varying α3, λ, γ, η3, αi and ηi (i = 1, 2), respectively. Note that, to better distinguish the performance of
different approaches, we treat the obtained metrics by (metric −mean(metric))/std(metric) where mean
and std represent the mean value and standard deviation, respectively.
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Figure 9: The quantitative performance when removing one of the three energy terms, i.e., Eng(1)-Eng(3).
It is clear that the proposed model performs best than the models of removing one energy term.

generality, here we only consider the case of y > 0. Let f(x) = 1
2
(x − y)2 + λ|x|p which is

differentiable in the range of (0,+∞), thus the first-order derivative of f(x) is as follows,

f ′(x) = x− y + λpxp−1, (20)

By setting p = 0.5 and λ = 1, the plots of f(x) with a typical y is given in Fig. 12.
From this figure, it is clear that there exists a specific threshold τGSTp (λ) after fixing p and
λ, if y < τGSTp (λ), x = 0 is the global minimum of (19); otherwise, one nonzero solution will
be optimal. Therefore, to generate the final GST formula, it should address two important
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Figure 10: The SAM (a), ERGAS (b) and Q4 (c) influence of the keynote parameter p with the test range
of {0.3, 0.4, 0.5, 0.6, 0.7} for the Quickbird example. Similar to Fig. 8, to better distinguish the difference
of values with quite small changes, we treat the obtained metrics by (metric−mean(metric))/std(metric)
where mean and std represent the mean value and standard deviation, respectively.

(a) (b) (c)

Figure 11: Test results for the weight influence of Quickbird data. (a) The ground truth of band 2 of
Quickbird data; (b) The visual result of band 2 using the predefined weight w = [0.05, 0.45, 0.45, 0.05]; (c)
The visual result of band 2 if we deliberately let w2 be small, here using w2 = 0.2. It indicates that the
spatial details of (c) fail to be preserved well and the intensity contrast also becomes worse. Especially, the
PSNR and SSIM decrease from 40.20 and 0.9838 (b) to 17.03 and 0.9004 (c), respectively.

issues, one is to calculate the threshold τGSTp (λ), the other is to search the nonzero solution
by one fast strategy.

As shown in Fig. 12, it is easy to know that there is a specific y value to make f(x∗p) =
f(0), which means:

1

2
(x∗p − τGSTp (λ))2 + λ|x∗p|p =

1

2
(τGSTp (λ))2, (21)

where y is replaced by τGSTp (λ) to determine the threshold value. In addition, it also has
the relation f ′(x∗p) = 0, i.e.,

x∗p − τGSTp (λ) + λp(x∗p)
p−1 = 0. (22)

Combining Eq. (21) and Eq. (22), we may compute the solution x∗p in the range of
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Figure 12: The plot of f(x) = 1
2 (x− y)2 + λ|x|p when fixing p = 0.5, λ = 1 and with varying y values. (a)

y = 1, (b) y = 1.19, (c) y = 1.3, (d) y = 1.5, (e) y = 1.6.

(x
(λ,p)
0 ,+∞) 11,

x∗p = (2λ(1− p))
1

2−p , (23)

and then the threshold value τGSTp (λ) is

τGSTp (λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p . (24)

Theorem 1 ([41]): For any y ∈ (τGSTp (λ),+∞), f(x) has one unique minimum
SGSTp (y;λ) in the range of (x∗p,+∞) by solving:

SGSTp (y;λ)− y + λp(SGSTp (y;λ))p−1 = 0.

Theorem 2 ([41]): For any y ∈ (τGSTp (λ),+∞), let SGSTp (y;λ) be the unique minimum
of f(x) in the range of (x∗p,+∞), we have the following inequality:

f(0) > f(SGSTp (y;λ)).

By the two theorems, the new thresholding function TGSTp (y;λ) is defined as follows,

TGSTp (y;λ) =

{
0, if |y| ≤ τGSTp (λ),

sgn(y)SGSTp (|y|;λ), if |y| > τGSTp (λ),

which is similar to soft-thresholding function.
After obtaining the threshold value TGSTp (y;λ), the authors in [41] finally propose an

iterative GST algorithm, see Algorithm 2, which can solve the non-convex minimization
problem efficiently.

11x
(λ,p)
0 is the solution of f ′′(x) = 0
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Algorithm 2 (GST): TGSTp (y;λ) = GST (y, λ, p, J)

Input: y, λ, p, J

1) τGSTp (λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))p−1
2−p

2) If |y| ≤ τGSTp (λ)
3) TGSTp (y;λ) = 0
4) Else
5) k = 0, x(k) = |y|
6) for k = 1:J
7) x(k+1) = |y| − λp(x(k))p−1

8) endfor
9) TGSTp (y;λ) = sgn(y)x(k)

10) Endif
Output: TGSTp (y;λ)

In Algorithm 2, J is the iteration number, which is suggested as 2 in [41] and is enough
to obtain competitive results. The Algorithm 2 is quite related to the proposed method and
will be applied to solving the involved non-convex subproblem.
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