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A New Operator Splitting Method for the Euler Elastica Model for Image
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Abstract. Euler's elastica model has a wide range of applications in image processing and computer vision.
However, the nonconvexity, the nonsmoothness, and the nonlinearity of the associated energy func-
tional make its minimization a challenging task, further complicated by the presence of high order
derivatives in the model. In this article we propose a new operator-splitting algorithm to minimize
the Euler elastica functional. This algorithm is obtained by applying an operator-splitting based time
discretization scheme to an initial value problem (dynamical flow) associated with the optimality
system (a system of multivalued equations). The subproblems associated with the three fractional
steps of the splitting scheme have either closed form solutions or can be handled by fast dedicated
solvers. Compared with earlier approaches relying on ADMM (Alternating Direction Method of
Multipliers), the new method has, essentially, only the time discretization step as free parameter to
choose, resulting in a very robust and stable algorithm. The simplicity of the subproblems and its
modularity make this algorithm quite efficient. Applications to the numerical solution of smoothing
test problems demonstrate the efficiency and robustness of the proposed methodology.
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1. Introduction. In imaging applications, the generalized Euler elastica energy is defined
by

(1.1) E(v) =

\int 
\Omega 

\Biggl( 
a+ b

\bigm| \bigm| \bigm| \bigm| \nabla \cdot \nabla v

| \nabla v| 

\bigm| \bigm| \bigm| \bigm| 2
\Biggr) 
| \nabla v| dx,

where in (1.1), \Omega is a bounded domain of R2 (a rectangle, typically), a and b are two positive
parameters, v is a function of two variables belonging to an appropriate functional space
containing (in principle) the underlying image, and dx = dx1dx2.
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The Euler elastica energy defined by (1.1) has found applications in image processing,
such as denoising [48, 57, 36], segmentation [63, 20, 58, 2], inpainting [45, 6, 48, 55], zooming
[48], illusory contour [41, 37, 47], and segmentation with depth [42, 24, 62]. In [45], Shen,
Kang, and Chan discussed the mathematical foundation of the Euler elastica model and
its mathematical properties, motivated by applications to image inpainting. In addition,
the authors of [45] also discussed a numerical PDE method, in order to solve the associated
nonlinear problem. In [48], Tai, Hahn, and Chung proposed an augmented Lagrangian method
(ALM) to handle the Euler elastica energy and applied the resulting algorithm to the solution
of imaging problems in denoising, inpainting, and zooming (we denote this method as the
THC method). In [21], Duan et al. proposed a fast augmented Lagrangian method (FALM)
to solve the Euler elastica problem for image denoising, inpainting, and zooming based on
the framework of the THC method. More recently, in [57] Zhang et al. proposed a linearized
augmented Lagrangian method (LALM) to simplify the THC method and applied it to the
solution of image denoising problems. In [55], two numerical algorithms were proposed to solve
inpainting related problems involving the Euler elastica energy (1.1): The first algorithm is
an improved variant of the ALM based algorithm discussed in [48]. The second algorithm is
obtained by applying a split-Bregman method to a linearized elastica model proposed in [1].
Following an idea from [40], Masnou and Morel proposed in [41] a novel method to handle the
elastica energy functional and applied it to the solution of illusory contour problems. In [37],
Kang, Zhu, and Shen used the Euler elastica energy as an effective tool to fuse the scattered
corner bases. In [47], Tai and Duan combined level set and binary representation of interfaces
to solve, via the Euler elastica model, inpainting, segmentation and illusory control problems.
In [5], Bredies, Pock, and Wirth suggested using as smoothing functional a convex, lower
semicontinuous approximation of the Euler elastica energy and applied this approximation to
the solution of some imaging problems; combined with tailored discretization of measures, the
functional introduced in [5] has produced promising results. Taking image restoration as an
illustration, in order to solve the image restoration problem, via Euler's elastica energy, we
need to solve the following minimization problem:

(1.2) min
v

\Biggl[ \int 
\Omega 

\Biggl( 
a+ b

\bigm| \bigm| \bigm| \bigm| \nabla \cdot \nabla v

| \nabla v| 

\bigm| \bigm| \bigm| \bigm| 2
\Biggr) 
| \nabla v| dx+

1

2

\int 
\Omega 
| f  - v| 2dx

\Biggr] 
,

where v is as in (1.1), and f is the image we are trying to denoise. The first term in the
functional in (1.2) is a regularizing one; it captures the image geometrical features. The
second term is the fidelity one; it enforces the underlying image to be close to f .

The main goal of this article is to develop a robust, stable, and ``almost"" parameter free
method to solve problem (1.2), and close variants of it.

The nonconvexity, the nonsmoothness, and the high-order of the derivatives it contains
make the fast and robust solution of problem (1.2) a very challenging task. So far, there are
only a few methods to solve problems such as (1.2); let us mention among them two graph-cut
based methods [23, 1], an integer linear programming (ILP) method [44], a method based
on the approximation of the Euler elastica energy [5], and the THC method [48]. The THC
method in [48] is a particular realization of the alternating direction method of multipliers
(ADMM), a well-known method from mathematical programming (see, e.g., [17] and references
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1192 L. DENG, G. ROLAND, AND X.-C. TAI

therein for more details). ADMM is a primal-dual method, closely related to the Douglas--
Rachford alternating direction method (a well-known operator-splitting method). Following
the THC method [48], several extensions were proposed for solving, via the Euler elastica
energy functional, a large variety of imaging problems (see [63, 21, 54, 2]). Actually, readers
can find further curvature-based methods in [7, 35, 25, 3, 14]. Primal-dual methods have
been applied also to derive fast algorithms to handle the total variation (TV) imaging model,
introduced in [43] by Rudin, Osher, and Fattorini (ROF). For instance, Droske and Bertozzi in
[19] combined the regularization techniques with active contour models to segment polygonal
objects in aerial images. This method could avoid losing features by using TV-based inverse
scale-space techniques on the input data. See [15, 51, 10, 60, 56, 26, 27, 49, 52, 46, 53, 4, 59,
12, 9, 11, 38] and the references therein for more details.

In this article, we propose a novel and (relatively) simple operator-splitting method for
the solution of problem (1.2). The principle of the method is very simple: (i) We introduce the
vector-valued functions q(= \nabla v) and \bfitmu (= q/| q| ). (ii) Using appropriate indicator functionals,
we reformulate problem (1.2) as an unconstrained minimization problem with respect to the
triple (v,q,\bfitmu ). (iii) We derive an optimality system and associate with it an initial-value
problem (gradient flow). (iv) We use the Lie scheme to time-discretize the above initial value
problem and capture its steady state solutions. The subproblems associated with the Lie
scheme fractional steps have either closed form solutions or can be solved by fast dedicated
algorithms (such as FFT). Numerous applications to image smoothing show the efficiency of
the proposed method.

When compared to the THC method in [48], the method introduced in this article has the
following advantages:

\bullet The time-discretization step is, essentially, the only parameter one has to choose, while
the THC method requires the balancing of three augmentation parameters.

\bullet The results produced by the new method are less sensitive to parameter choice than
those obtained by the THC method.

\bullet For the same stopping criterion tolerance, the new method needs less iterations than
the THC counterpart. Moreover, the new method has a lower cost per iteration than
the THC method.

This article is structured as follows: The novel method is described in sections 2 and
3, while its finite difference implementation is discussed in section 4. Section 5 is dedicated
to image smoothing, with some experiments designed to show the superiority of the new
method. Some conclusions are drawn in section 6. Finally, an appendix dedicated to the Lie
and Marchuk--Yanenko operator-splitting schemes is added. Indeed, we feel justified adding
this appendix since these two schemes are highly popular in computational fluid dynamics but
much less in imaging science.

To conclude this section we would like to mention that various derivations in the following
sections are largely mathematically formal (that is, lacking sometimes rigorous mathematical
foundations). This follows, in particular, from the fact that, to the best of our knowledge, one
has not identified, yet, the proper functional framework to formulate problem (1.2). Accord-
ingly, existence of minimizers and convergence of the proposed schemes are tasks for further
studies.
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2. A reformulation of problem (1.2). From section 1, Euler's elastica problem reads as

(2.1) min
v\in \scrV 

\Biggl[ \int 
\Omega 

\Biggl( 
a+ b

\bigm| \bigm| \bigm| \bigm| \nabla \cdot \nabla v

| \nabla v| 

\bigm| \bigm| \bigm| \bigm| 2
\Biggr) 
| \nabla v| dx+

1

2

\int 
\Omega 
| f  - v| 2dx

\Biggr] 
,

where \scrV is a functional space that needs to be chosen properly. As already mentioned in
section 1, formulation (2.1) is largely formal since we do not know much about space \scrV , which
has to be, obviously, a subspace of L2(\Omega ). At any rate, the discrete problems largely ignore
these functional analysis considerations, and we will say no more about the proper choice of
\scrV . An important issue with formulation (2.1) is that it makes no sense on those parts of \Omega 
where \nabla v vanishes (implying that (2.1) is a typical formal mathematical formulation). An
obvious (and once popular) way to overcome this difficulty is to replace | \nabla v| by

\sqrt{} 
\epsilon 2 + | \nabla v| 2,

\epsilon being a small parameter. A more sophisticated way we borrow from viscoplasticity (see,
e.g., [22, 17, 34]) is to replace \nabla v

| \nabla v| by a vector-valued function \bfitmu verifying

(2.2) \bfitmu \cdot \nabla v = | \nabla v| , | \bfitmu | \leq 1,

with | \bfitmu | =
\sqrt{} 

\mu 2
1 + \mu 2

2 \forall \bfitmu = (\mu 1, \mu 2), which is used in some imaging works; see, e.g., [3], and
then problem (2.1) by

(2.3) min
(v,\bfitmu )\in \scrW 

\biggl[ \int 
\Omega 

\Bigl( 
a+ b | \nabla \cdot \bfitmu | 2

\Bigr) 
| \nabla v| dx+

1

2

\int 
\Omega 
| f  - v| 2dx

\biggr] 
,

where (formally)

\scrW = \{ (v,\bfitmu ) \in \scrH 1(\Omega )\times \scrH (\Omega ,div), \bfitmu \cdot \nabla v = | \nabla v| , | \bfitmu | \leq 1\} ,

with

\scrH (\Omega , div) = \{ \bfitmu \in (\scrL 2(\Omega ))2,\nabla \cdot \bfitmu \in \scrL 2(\Omega )\} .

A simple, but computationally important, result is provided by the following (semiformal)
proposition.

Proposition 1. Suppose that (u,\bfitlambda ) is a solution of problem (2.3), then u and f have the
same average grey value, that is,

(2.4)

\int 
\Omega 
udx =

\int 
\Omega 
fdx.

Proof. Consider the pair (u+ c,\bfitlambda ), where c \in R. Since \nabla (u+ c) = \nabla u, the pair (u+ c,\bfitlambda )
belongs also to \scrW . Let us denote by J1 (resp., J2) the left (resp., right) integral in (2.3).
Since \nabla (u+ c) = \nabla u we have J1(u+ c,\bfitlambda ) = J1(u,\bfitlambda ). On the other hand,

(2.5) J2(u+ c,\bfitlambda ) =
1

2

\int 
\Omega 
| u+ c - f | 2dx = J2(u,\bfitlambda ) + c

\int 
\Omega 
(u - f)dx+ | \Omega | c

2

2
,
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1194 L. DENG, G. ROLAND, AND X.-C. TAI

with | \Omega | = measure of \Omega . The function u being fixed, the quadratic function of c in the
right-hand side of (2.5) takes its minimal value for c = cm = 1

| \Omega | 
\int 
\Omega (f  - u)dx. Suppose that\int 

\Omega (f  - u)dx \not = 0; then
J2(u+ cm,\bfitlambda ) < J2(u,\bfitlambda ),

implying that (u,\bfitlambda ) is not a minimizer of J1 + J2. We have, thus, necessarily
\int 
\Omega udx =

\int 
\Omega f

dx.

Remark 2.1. As we do not have the existence of the minimizer of problem (2.3), thus
the proof above is largely formal mathematically. However, if one is willing to consider the
discretized problems in finite dimensions, the existence is not a problem and the proof is
correct. This remark is also applicable to some similar issues related to existence of minimizers
later.

Remark 2.2. It is a common practice to assume periodicity when working with image
processing problems. Proposition 1 still holds if one considers the minimization of the elastica
functional in a space of sufficiently smooth periodic functions (functions defined over a two-
dimensional (2D) torus). In section 3.8 we will return to the case where \scrV is a space of smooth
functions periodic in the Ox1 and Ox2 directions

Let us define the sets \Sigma f and S by

\Sigma f =

\biggl\{ 
q \in (\scrL 2(\Omega ))2, \exists v \in \scrH 1(\Omega ) such that q = \nabla v and

\int 
\Omega 
(v  - f)dx = 0

\biggr\} 
and

S = \{ (q,\bfitmu ) \in (\scrL 2(\Omega ))2 \times (\scrL 2(\Omega ))2, q \cdot \bfitmu = | q| , | \bfitmu | \leq 1\} .
There is then (formal) equivalence between problem (2.3) and

(2.6)

min
(\bfq ,\bfitmu )\in (\scrL 2(\Omega ))2\times \scrH (\Omega ,\mathrm{d}\mathrm{i}\mathrm{v})

\biggl[ \int 
\Omega 

\bigl( 
a+ b| \nabla \cdot \bfitmu | 2

\bigr) 
| q| dx+

1

2

\int 
\Omega 
| v\bfq  - f | 2dx+ I\Sigma f

(q) + IS(q,\bfitmu )

\biggr] 
,

where I\Sigma f
and IS are indicator functionals defined by

(2.7) I\Sigma f
(q) =

\Biggl\{ 
0 if q \in \Sigma f ,

+\infty if q \in (\scrL 2(\Omega ))2\setminus \Sigma f

and

(2.8) IS(q,\bfitmu ) =

\Biggl\{ 
0 if (q,\bfitmu ) \in S,

+\infty if (q,\bfitmu ) \in (\scrL 2(\Omega ))2 \times (\scrL 2(\Omega ))2\setminus S

v\bfq being the unique solution of the following problem:

(2.9)

\left\{         
\nabla 2v\bfq = \nabla \cdot q in \Omega ,

(\nabla v\bfq  - q) \cdot n = 0 on \partial \Omega ,\int 
\Omega 
v\bfq dx =

\int 
\Omega 
fdx,
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where in (the Neuman) problem (2.9), n denotes the outward unit normal vector on the
boundary \partial \Omega of \Omega . If q \in (\scrL 2(\Omega ))2, then problem (2.9) has a unique solution in \scrH 1(\Omega ).

3. An operator-splitting method for the solution of problem (2.6).

3.1. Optimality conditions and associated dynamical flow problem. Let us denote by
J1 and J2 the functionals defined by

(3.1)

\left\{       
J1(q,\bfitmu ) =

\int 
\Omega 

\bigl( 
a+ b| \nabla \cdot \bfitmu | 2

\bigr) 
| q| dx,

J2(q) =
1

2

\int 
\Omega 
| v\bfq  - f | 2dx,

and suppose that (p,\bfitlambda ) is a minimizer of the functional in (2.6). We have that u = v\bfp (see
the definition of v\bfq given in (2.9)) is a solution to problem (2.1), and the following system of
(necessary) optimality conditions holds (formally, at least):

(3.2)

\Biggl\{ 
\partial \bfq J1(p,\bfitlambda ) +DJ2(p) + \partial I\Sigma f

(p) + \partial \bfq IS(p,\bfitlambda ) \ni 0,

D\bfitmu J1(p,\bfitlambda ) + \partial \bfitmu IS(p,\bfitlambda ) \ni 0,

where the Ds (resp., the \partial s) denotes classical differentials (resp., generalized differentials
(subdifferentials in the case of nonsmooth convex functionals, I\Sigma f

being a typical one)). We
associate with (3.2) the following initial value problem (dynamical flow):

(3.3)

\left\{           
\partial p

\partial t
+ \partial \bfq J1(p,\bfitlambda ) +DJ2(p) + \partial I\Sigma f

(p) + \partial \bfq IS(p,\bfitlambda ) \ni 0 in \Omega \times (0,+\infty ),

\gamma 
\partial \bfitlambda 

\partial t
+D\bfitmu J1(p,\bfitlambda ) + \partial \bfitmu IS(p,\bfitlambda ) \ni 0 in \Omega \times (0,+\infty ),

(p(0),\bfitlambda (0)) = (p0,\bfitlambda 0),

with \gamma > 0 (the choice of \gamma will be discussed in section 3.5).
Let us denote the pair (\bfitp ,\bfitlambda ) by \bfitX . Problem (3.3) is clearly of the following form:\left\{       

\partial \bfitX 

\partial t
+

4\sum 
j=1

Aj(\bfitX ) \ni 0 in (0,+\infty ),

\bfitX (0) = \bfitX 0(= (\bfitp 0,\bfitlambda 0)),

implying (see Appendix A) that the initial value problem (3.3) is a natural candidate to a
solution method of the operator-splitting type, the Lie and Marchuk--Yanenko schemes, in
particular. The idea is to capture the steady state solutions of (3.3) (necessarily solutions of
(3.2)) by integrating (approximately) (3.3) over the time interval (0,+\infty ). This approach will
be discussed in section 3.2.

D
ow

nl
oa

de
d 

06
/2

6/
19

 to
 1

13
.5

4.
19

3.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1196 L. DENG, G. ROLAND, AND X.-C. TAI

Remark 3.1. For the initial value, we advocate taking (p0,\bfitlambda 0) \in S in (3.3). Related to
subdifferentials, it is known that the subdifferentials of the sum of two functionals may not
equal the sum of the subdifferentials of each functional. Due to the complexity of the problem,
we will not dwell upon this issue here.

3.2. An operator-splitting method for the solution of the dynamical flow problem (3.3)
. Following [32] (and the Appendix A; see also [33] for applications of operator-splitting to
imaging), we will use a Lie scheme to time-discretize problem (3.3). Let \tau (> 0) be a time
discretization step; we denote (n+ \alpha )\tau by tn+\alpha . Among the many possible splitting schemes
of the Lie type one can employ to solve problem (3.3), we advocate the following:

(3.4) (p0,\bfitlambda 0) = (p0,\bfitlambda 0).

1st fractional step. Solve

(3.5)

\left\{             

\left\{     
\partial p

\partial t
+ \partial \bfq J1(p,\bfitlambda ) \ni 0,

\gamma 
\partial \bfitlambda 

\partial t
+D\bfitmu J1(p,\bfitlambda ) = 0

in \Omega \times (tn, tn+1),

(p(tn),\bfitlambda (tn)) = (pn,\bfitlambda n),

and set

(3.6) (pn+1/3,\bfitlambda n+1/3) = (p(tn+1),\bfitlambda (tn+1)).

2nd fractional step. Solve

(3.7)

\left\{             

\left\{     
\partial p

\partial t
+ \partial \bfq IS(p,\bfitlambda ) \ni 0,

\gamma 
\partial \bfitlambda 

\partial t
+ \partial \bfitmu IS(p,\bfitlambda ) \ni 0

in \Omega \times (tn, tn+1),

(p(tn),\bfitlambda (tn)) = (pn+1/3,\bfitlambda n+1/3),

and set

(3.8) (pn+2/3,\bfitlambda n+2/3) = (p(tn+1),\bfitlambda (tn+1)).

3rd fractional step. Solve

(3.9)

\left\{             

\left\{     
\partial p

\partial t
+DJ2(p) + \partial I\Sigma f

(p) \ni 0,

\gamma 
\partial \bfitlambda 

\partial t
= 0

in \Omega \times (tn, tn+1),

(p(tn),\bfitlambda (tn)) = (pn+2/3,\bfitlambda n+2/3),
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and set

(3.10) (pn+1,\bfitlambda n+1) = (p(tn+1),\bfitlambda n+2/3).

The Lie scheme (3.5)--(3.10) is only semidiscrete since we have not yet specified how to
time-discretize the initial value problems (3.5), (3.7), and (3.9). In order to do so, we suggest
using the following time discretization scheme (of the Marchuk--Yanenko type):

(3.11) (p0,\bfitlambda 0) = (p0,\bfitlambda 0).

Then, for n \geq 0, (pn,\bfitlambda n) \rightarrow (pn+1/3,\bfitlambda n+1/3) \rightarrow (pn+2/3,\bfitlambda n+2/3) \rightarrow (pn+1,\bfitlambda n+1) as
follows:

(3.12)

\left\{       
pn+1/3  - pn

\tau 
+ \partial \bfq J1(p

n+1/3,\bfitlambda n) \ni 0,

\gamma 
\bfitlambda n+1/3  - \bfitlambda n

\tau 
+D\bfitmu J1(p

n+1/3,\bfitlambda n+1/3) = 0

in \Omega \Rightarrow (pn+1/3,\bfitlambda n+1/3),

(3.13)

\left\{       
pn+2/3  - pn+1/3

\tau 
+ \partial \bfq IS(p

n+2/3,\bfitlambda n+2/3) \ni 0,

\gamma 
\bfitlambda n+2/3  - \bfitlambda n+1/3

\tau 
+ \partial \bfitmu IS(p

n+2/3,\bfitlambda n+2/3) \ni 0

in \Omega \Rightarrow (pn+2/3,\bfitlambda n+2/3),

(3.14)

\left\{       
pn+1  - pn+2/3

\tau 
+DJ2(p

n+1) + \partial I\Sigma f
(pn+1) \ni 0,

\gamma 
\bfitlambda n+1  - \bfitlambda n+2/3

\tau 
= 0

in \Omega \Rightarrow (pn+1,\bfitlambda n+1).

In the following subsections we are going to discuss the solution of the various subproblems
encountered when applying scheme (3.11)--(3.14) to the solution of problem (2.6).

Remark 3.2. The nonconvexity of problem (2.1) implies the nonmonotonicity of some of
the operators encountered in the (formal) necessary conditions (3.2) and the associated initial
value problem (3.3) (nondifferentiability further complicates the situation). Due to these
difficulties, the convergence of algorithms (3.4)--(3.10) and (3.11)--(3.14) (and of their finite
dimensional analogues) as n \rightarrow +\infty , are questions that cannot be answered at this moment.
These difficult mathematical issues are beyond the scope of this article.
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3.3. Computing p\bfitn +\bfone /\bfthree from (3.12). The multivalued equation verified by pn+1/3 in
(3.12) is nothing but the (formal) Euler--Lagrange equation of the following minimization
problem:

(3.15) pn+1/3 = arg min
\bfq \in (\scrL 2(\Omega ))2

\biggl[ 
1

2

\int 
\Omega 
| q - pn| 2dx+ \tau 

\int 
\Omega 

\bigl( 
a+ b| \nabla \cdot \bfitlambda n| 2

\bigr) 
| q| dx

\biggr] 
.

Problems such as (3.15) are very common in image processing and viscoplasticity. The
closed form solution of problem (3.15) is given by (see [28, 31, 18, 50, 48])

(3.16) pn+1/3 = max

\biggl\{ 
0, 1 - c

| pn| 

\biggr\} 
pn,

where c = \tau a+ \tau b| \nabla \cdot \bfitlambda n| 2.

3.4. Computing \bfitlambda \bfitn +\bfone /\bfthree from (3.12). The equation verified by \bfitlambda n+1/3 in (3.12) is the
(formal) Euler--Lagrange equation of the following minimization problem:

(3.17) \bfitlambda n+1/3 = arg min
\bfitmu \in \scrH (\Omega ,\mathrm{d}\mathrm{i}\mathrm{v})

\biggl[ 
\gamma 

\int 
\Omega 

| \bfitmu  - \bfitlambda n| 2

2\tau 
dx+ J1(\bfitmu ,p

n+1/3)

\biggr] 
,

where \bfitlambda n and pn+1/3 are known.
From the Euler--Lagrange equation of (3.17), we get that the solution \bfitlambda n+1/3 is the solution

of following linear elliptic system with variable coefficients:

(3.18)

\left\{   \gamma 
\bfitlambda n+1/3  - \bfitlambda n

\tau 
 - 2b\nabla (| pn+1/3| \nabla \cdot \bfitlambda n+1/3) = 0 in \Omega ,

b| pn+1/3| \nabla \cdot \bfitlambda n+1/3 = 0 on \partial \Omega .

Problem (3.18) is (formally) well posed. Properly approximated by either finite difference
or finite element methods, problem (3.18) leads to linear systems associated with symmetric
positive definite matrices making these systems solvable by a large variety of efficient linear
solvers. For those cases where \Omega is a rectangle (the most common situation), an alternative to
the above mentioned approximation methods is provided by cosine expansions-based spectral
methods.

In section 3.8, we will encounter the variant of system (3.18) associated with periodic
boundary conditions in the Ox1 and Ox2 directions. Indeed, it is common to use periodic
boundary conditions for image processing problems. One can justify this approach by assum-
ing that the image is defined on a 2D torus, for example. As shown in [48, section 3.2.5]
and [50], periodic boundary conditions simplify the efficient solution of the periodic variant of
problem (3.18) by fast Fourier transform (FFT). We will assume periodic boundary conditions
in sections 4 and 5.
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3.5. Computing
\bigl( 
p\bfitn +\bftwo /\bfthree , \bfitlambda \bfitn +\bftwo /\bfthree 

\bigr) 
from (3.13).

3.5.1. Decomposition of problem (3.13). One can view system (3.13) as the Euler--
Lagrange equation of the following minimization problem:

(3.19) min
(\bfq ,\bfitmu )\in S

\biggl[ \int 
\Omega 
| q - pn+1/3| 2dx+ \gamma 

\int 
\Omega 
| \bfitmu  - \bfitlambda n+1/3| 2dx

\biggr] 
.

Problem (3.19) can be solved pointwise, reducing, a.e. on \Omega , to the following finite dimen-
sional constrained minimization problem:

(3.20) (pn+2/3(x),\bfitlambda n+2/3(x)) = argmin(\bfq ,\bfitmu )\in \sigma jn+1/3(q,\bfitmu ;x),

where \sigma = \{ (q,\bfitmu ) \in R2 \times R2, q \cdot \bfitmu = | q| , | \bfitmu | \leq 1\} and

jn+1/3(q,\bfitmu ;x) =
\bigm| \bigm| \bigm| q - pn+1/3(x)

\bigm| \bigm| \bigm| 2 + \gamma 
\bigm| \bigm| \bigm| \bfitmu  - \bfitlambda n+1/3(x)

\bigm| \bigm| \bigm| 2 \forall (q,\bfitmu ) \in R2 \times R2.

Let us define \sigma 0 and \sigma 1 by

\sigma 0 = \{ (q,\bfitmu ) \in R2\times R2,q = 0, | \bfitmu | \leq 1\} , \sigma 1 = \{ (q,\bfitmu ) \in R2\times R2,q \not = 0,q \cdot \bfitmu = | q| , | \bfitmu | = 1\} .

We clearly have \sigma = \sigma 0\cup \sigma 1, implying that to compute
\bigl( 
pn+2/3(x),\bfitlambda n+2/3(x)

\bigr) 
, we may proceed

as follows:
(i) Solve the following two uncoupled minimization problems:\Bigl( 

p
n+2/3
0 (x),\bfitlambda 

n+2/3
0 (x)

\Bigr) 
= argmin(\bfq ,\bfitmu )\in \sigma 0

jn+1/3(q,\bfitmu ;x),(3.21) \Bigl( 
p
n+2/3
1 (x),\bfitlambda 

n+2/3
1 (x)

\Bigr) 
= argmin(\bfq ,\bfitmu )\in \sigma 1

jn+1/3(q,\bfitmu ;x),(3.22)

(ii) Choose the one that gives the smallest value to jn+1/3 as the minimizer of (3.20), i.e.,

\Bigl( 
pn+2/3(x),\bfitlambda n+2/3(x)

\Bigr) 
= argmin

\biggl[ 
jn+1/3(p0(x)

n+2/3,\bfitlambda 0(x)
n+2/3;x),(3.23)

jn+1/3(p1(x)
n+2/3,\bfitlambda 1(x)

n+2/3;x)

\biggr] 
, a.e. on \Omega .

In what follows, we first introduce a strategy of adaptively choosing \gamma in section 3.5.2.
After that, in sections 3.5.3 and 3.5.4, we will discuss the minimization of the functional in
(3.20) over \sigma 0 and \sigma 1, respectively.

3.5.2. Selection of the parameter \bfitgamma . We intend to select the parameter \gamma so that the
two terms in jn+1/3 are balanced. We note that

\bfitlambda (t) =
p(t)

| p(t)| 
.
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Thus

(3.24)
\partial \bfitlambda 

\partial t
= lim

\tau \rightarrow 0

1

\tau 

\biggl( 
p(t+ \tau )

| p(t+ \tau )| 
 - p(t)

| p(t)| 

\biggr) 
.

Due to the relation\bigm| \bigm| \bigm| \bigm| p| p|  - q

| q| 

\bigm| \bigm| \bigm| \bigm| 2 = | p| 2

| p| 2
+

| q| 2

| q| 2
 - 2

p \cdot q
| p| | q| 

= 2

\biggl( 
1 - p \cdot q

| p| | q| 

\biggr) 
\leq | p| 2 + | q| 2  - 2p \cdot q

| p| | q| 
=

| p - q| 2

| p| | q| 

one has \bigm| \bigm| \bigm| \bigm| p(t+ \tau )

| p(t+ \tau )| 
 - p(t)

| p(t)| 

\bigm| \bigm| \bigm| \bigm| \leq | p(t+ \tau ) - p(t)| \sqrt{} 
| p(t+ \tau )| | p(t)| 

Let \tau \rightarrow 0, we get from (3.24) that \bigm| \bigm| \bigm| \bigm| \partial \bfitlambda \partial t
\bigm| \bigm| \bigm| \bigm| \leq 1

| p| 

\bigm| \bigm| \bigm| \bigm| \partial p\partial t
\bigm| \bigm| \bigm| \bigm| .

For small \tau , the minimizer of (3.19) verifies

(3.25)
| pn+2/3  - pn+1/3| 2

2\tau 
+ \gamma 

| \bfitlambda n+2/3  - \bfitlambda n+1/3| 2

2\tau 
\approx \tau 

2

\biggl( \bigm| \bigm| \bigm| \bigm| \partial p\partial t (tn+1/3)

\bigm| \bigm| \bigm| \bigm| 2 + \gamma 

\bigm| \bigm| \bigm| \bigm| \partial \bfitlambda \partial t (tn+1/3)

\bigm| \bigm| \bigm| \bigm| 2\biggr) .
According to the above estimate, to balance these two terms, we just need to choose

\gamma = | pn+1/3| 2.

In order to avoid the case | pn+1/3| \approx 0, we choose, in practice,

(3.26) \gamma = max(| pn+1/3| 2, \^\alpha ),

where \^\alpha is a given positive small number. In this work, we empirically choose \^\alpha =
\surd 
\tau .

3.5.3. Minimizing the functional in (3.20) over \bfitsigma \bfzero . Over \sigma 0 the minimization problem
(3.21) reduces to

(3.27) min
\bfitmu \in \bfR 2,| \bfitmu | \leq 1

\bigm| \bigm| \bigm| \bfitmu  - \bfitlambda n+1/3(x)
\bigm| \bigm| \bigm| .

Clearly, the solution of problem (3.27) is given by

(3.28) \bfitlambda 
n+1/3
0 (x) =

\bfitlambda n+1/3(x)

max(1, | \bfitlambda n+1/3(x)| )
.

Concerning p
n+1/3
0 (x), we have, obviously,

(3.29) p
n+1/3
0 (x) = 0.
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3.5.4. Minimizing the functional in (3.20) over \bfitsigma \bfone . Over \sigma 1, the minimization problem
(3.22) reduces to

(3.30) inf
(\bfq ,\bfitmu )\in \bfR 2\times \bfR 2,\bfq \not =\bfzero ,\bfq \cdot \bfitmu =| \bfq | ,| \bfitmu | =1

\Bigl[ 
| q - pn+1/3(x)| 2 + \gamma | \bfitmu  - \bfitlambda n+1/3(x)| 2

\Bigr] 
.

For notational simplicity, we introduce x and y defined by x = pn+1/3(x) and y =
\bfitlambda n+1/3(x), respectively. Using this notation and taking relation | \bfitmu | = 1 into account, problem
(3.30) takes the following simplified formulation:

(3.31) inf
(\bfq ,\bfitmu )\in \bfR 2\times \bfR 2,\bfq \not =\bfzero ,\bfq \cdot \bfitmu =| \bfq | ,| \bfitmu | =1

\biggl[ 
1

2
| q| 2  - q \cdot x - \gamma \bfitmu \cdot y

\biggr] 
.

Let us denote | q| by \theta ; since \bfitmu = q/| q| , the above relations imply that

(3.32) q = \theta \bfitmu , \theta > 0.

Relation (3.32) allows us to replace problem (3.31) by the following constrained minimiza-
tion problem in R\bfthree :

(3.33) inf
(\theta ,\bfitmu )\in \bfR \times \bfR 2,\theta >0,| \bfitmu | =1

\biggl[ 
1

2
\theta 2  - \theta \bfitmu \cdot x - \gamma \bfitmu \cdot y

\biggr] 
.

In order to solve problem (3.33), we observe that the above problem is equivalent to

(3.34) inf
\theta >0

min
\bfitmu \in \bfR 2,| \bfitmu | =1

\biggl[ 
1

2
\theta 2  - \theta \bfitmu \cdot x - \gamma \bfitmu \cdot y

\biggr] 
.

In order to minimize on a closed set of R3, the problem that we finally consider is the
following variant of problem (3.34):

(3.35) min
\theta \geq 0

min
\bfitmu \in \bfR 2,| \bfitmu | =1

\biggl[ 
1

2
\theta 2  - \theta \bfitmu \cdot x - \gamma \bfitmu \cdot y

\biggr] 
.

With the parameter \theta being fixed, the solution \bfitmu \ast (\theta ) of problem

min
\bfitmu \in \bfR 2,| \bfitmu | =1

\biggl[ 
1

2
\theta 2  - \theta \bfitmu \cdot x - \gamma \bfitmu \cdot y

\biggr] 
is given by \bfitmu \ast (\theta ) = \theta \bfx +\gamma \bfy 

| \theta \bfx +\gamma \bfy | , implying that problem (3.35) reduces to

(3.36) min
\theta \geq 0

\biggl[ 
1

2
\theta 2  - | \theta x+ \gamma y| 

\biggr] 
.

There are many ways to solve problem (3.36), such as Newton's method, bisection or
golden section methods, and a variety of fixed point methods ([8]). The method we have
chosen is a fixed point one and has shown fast convergence properties. Let us denote by E
the function defined by

E(\theta ) =
1

2
\theta 2  - | \theta x+ \gamma y| .
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We clearly have
dE

d\theta 
(\theta ) = \theta  - x \cdot (\theta x+ \gamma y)

| \theta x+ \gamma y| 
.

In order to solve equation dE
d\theta (\theta ) = 0, we advocate the simple following fixed point method:

(3.37)

\left\{           
\theta 0 = | x| ,
for k \geq 0, \theta (k) \rightarrow \theta (k+1),

\theta (k+1) = max

\Biggl( 
0,

x \cdot (\theta (k)x+ \gamma y)

| \theta (k)x+ \gamma y| 

\Biggr) 
.

A more detailed presentation of our fixed point method reads as follows.

Algorithm 1. Fixed point solution of problem (3.36)

Input: x, y, \gamma 
Output: \theta \ast 

Initialization: \theta (0) = | x| , k = 0

While: | \theta (k+1)  - \theta (k)| > tol and k < Mit

(1) compute \theta (k+1) by

\theta (k+1) = max
\Bigl( 
0, \bfx \cdot (\theta 

(k)\bfx +\gamma \bfy )

| \theta (k)\bfx +\gamma \bfy | 

\Bigr) 
,

(2) k = k + 1
End While.

(3) One gets the final \theta \ast when iterations stop

In Algorithm 1, tol and Mit denote a positive tolerance value and the maximum number
of iterations, respectively. Actually, Algorithm 1 is not sensitive to these values. For all of
the experiments reported in this article we took tol = 10 - 3 and Mit = 100.

Once \theta \ast is known, we obtain the vectors \bfitlambda 
n+2/3
1 (x) and p

n+2/3
1 (x) (we defined them in

section 3.5.1) via the following relations:

(3.38) \bfitlambda 
n+2/3
1 (x) =

\theta \ast pn+1/3(x) + \gamma \bfitlambda n+1/3(x)

| \theta \ast pn+1/3(x) + \gamma \bfitlambda n+1/3(x)| 

and

(3.39) p
n+2/3
1 (x) = \theta \ast \bfitlambda 

n+2/3
1 (x),

respectively. A more rigorous notation would have been to use \theta \ast n(x) instead of \theta \ast , since the
solution of problem (3.36) varies with x and n (we recall that, in (3.36), x = pn+1/3(x) and
y = \bfitlambda n+1/3(x)).

Once we compute
\bigl( 
p
n+2/3
1 (x),\bfitlambda 

n+2/3
1 (x)

\bigr) 
from (3.28)--(3.29) and

\bigl( 
p
n+2/3
1 (x),\bfitlambda 

n+2/3
1 (x)

\bigr) 
from (3.38)--(3.39), we obtain the minimizer of (3.20) through (3.23).

D
ow

nl
oa

de
d 

06
/2

6/
19

 to
 1

13
.5

4.
19

3.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPERATOR SPLITTING FOR EULER'S ELASTICA MODEL 1203

3.6. Computing p\bfitn +\bfone and \bfitlambda \bfitn +\bfone from (3.14). We clearly have

(3.40) \bfitlambda n+1 = \bfitlambda n+2/3.

On the other hand, the multivalued equation verified by pn+1 in (3.14) is the Euler--
Lagrange equation of the following minimization problem:

(3.41) pn+1 = arg min
\bfq \in \Sigma f

\biggl[ 
1

2

\int 
\Omega 

\bigm| \bigm| \bigm| q - pn+2/3
\bigm| \bigm| \bigm| 2 dx+

\tau 

2

\int 
\Omega 
| v\bfq  - f | 2 dx

\biggr] 
,

the function v\bfq being defined by (2.9).
From the definition of \Sigma f (see section 2), problem (3.41) is equivalent to

(3.42)

\left\{     
pn+1 = \nabla un+1 with

un+1 = arg min
v\in \scrH 1(\Omega )

\biggl[ 
1

2

\int 
\Omega 
| \nabla v| 2 dx+

\tau 

2

\int 
\Omega 
| v  - f | 2 dx - 

\int 
\Omega 
pn+2/3 \cdot \nabla vdx

\biggr] 
.

Function un+1 is the unique solution of the following well-posed linear variational problem
in \scrH 1(\Omega ):

(3.43)

\left\{   
un+1 \in \scrH 1(\Omega ),\int 
\Omega 
\nabla un+1 \cdot \nabla vdx+ \tau 

\int 
\Omega 
un+1vdx =

\int 
\Omega 
pn+2/3 \cdot \nabla vdx+ \tau 

\int 
\Omega 
fvdx \forall v \in \scrH 1(\Omega ).

Problems (3.42) and (3.43) have a unique solution which is the weak solution of the
following problem:

(3.44)

\Biggl\{ 
 - \nabla 2un+1 + \tau un+1 =  - \nabla \cdot pn+2/3 + \tau f in \Omega ,

(\nabla un+1  - pn+2/3) \cdot n = 0 on \partial \Omega .

The linear elliptic problem (3.44) is of the Neumann type with constant coefficients. The
numerical solution of this type of problem has motivated a very large number of methods and
associated software. In the particular case of rectangular domains, many efficient solvers are
available for the solution of the discrete finite element analogues of problem (3.44) obtained
by symmetry preserving finite difference discretization (sparse Cholesky, conjugate gradient,
cyclic reduction, etc.). In section 3.8, we will encounter the variant of (3.44) associated with
periodic boundary conditions. Its discrete analogues are particularly well suited to FFT based
solvers.

3.7. Summary. The subproblems (3.12), (3.13), and (3.14) encountered in our splitting
method aim at minimizing consecutively the various components of the elastica cost functional.
Our proposed algorithm is summarized in Algorithm 2.
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Algorithm 2. A schematic description of the algorithm solving problem (2.1)

Input: The input image f , the parameters a, b, and \tau .
Output: The computed image u\ast .

Initialization: n = 0, u0 = f , p0 = \nabla f , \bfitlambda 0(x) =

\Biggl\{ 
p0(x)/| p0(x)| if p0(x) \not = 0,

0 otherwise.
x \in \Omega .

While: \| un+1  - un\| /\| un+1\| > tol and n < Miter

1. Using the methods discussed in sections 3.3 and 3.4, solve system (3.12) to

obtain
\bigl( 
pn+1/3,\bfitlambda n+1/3

\bigr) 
.

2. Use the method discussed in section 3.5 to obtain
\bigl( 
pn+2/3,\bfitlambda n+2/3

\bigr) 
from (3.13).

3. Use the method discussed in section 3.6 to obtain
\bigl( 
un+1,pn+1,\bfitlambda n+1

\bigr) 
from (3.14).

4. Check convergence and go to the next iteration or stop.
End While.

If iterations stop, take u\ast = un+1.

In Algorithm 2, tol is the stopping criterion tolerance, Miter is the maximum of iterations
and the norm | | \cdot | | is the L2 norm. All of the subproblems encountered when using Algorithm
2 have either closed form solutions or can be solved by dedicated fast solvers. Due to the
semi-implicit nature of the operator-splitting scheme, we can use (relatively) large values of \tau 
and our numerical experiments show that the overall iteration number is (relatively) low. We
have, however, to keep \tau small enough so that the resulting splitting error is small as well (see
Appendix A). The model parameters a and b have to be given. Finally, the time-discretization
step \tau also needs to be provided. We want to say that \tau is easy to tune. The selection of \gamma 
was addressed in section 3.5.2; further information about the choice of all these parameters
will be provided in section 5.

3.8. On the handling of periodic boundary conditions. In the preceding sections (section
3.4, in particular) we mentioned quite a few times the possibility of using periodic boundary
conditions when \Omega is a rectangular domain (a very common situation). The changes that choice
requires are minimal and will be discussed below (we will assume that \Omega = (0, L)\times (0, H)).

The first modification one encounters is to replace the space \scrW in (2.3) by \scrW P defined by

\scrW P = \{ (v,\bfitmu ) \in \scrH 1
P (\Omega )\times \scrH P (\Omega , div), \bfitmu \cdot \nabla v = | \nabla v| , | \bfitmu | \leq 1\} ,

where (with obvious notation)

\scrH 1
P (\Omega ) = \{ v \in \scrH 1(\Omega ), v(0, \cdot ) = v(L, \cdot ), v(\cdot , 0) = v(\cdot , H)\} 

and

\scrH P (\Omega , div) = \{ \bfitmu = (\mu 1, \mu 2)| \bfitmu \in \scrH (\Omega ,div), \mu 1(0, \cdot ) = \mu 1(L, \cdot ), \mu 2(\cdot , 0) = \mu 2(\cdot , H)\} .

The second modification is to define \Sigma f by

\Sigma f =

\Biggl\{ 
q \in (\scrL 2(\Omega ))2, \exists v \in \scrH 1

P (\Omega ) such that q = \nabla v and

\int 
\Omega 
(v  - f)dx = 0

\Biggr\} 
,
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and we replace (2.6) and (2.9) by
(3.45)

min
(\bfq ,\bfitmu )\in (\scrL 2(\Omega ))2\times \scrH P (\Omega ,\mathrm{d}\mathrm{i}\mathrm{v})

\biggl[ \int 
\Omega 

\bigl( 
a+ b| \nabla \cdot \bfitmu | 2

\bigr) 
| q| dx+

1

2

\int 
\Omega 
| v\bfq  - f | 2dx+ I\Sigma f

(q) + IS(q,\bfitmu )

\biggr] 
,

and

(3.46)

\left\{                 

\nabla 2v\bfq = \nabla \cdot q in \Omega ,

v\bfq (0, \cdot ) = v\bfq (L, \cdot ), v\bfq (\cdot , 0) = v\bfq (\cdot , H),\biggl( 
\partial v\bfq 
\partial x1

 - q1

\biggr) 
(0, \cdot ) =

\biggl( 
\partial v\bfq 
\partial x1

 - q1

\biggr) 
(L, \cdot ),

\biggl( 
\partial v\bfq 
\partial x2

 - q2

\biggr) 
(\cdot , 0) =

\biggl( 
\partial v\bfq 
\partial x2

 - q2

\biggr) 
(\cdot , H),\int 

\Omega 
v\bfq dx =

\int 
\Omega 
fdx,

respectively (above, (q1, q2) = q).
The third modification is to replace (3.17) and (3.18) by

(3.47) \bfitlambda n+1/3 = arg min
\bfitmu \in \scrH P (\Omega ,\mathrm{d}\mathrm{i}\mathrm{v})

\biggl[ 
\gamma 

\int 
\Omega 

| \bfitmu  - \bfitlambda n| 2

2\tau 
dx+ J1(\bfitmu ,p

n+1/3)

\biggr] 
and

(3.48)

\left\{                 

\gamma 
\bfitlambda n+1/3  - \bfitlambda n

\tau 
 - 2b\nabla (| pn+1/3| \nabla \cdot \bfitlambda n+1/3) = 0 in \Omega ,

\bfitlambda 1(0, \cdot ) = \bfitlambda 1(L, \cdot ), \bfitlambda 2(\cdot , 0) = \bfitlambda 2(\cdot , H),\Bigl( 
| pn+1/3| \nabla \cdot \bfitlambda n+1/3

\Bigr) 
(0, \cdot ) =

\Bigl( 
| pn+1/3| \nabla \cdot \bfitlambda n+1/3

\Bigr) 
(L, \cdot )\Bigl( 

| pn+1/3| \nabla \cdot \bfitlambda n+1/3
\Bigr) 
(\cdot , 0) =

\Bigl( 
| pn+1/3| \nabla \cdot \bfitlambda n+1/3

\Bigr) 
(\cdot , H),

respectively. The periodic boundary conditions in (3.48) make the above linear elliptic problem
well suited to FFT-based solution methods, after appropriate finite difference discretization
(see section 4).

Finally, replace (3.42), (3.43), and (3.44) by

(3.49)

\left\{     
pn+1 = \nabla un+1 with

un+1 = arg min
v\in \scrH 1

P (\Omega )

\biggl[ 
1

2

\int 
\Omega 
| \nabla v| 2 dx+

\tau 

2

\int 
\Omega 
| v  - f | 2 dx - 

\int 
\Omega 
pn+2/3 \cdot \nabla vdx

\biggr] 
,

(3.50)

\left\{   
un+1 \in \scrH 1

P (\Omega ),\int 
\Omega 
\nabla un+1 \cdot \nabla vdx+ \tau 

\int 
\Omega 
un+1vdx =

\int 
\Omega 
pn+2/3 \cdot \nabla vdx+ \tau 

\int 
\Omega 
fvdx \forall v \in \scrH 1

P (\Omega ),
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1206 L. DENG, G. ROLAND, AND X.-C. TAI

and

(3.51)

\left\{                   

 - \nabla 2un+1 + \tau un+1 =  - \nabla \cdot pn+2/3 + \tau f in \Omega ,

un+1(0, \cdot ) = un+1(L, \cdot ), un+1(\cdot , 0) = un+1(\cdot , H),\biggl( 
\partial un+1

\partial x1
 - p

n+2/3
1

\biggr) 
(0, \cdot ) =

\biggl( 
\partial un+1

\partial x1
 - p

n+2/3
1

\biggr) 
(L, \cdot ),\biggl( 

\partial un+1

\partial x2
 - p

n+2/3
2

\biggr) 
(\cdot , 0) =

\biggl( 
\partial un+1

\partial x2
 - p

n+2/3
2

\biggr) 
(\cdot , H),

respectively.
System (3.51) is an elliptic problem with constant coefficients, and periodic boundary

conditions, taking place on a rectangle. In section 4, we will show how to solve its finite
difference discrete analogues by FFT.

4. Numerical discretization.

4.1. Synopsis. As with the THC method in [48], we will assume that \Omega is a rectangle.
We assume also that all functions are periodic in both the x1 and x2 directions. To discretize
the Euler elastica variational problem, we will use staggered grids as visualized in Figure 1. In
Figure 1, the unknown function v is discretized at the \bullet -nodes, while the first (resp., second)
components of q and \bfitmu are discretized at the \circ -nodes (resp., \square -nodes). Useful notation will
be introduced in section 4.2. The solution of the discrete subproblems will be discussed in
sections 4.3--4.6.

Figure 1. Indexation of the discrete analogues of the unknown functions v (at the \bullet -nodes) and of the first
(at the \circ -nodes) and second (at the \square -nodes) components of the vector-valued functions \bfq and \bfitmu .

4.2. Some useful discrete operators. After discretization, we denote by \Omega h the discrete
image domain \Omega h = [1,M1]h\times [1, N1]h, where h = L/M1 = H/N1, which indicates the image
size is M1\times N1. Note that \Omega h is a set of M1N1 points in R2. Taking periodicity into account,
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OPERATOR SPLITTING FOR EULER'S ELASTICA MODEL 1207

we define the backward (--) and forward (+) discrete analogues of \partial v
\partial x1

and \partial v
\partial x2

by

\partial  - 
1 v(i, j) =

\Biggl\{ 
(v(i, j) - v(i - 1, j))/h, 1 < i \leq M1

(v(1, j) - v(M1, j))/h, i = 1,

\partial  - 
2 v(i, j) =

\Biggl\{ 
(v(i, j) - v(i, j  - 1))/h, 1 < j \leq N1

(v(i, 1) - v(i,N1))/h, j = 1,

\partial +
1 v(i, j) =

\Biggl\{ 
(v(i+ 1, j) - v(i, j))/h, 1 \leq i < M1

(v(1, j) - v(M1, j))/h, i = M1,

\partial +
2 v(i, j) =

\Biggl\{ 
(v(i, j + 1) - v(i, j))/h, 1 \leq j < N1

(v(i, 1) - v(i,N1))/h, j = N1.

With obvious notation, the discrete forward (+) and backward (--) gradient operators \nabla +

and \nabla  - are defined by

\nabla \pm v(i, j) = (\partial \pm 
1 v(i, j), \partial 

\pm 
2 v(i, j)).

The associated discrete forward (+) and backward (--) divergence operators div+ and div - 

are defined (again with obvious notation) by

div\pm q(i, j) = \partial \pm 
1 q1(i, j) + \partial \pm 

2 q2(i, j).

If, in particular, a variable defined at the \circ -nodes (resp., \square -nodes) needs to be evaluated at
the \square -node (resp., \circ -node) (i, j), they will be done, respectively, using the following averaging
operators:

(4.1) \scrA \square 
i,j(\mu 1) =

\mu 1(i, j + 1) + \mu 1(i - 1, j + 1) + \mu 1(i, j) + \mu 1(i - 1, j)

4
,

(4.2) \scrA \circ 
i,j(\mu 2) =

\mu 2(i+ 1, j) + \mu 2(i, j) + \mu 2(i+ 1, j  - 1) + \mu 2(i, j  - 1)

4
,

where \mu 1 (resp., \mu 2) is defined at the \circ -nodes (resp., \square -nodes). In order to evaluate the
magnitude of q = (q1, q2) at the \bullet -node (i, j) we will use an additional averaging operator,
namely

(4.3) | \scrA | \bullet i,j(q) =

\sqrt{} \biggl( 
q1(i, j) + q1(i - 1, j)

2

\biggr) 2

+

\biggl( 
q2(i, j) + q2(i, j  - 1)

2

\biggr) 2

,
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1208 L. DENG, G. ROLAND, AND X.-C. TAI

where q1 and q2 are defined on \circ -nodes and \square -nodes, respectively. Similarly, the discrete
divergence div\bullet i,j(\bfitmu ) of \bfitmu = (\mu 1, \mu 2) at the \bullet -node (i, j) is defined by

(4.4) div\bullet i,j(\bfitmu ) = [\mu 1(i, j) - \mu 1(i - 1, j) + \mu 2(i, j) - \mu 2(i, j  - 1)]/h,

where \mu 1 (resp., \mu 2) is defined at the \circ -nodes (resp., \square -nodes). Finally, we define shifting and
identity operators by

(4.5) \scrS \pm 
1 \varphi (i, j) = \varphi (i\pm 1, j), \scrS \pm 

2 \varphi (i, j) = \varphi (i, j \pm 1), and \scrI \varphi (i, j) = \varphi (i, j).

4.3. Computation of the discrete analogue of p\bfitn +\bfone /\bfthree in (3.16). Let us recall that from
(3.16) one has

(4.6) pn+1/3 = max

\biggl\{ 
0, 1 - c

| pn| 

\biggr\} 
pn,

where c = \tau a+ \tau b| \nabla \cdot \bfitlambda n| 2. In the discrete setting, the first (resp., second) component of p\bfn 

and \bfitlambda n is defined at \circ -nodes (resp., \square -nodes), we need to discuss the two situations we will
encounter when discretizing (4.6) (for simplicity, we will denote \bfitlambda n by \bfitlambda and pn by p).

(1) If (i, j) is a \circ -node, the corresponding discretization of p and c is given as follows:

(4.7) p
(1)
1 (i, j) = p1(i, j); p

(1)
2 (i, j) = \scrA \circ 

i,j(p2),

(4.8)

c(1)(i, j) = \tau 
\bigl[ 
a+ b| \partial 1\lambda 1(i, j) + \partial 2\lambda 2(i, j)| 2

\bigr] 
= \tau 

\Biggl[ 
a+ b

\bigm| \bigm| \bigm| \bigm| \lambda 1(i+ 1, j) - \lambda 1(i - 1, j)

2h
+

\lambda 2(i+ 1, j) + \lambda 2(i, j)

2h
 - \lambda 2(i, j  - 1) + \lambda 2(i+ 1, j  - 1)

2h

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
.

(2) If (i, j) is a \square -node, the corresponding discretization of p and c is given as follows:

(4.9) p
(2)
1 (i, j) = \scrA \square 

i,j(p1); p
(2)
2 (i, j) = p2(i, j),

(4.10)

c(2)(i, j) = \tau 
\bigl[ 
a+ b | \partial 1\lambda 1(i, j) + \partial 2\lambda 2(i, j)| 2

\bigr] 
= \tau 

\Biggl[ 
a+ b

\bigm| \bigm| \bigm| \bigm| \lambda 1(i, j) + \lambda 1(i, j + 1)

2h
 - \lambda 1(i - 1, j) + \lambda 2(i - 1, j + 1)

2h
+

\lambda 2(i, j + 1) - \lambda 2(i, j  - 1)

2h

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
.

Finally,

(4.11) pn+1/3
\alpha (i, j) = max

\left\{   0, 1 - c(\alpha )(i, j)\sqrt{} 
| p(\alpha )1 (i, j)| 2 + | p(\alpha )2 (i, j)| 2

\right\}   p(\alpha )\alpha (i, j), \alpha = \{ 1, 2\} .
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4.4. Computation of the discrete analogue of \bfitlambda \bfitn +\bfone /\bfthree in (3.18). We recall that (3.18)
reads as

(4.12) \gamma \bfitlambda n+1/3  - \tau \nabla (2b| pn+1/3| \nabla \cdot \bfitlambda n+1/3) = \gamma \bfitlambda n, in \Omega ,

It is completed by periodic boundary conditions. For simplicity, we denote the (known) vector
(pn+1/3,\bfitlambda n) by (\widetilde p, \widetilde \bfitlambda ) and \bfitlambda n+1/3 (an unknown one) by \bfitlambda . Following [48], we discretize (4.12)
as follows:

(4.13) \gamma \bfitlambda  - \tau \nabla +(2b| \widetilde p| div - \bfitlambda ) = \gamma \widetilde \bfitlambda .
To solve (4.13), we will employ (as in [48]) a frozen coefficient approach where instead of

solving (4.13) we solve

(4.14) \gamma \bfitlambda  - c\ast \nabla +(div - \bfitlambda ) = \gamma \widetilde \bfitlambda  - \nabla +
\Bigl[ 
(c\ast  - 2\tau b| \widetilde p| )div - \widetilde \bfitlambda \Bigr] ,

with c\ast properly chosen. Following [48], we advocate taking c\ast = max\bullet -\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}(i,j) 2\tau b| \scrA | \bullet i,j(\widetilde p).
In matrix form, (4.14) can be written as, in \Omega h,

(4.15)

\gamma h2
\biggl( 

\lambda 1

\lambda 2

\biggr) 
 - c\ast 

\biggl( 
\partial +
1

\partial +
2

\biggr) \bigl( 
\partial  - 
1 \partial  - 

2

\bigr) \biggl( \lambda 1

\lambda 2

\biggr) 
= \gamma h2

\Biggl( \widetilde \lambda 1\widetilde \lambda 2

\Biggr) 
 - 
\biggl( 

\partial +
1

\partial +
2

\biggr) 
(c\ast h - 2\tau bh| \widetilde p| )div - \widetilde \bfitlambda ,

or, equivalently,

(4.16)

\Biggl\{ \bigl( 
\gamma h2  - c\ast \partial +

1 \partial 
 - 
1

\bigr) 
\lambda 1  - c\ast \partial +

1 \partial 
 - 
2 \lambda 2 = \gamma h2\widetilde \lambda 1  - \partial +

1 (c
\ast h - 2\tau bh| \widetilde p| )div - \widetilde \bfitlambda ,

 - c\ast \partial +
2 \partial 

 - 
1 \lambda 1 +

\bigl( 
\gamma h2  - c\ast \partial +

2 \partial 
 - 
2

\bigr) 
\lambda 2 = \gamma h2\widetilde \lambda 2  - \partial +

2 (c
\ast h - 2\tau bh| \widetilde p| )div - \widetilde \bfitlambda .

Using the shifting and identity operator defined in section 4.2, for each pair (i, j) the first
equation in (4.16) reads as

(4.17)
\bigl[ 
\gamma h2\scrI + c\ast (\scrI  - \scrS +

1 )(\scrI  - \scrS  - 
1 )
\bigr] 
\lambda 1(i, j) + c\ast (\scrI  - \scrS +

1 )(\scrI  - \scrS  - 
2 )\lambda 2(i, j) = g1(i, j),

where

g1(i, j) = \gamma h2\widetilde \lambda 1(i, j) - 
\Bigl[ \bigl( 
c\ast h - 2\tau bh| \scrA | \bullet i+1,j(\widetilde p)\bigr) div\bullet i+1,j

\widetilde \bfitlambda  - 
\bigl( 
c\ast h - 2\tau bh| \scrA | \bullet i,j(\widetilde p)\bigr) div\bullet i,j\widetilde \bfitlambda \Bigr] .

Similarly, the second equation of (4.16) reads as

(4.18) c\ast (\scrI  - \scrS +
2 )(\scrI  - \scrS  - 

1 )\lambda 1(i, j) +
\bigl[ 
\gamma h2\scrI + c\ast (\scrI  - \scrS +

2 )(\scrI  - \scrS  - 
2 )
\bigr] 
\lambda 2(i, j) = g2(i, j),

where

g2(i, j) = \gamma h2\widetilde \lambda 2(i, j) - 
\Bigl[ \bigl( 
c\ast h - 2\tau bh| \scrA | \bullet i,j+1(\widetilde p)\bigr) div\bullet i,j+1(

\widetilde \bfitlambda ) - \bigl( c\ast h - 2\tau bh| \scrA | \bullet i,j(\widetilde p)\bigr) div\bullet i,j\widetilde \bfitlambda \Bigr] .
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For the boundary conditions we consider to be the periodic ones, we may apply the discrete
Fourier transform \scrF to (4.17), (4.18). We then obtain

(4.19)

\biggl( 
a11 a12
a21 a22

\biggr) 
\scrF 
\biggl( 

\lambda 1(yi, yj)
\lambda 2(yi, yj)

\biggr) 
= \scrF 

\biggl( 
g1(yi, yj)
g2(yi, yj)

\biggr) 
,

where in (4.19) one has

a11 = \gamma h2  - 2c\ast (cos zi  - 1), a12 = c\ast (cos zi  - 1 +
\surd 
 - 1 sin zi)(cos zj  - 1 - 

\surd 
 - 1 sin zj),

a21 = c\ast (cos zj  - 1 +
\surd 
 - 1 sin zj)(cos zi  - 1 - 

\surd 
 - 1 sin zi), a22 = \gamma h2  - 2c\ast (cos zj  - 1),

with

(4.20) zi =
2\pi 

M1
yi, yi = 1, 2, . . . ,M1, and zj =

2\pi 

N1
yj , yj = 1, 2, . . . , N1.

The determinant D(i, j) of the coefficient matrix in (4.19) is given by

D(i, j) = \gamma 2h4 + 2\gamma h2c\ast (2 - cos zi  - cos zj),

implying D(i, j) > 0 if \gamma > 0. It then follows from (4.19) that (with obvious notation) the
solution \bfitlambda of problem (4.14) (the discrete analogue of \bfitlambda n+1/3 in (3.18)) is given by

(4.21)

\left\{       
\lambda 1 = Real

\biggl[ 
\scrF  - 1

\biggl( 
a22\scrF (g1) - a12\scrF (g2)

D

\biggr) \biggr] 
,

\lambda 2 = Real

\biggl[ 
\scrF  - 1

\biggl( 
 - a21\scrF (g1) + a11\scrF (g2)

D

\biggr) \biggr] 
,

where Real(x+
\surd 
 - 1y) = x and \bfitlambda = (\lambda 1, \lambda 2).

4.5. Computation of the discrete analogue of (p\bfitn +\bftwo /\bfthree , \bfitlambda \bfitn +\bftwo /\bfthree ) in (3.13). We need
to solve problem (3.19) to get the solutions. In the following, we give the details of its
discretization.

4.5.1. Solution of (3.28). From section 3.5.3, we see that the minimizer of the functional
in (3.20) over \sigma 0 is given by

(4.22)
\Bigl( 
p
n+2/3
0 (x),\bfitlambda 

n+2/3
0 (x)

\Bigr) 
=

\Biggl( 
0,

\bfitlambda n+1/3(x)

max[1, | \bfitlambda n+1/3(x)| ]

\Biggr) 
.

The discrete analogue of (4.22) reads as

(4.23)
\Bigl( 
p
n+2/3
0 (i, j),\bfitlambda 

n+2/3
0 (i, j)

\Bigr) 
=

\left(    0,
\bfitlambda n+1/3(i, j)

max

\biggl[ 
1,

\sqrt{} 
| \lambda n+1/3

1 (i, j)| 2 + | \lambda n+1/3
2 (i, j)| 2

\biggr] 
\right)    ,

with \bfitlambda n+1/3(i, j) =
\bigl( 
\lambda 
n+1/3
1 (i, j), \lambda 

n+1/3
2 (i, j)

\bigr) 
.

D
ow

nl
oa

de
d 

06
/2

6/
19

 to
 1

13
.5

4.
19

3.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPERATOR SPLITTING FOR EULER'S ELASTICA MODEL 1211

4.5.2. Discretization of problem (3.30). Section 3.5.4 was dedicated to the solution of
problem (3.30), a constrained minimization problem in R4 defined by

(4.24) inf
(\bfq ,\bfitmu )\in \bfR 2\times \bfR 2,\bfq \not =\bfzero ,\bfq \cdot \bfitmu =| \bfq | ,| \bfitmu | =1

\Bigl[ 
| q - pn+1/3(x)| 2 + \gamma | \bfitmu  - \bfitlambda n+1/3(x)| 2

\Bigr] 
.

Proceeding as in section 3.5.4, we define xi,j and yi,j by

xi,j =
\Bigl( 
x
(1)
i,j ,x

(2)
i,j

\Bigr) 
=
\Bigl( 
p
n+1/3
1 (i, j), p

n+1/3
2 (i, j)

\Bigr) 
,

yi,j =
\Bigl( 
y
(1)
i,j ,y

(2)
i,j

\Bigr) 
=
\Bigl( 
\lambda 
n+1/3
1 (i, j), \lambda 

n+1/3
2 (i, j)

\Bigr) 
.

Then, we use the following discrete variant of algorithm (3.37) to compute \theta \ast i,j :

(4.25)

\left\{               

\theta 
(0)
i,j = | xi,j | ,

for k \geq 0, \theta 
(k)
i,j \rightarrow \theta 

(k+1)
i,j

\theta 
(k+1)
i,j = max

\Biggl( 
0,

xi,j \cdot (\theta (k)i,j xi,j + \gamma yi,j)

| \theta (k)i,j xi,j + \gamma yi,j | 

\Biggr) 
.

Once \theta \ast i,j is computed we obtain the discrete analogues of
\bigl( 
p
n+2/3
1 (x),\bfitlambda 

n+2/3
1 (x)

\bigr) 
from the

following formula which is the discrete analogue of (3.38), (3.39):

(4.26)

\left\{         
\bfitlambda n+2/3(i, j) =

\theta \ast i,jxi,j + \gamma yi,j\sqrt{} \bigm| \bigm| \bigm| \theta \ast i,jx(1)i,j + \gamma y
(1)
i,j

\bigm| \bigm| \bigm| 2 + \bigm| \bigm| \bigm| \theta \ast i,jx(2)i,j + \gamma y
(2)
i,j

\bigm| \bigm| \bigm| 2 ,
pn+2/3(i, j) = \theta \ast i,j\bfitlambda 

n+2/3(i, j).

4.6. Discretization of problem (3.44) . From section 3.6, we have \bfitlambda n+1/3 = \bfitlambda n+2/3 and
pn+1 = \nabla un+1, where un+1 is the solution of the following linear elliptic problem:

(4.27)  - \nabla 2un+1 + \tau un+1 =  - \nabla \cdot pn+2/3 + \tau f in \Omega ,

completed by periodic boundary conditions. We need to discretize this problem. Denoting
pn+2/3 by \widetilde p, we employ the following finite difference scheme to approximate (4.27):

(4.28)
\bigl( 
\partial  - 
1 \partial  - 

2

\bigr) \biggl[ \biggl( \partial +
1

\partial +
2

\biggr) 
un+1  - h

\biggl( \widetilde p1\widetilde p2
\biggr) \biggr] 

+ \tau h2
\bigl( 
f  - un+1

\bigr) 
= 0 in \Omega h

Problem (4.28) is equivalent to

(4.29)
\bigl( 
\partial  - 
1 \partial 

+
1 + \partial  - 

2 \partial 
+
2  - \tau h2

\bigr) 
un+1 = h(\partial  - 

1 \widetilde p1 + \partial  - 
2 \widetilde p2) - \tau h2f.

Relation (4.29) can also be written as

(4.30)
\bigl[ 
(\scrI  - \scrS  - 

1 )(\scrS +
1  - \scrI ) + (\scrI  - \scrS  - 

2 )(\scrS +
2  - \scrI ) - \tau h2\scrI 

\bigr] 
un+1(i, j) = g(i, j),
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where g(i, j) = h(\partial  - 
1 \widetilde p1(i, j) + \partial  - 

2 \widetilde p2(i, j))  - \tau h2f(i, j). From the periodicity of the boundary
conditions, it makes sense to use FFT to solve problem (4.30). We then obtain

(4.31) wi,j\scrF (un+1(i, j)) = \scrF (g(i, j)),

where w(i, j) =
\bigl[ 
(1 - e - 

\surd 
 - 1zi)(e

\surd 
 - 1zi  - 1)+ (1 - e - 

\surd 
 - 1zj )(e

\surd 
 - 1zj  - 1) - \tau h2

\bigr] 
, with zi and zj

as in (4.20). From (4.31), we obtain (with obvious notation)

(4.32) un+1 = Real

\biggl[ 
\scrF  - 1

\biggl( 
\scrF (g)

w

\biggr) \biggr] 
,

with Real(\cdot ) as in section 4.4. Once un+1 is known we compute pn+1 by

(4.33) pn+1 = \nabla +un+1 =

\biggl( 
\partial +
1 u

n+1

\partial +
2 u

n+1

\biggr) 
(operators have been defined in section 4.2). Finally, the discrete analogue of \bfitlambda n+1(x), for
a.e. x \in \Omega , is given by

(4.34)

\Biggl\{ 
\lambda n+1
1 (i, j) = \lambda 

n+2/3
1 (i, j),

\lambda n+1
2 (i, j) = \lambda 

n+2/3
2 (i, j).

4.7. Further comments. In sections 4.3 to 4.6, we have provided the details for the
discretization for the subproblems associated with the operator-splitting scheme (3.11)--(3.14).
In section 5, we will apply the above methodology to the solution of image smoothing problems.
It will allow us to demonstrate that with our approach, one can handle the elastica energy
functional efficiently and accurately. In addition, we will use further experiments to show the
good properties of the proposed method, which include modularity, good stability, and the
low cost of the algorithm.

5. Numerical results. In this section, the proposed method is applied to image smoothing
to test its effectiveness. All experiments are implemented in MATLAB(R2016a) on a laptop of
8GB RAM and Intel Core i7-7500 CPU: @2.70 GHz 2.90GHz. Note that the intensities of all
images are in the range of [0, 1]. For simplicity, we also use mesh size h = 1. Readers can down-
load the source code of this work from the link https://ww2.mathworks.cn/matlabcentral/
fileexchange/71550-dgt-a-new-operator-splitting-method-for-the-euler-elastica.

In our experiments, it is reasonable to stop the iteration if the following defined relative
error (ReErr) of the solution is smaller than the predefined tolerance tol, i.e.,

(5.1) ReErr =
\| un+1  - un\| 2

\| un+1\| 2
< tol,

where tol is a predefined positive value. In particular, a larger tol may result in a faster
stopping of the proposed iterative method.

One of the main advantages of the new method is that it only involves the time step \tau as
free algorithm parameter to be chosen. The fast speed and robustness of the proposed method
are also verified in this section by some specially designed experiments.
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In what follows, we apply, in section 5.1, the proposed method to image smoothing. Then,
in section 5.2, we compare the speed of convergence and stability properties of this method
with those of the THC algorithm [48]. In section 5.2 we further discuss various aspects of the
new method and draw some conclusions concerning its ability at solving smoothing problems.

Remark 5.1. In some earlier works (cf. [48, 21, 57]), the Euler elastica model was applied
to image denoising. We found, however, that ``edge-preserving smoothing"" better describes
the properties of the proposed method than ``denoising"". Indeed, minimizing the Euler elastica
energy functional is actually a way to enforce the curvature of an image to be small, a property
leading to the smoothing of image details in nonedge regions, while preserving and smoothing
the edges. The ``denoising"" effect is just an intermediate result, ``smoothing"" actually being
the final result of the elastica energy functional minimization. Therefore, in this article, we
will use ``smoothing"" instead of ``denoising,"" a departure from the terminology we used in
previous works.

5.1. Image smoothing. In this section, we first apply (in section 5.1.1) the proposed
method to the ROF model (i.e., b = 0) and then show, in section 5.1.2, some results of image
smoothing with the Euler elastica model.

5.1.1. The proposed method for the ROF model. We apply the primal-dual (PD) ap-
proach [13], Chambolle fixed-point (CFP) algorithm proposed in [10], the THC method [48],
and the proposed method to the ROF model which is actually a special case of the Euler
elastica energy when setting b = 0 in (1.2). In Figure 2, we set b = 0 and fix a = 0.1 for the
Euler elastica energy based image restoration problem (1.2), which is just the ROF model.
In particular, we implemented our method with \tau = 0.1 and \gamma n = max

\bigl( 
| pn+1/3| 2,

\surd 
\tau 
\bigr) 
; cf.

(3.26). The results of the PD method, the CFP method, the THC method, and the proposed
method for the ROF model are shown in Figure 2. All four algorithms are solving the same
ROF based problem and their energy converges to the same value. Besides, the restored im-
ages and contour maps shown in Figure 2 are also quite similar. We use this example to show
that our algorithm also works for the ROF model.

5.1.2. Application of the proposed method to image smoothing . In what follows, we
show the capability of the new method at image smoothing. In addition, we also demonstrate
the superiority of the Euler elastica model when compared with the ROF model.

We report the results of image smoothing by the Euler elastica model solved by the
proposed method, and by the ROF model solved by the CFP method [10] as well. The results
demonstrate the competitive ability of edge-preserving image smoothing of the Euler elastica
model.

Figure 3 shows the results of the proposed algorithm for Euler's elastica model and the
CFP algorithm for the ROF model on four synthetic images. The noisy images are shown in
the left column, and the smoothed images by the ROF model and the Euler elastica model are
shown in the middle and right columns, respectively. Gaussian white noise with zero mean
and a 20 standard deviation is used for the first three images, i.e., ``ball,"" ``star,"" and ``circle,""
a 10 standard deviation being used for the fourth image, i.e., ``square."" We acknowledge that
all test images in this figure are taken from [48].

From Figure 3, the ROF model is able to well preserve image discontinuous jumps, e.g.,
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Figure 2. We use the PD approach (b), CFP algorithm (c), THC method (d), and the proposed method
(e) to solve the ROF model, which is a special case of the elastica model when b = 0, to see if all of methods
converge to the same solution and same energy. We use a = 0.1 and set tol = 1 \times 10 - 5 for all methods, and
\tau = 0.1 for the proposed method. The experiments are tested on the image ``cameraman."" The visual results
and the contour plots are shown in the first and second rows, respectively. Additionally, when reaching the
stopping criterion, the running times are about 1.96 seconds (PD), 2.42 seconds (CFP), 18.57 seconds (THC),
and 6.98 seconds (Proposed), respectively. To see the energy changes, we fix 1, 000 iterations for all methods
and show the energy results in the third row (logarithmic axis). From this figure, we observe that the results of
four compared approaches for the ROF model finally converge to the same energy level.

sharp edges, but it leads to some undesired artifacts, for example, the staircase effect in the
smooth regions. The Euler elastica model applied via our method not only well preserves
the jumps, but also removes the noise without leading to undesired artifacts in the smooth
regions. In the last row of Figure 3, we have visualized the contours of the image ``square""
(noisy on the right, after ROF smoothing in the center, after elastica smoothing on the right).
The smoothest contours are the ones obtained by the elastica model via our method due to
minimizing the total image curvature and length, while the contours by the CFP method for
ROF are unsmooth. An analysis of these properties can be found in [61].
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Note that for all the experiments reported in Figure 3, all of the involved parameters have
the same values, i.e., a = b = 0.1, \tau = 0.1, \gamma n = max

\bigl( 
| pn+1/3| 2,

\surd 
\tau 
\bigr) 
, and tol = 1 \times 10 - 5.

This shows that our method is stable with respect to parameter choice, this property being
one of its main advantages.

In Figure 4, we also monitor the energy changes of the subproblems and of the original
problem (2.6). From this figure, it is clear that the energies of the pn+1/3 subproblem (3.15),
the \bfitlambda n+1/3 subproblem (3.17), and of (n + 2/3) subproblem (3.19) (including pn+2/3 and
\bfitlambda n+2/3 subproblems) all decrease as n increases, while the energy of the pn+1 subproblem
(3.41) increases to a stable value. This is because the role of the (n + 1/3) subproblem is to
minimize the value of the elastica energy term, without taking the fidelity term into account.
Nevertheless, the total energy of the original problem (2.6) always decreases as n increases.

5.2. Advantages of the proposed method. In section 5.1, we applied our method to
the Euler elastica model. In what follows, some special experiments will be designed and
implemented to illustrate the superiority of the proposed method compared with the THC
method [48].

The THC method proposed in [48] is an efficient approach to solve the Euler's elastica
problem. As shown by the results reported in [48], the THC method can solve the Euler
elastica problem hundredfold times faster than the Chan--Kang--Shen (CKS) method in [45].
After the THC method, some promising approaches (see e.g., [21, 20, 57, 2]) were proposed
for the Euler elastica problem. In [21], Duan et al. proposed another FALM to solve the
Euler elastica problem based on the framework of the THC method. Afterwards, Duan et al.
in [20] applied the THC based method to solve the Euler elastica regularized Mumford--Shah
problem, aiming to deal with two-stage image segmentation. Also, Zhu et al. [63] applied
the THC method for the Euler elastica regularized Chan--Vese problem, which gets excellent
segmentation results. In [57], Zhang et al. proposed a fast linearized augmented Lagrangian
approach to solve the Euler elastica problem and applied it to image denoising.

However, the ALM method has some limitations. First, it needs three Lagrange multi-
pliers and three augmentation parameters. For practical applications, it is rather difficult to
tune these parameters. We have observed, as shown later in this section, that ALM has a
fast convergence and produces very good results when these parameters are chosen correctly.
However, if we just change these parameters slightly from their ``correct"" values, the algorithm
will slow down dramatically. Moreover, these parameters are often image dependent and need
to be chosen properly for different images.

The method proposed in this article is a simple and new operator splitting approach. It
requires only the solution of few simple subproblems. Moreover, it requires the tuning of only
one parameter, namely the time-discretization step \tau .

In what follows, we will design some numerical experiments to verify the above-mentioned
advantages. In particular, the first advantage, i.e., fewer parameters, holds obviously. Thus
we need only verify the second and third advantages.

5.2.1. Parameter sensitivity: A numerical testing approach. In order to assess the sta-
bility properties, with respect to parameter variations, of the method we introduced in this
article, we will proceed as follow. First, we will fix the model parameters a and b. Next, we
will tune the augmentation parameters of the augmented Lagrangian in the THC method and
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Figure 3. Image smoothing using the ROF and Euler elastica models. Left: Noisy images; Middle: ROF
model treated by the CFP method; Right: the Euler elastica model treated by the proposed algorithm. The
bottom row shows the contour of the last image. We can see that the elastica model gives images with smoother
contours than the ROF model. From the figure, we see that the ROF model creates undesired staircase effects,
while the elastica model overcomes it. Note that the parameters in our method for these four test examples are
all set as a = b = 0.1, \tau = 0.1, and \gamma n = max

\bigl( 
| \bfp n+1/3| 2,

\surd 
\tau 
\bigr) 
.
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Figure 4. We take the image ``square"" which is the last one in Figure 3 as an example to show the energy
changes of each subproblem, i.e., the \bfp n+1/3-subproblem (3.15), the \bfitlambda n+1/3-subproblem (3.17), the (n + 2/3)-
subproblem (3.19), the \bfp n+1-subproblem (3.41), and the total energy (2.6).

the time-discretization step \tau of our method. Finally, we will compare the results obtained
by both methods.

Our intention with the first experiment we performed was testing the sensitivity to one set
of parameters for multiple images. For instance, a and b being fixed, we selected one specific
image, then tuned the THC method (resp., the proposed method) augmentation parameters
(resp., time-discretization step \tau ) in order to obtain high quality image smoothing. Then,
leaving the augmentation parameters and \tau unchanged, we applied both methods to the
smoothing of other images to see if one still obtains good results. In Figure 5 we have reported
the results of the experiment described hereafter: (i) One considers four noisy images, namely
``ball"" (128\times 128), ``square"" (60\times 60), ``star"" (100\times 100), and ``Lena"" (256\times 256). (ii) We take
a = b = 0.1 for both methods to ensure that they solve the same problem. (iii) The tolerance
of the stopping criterion is set at tol = 1\times 10 - 5 (resp., 3\times 10 - 5) for ``ball,"" ``square,"" and ``star""
(resp., ``Lena""). (iv) Taking ``ball"" as image of reference, we selected r1 = 0.01, r2 = 10, and
r3 = 100 for the THC method (resp., \tau = 0.1 and \gamma given by (3.26) for the proposed method),
these values producing high quality smoothing of the noisy ``ball"" image (see [48] for details
about the THC method augmentation parameters r1, r2, r3). (v) Finally, keeping the same
values for the above parameters, we applied both methods to the other three images. The
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1218 L. DENG, G. ROLAND, AND X.-C. TAI

Noisy THC Proposed ReErr

Figure 5. First row: The figure shows that the THC method and the method proposed in this article both
obtain good results for r1 = 0.01, r2 = 10, r3 = 100, and \tau = 0.1, respectively. For both methods we took
a = b = 0.1 and tol = 1 \times 10 - 5 (resp., 3 \times 10 - 5) for the first three examples (resp., for ``Lena"" our fourth
example). The column on the right shows that the proposed method is significantly faster than the THC one
(although its convergence is more oscillatory).

results reported in Figure 5 show that the method we propose in this article is still operational,
unlike the THC method that leads to undesired image artifacts. Moreover, the right column
of Figure 5 and Table 1 show that the new method requires significantly less iterations than
the THC one to verify the stopping criterion. Besides, the average computational time per
iteration of the proposed method is also smaller than the one of the THC method, a possible
explanation being that the method we propose in this article has fewer subproblems, these
subproblems either having closed form solutions or being solvable by fast algorithms such as
FFT.
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Table 1
In this table we have compared the following performances of the method introduced in this article and of

the THC method. Third column: Number of iterations necessary to achieve convergence. Fourth column: Total
computational time (in seconds). Fifth column: Averaged computational time per iteration (in seconds).

Image Method Iterations Time (s) Average time (s)/per iteration

ball (128\times 128)
Proposed 306 2.57 0.008
THC 3648 37.19 0.010

square (60\times 60)
Proposed 434 1.16 0.002
THC 3339 10.27 0.003

star(100\times 100)
Proposed 562 3.70 0.006
THC 2234 17.58 0.007

Lena (256\times 256)
Proposed 462 15.21 0.033
THC 808 31.18 0.039

As already mentioned the THC method gives poor results when it reaches the stopping
criteria given above. As expected, one can make the THC method operational again by either
increasing the number of iterations (see Figure 6) or modifying the augmentation parameters
(see Figure 7). We see, in particular, on Figure 7(d) that, for the ``Lena"" image, the THC
method with properly tuned augmentation parameters converges to a solution with the same
energy than the one we obtain via the method proposed in this article.

In Figure 8, we reported the performances of the THC method for different values of r1,
r2, and r3. It is clear from this figure that the THC method is quite sensitive to the values of
the augmentation parameters, r1 and r2 in particular, implying that augmentation parameter
tuning is necessary for the THC method to have good convergence properties.

5.2.2. Speed of convergence comparisons. In this subsection, we further compare the
speeds of convergence of the THC and proposed methods. To have fair comparisons, we
collected 30 gray images (see Figure 9), either synthetic or natural, and added Gaussian white
noise with zero mean and various standard deviations (std) to these images.

In Figures 10 to 12 we have reported for tol = 1\times 10 - 5 (Figure 10), 5\times 10 - 5 (Figure 11),
and 1 \times 10 - 4 (Figure 12), the averaged number of iterations needed to achieve convergence
(first row) and the corresponding computational time (second row). These figures leave no
doubt about the superiority of the method we introduced in this article over the augmented
Lagrangian based THC method. Indeed, the new method outperforms THC's in terms of
number of iterations and computational time per iteration (as shown by Table 2, which displays
averaged performances), not to mention its greater simplicity and robustness.

5.3. More comparisons. In this subsection, we compare the proposed method with two
state-of-the-art methods in the field of image smoothing using the elastica model. One method
is a linearized augmented Lagrangian method (LALM) proposed by Zhang et al. [57], the other
is a fast augmented Lagrangian method (FALM) proposed by Duan et al. [21]. The three
compared methods are all based on alternating direction methods of multipliers (ADMM)
through the augmented Lagrangian approach. Figure 13 shows the computed results for
image smoothing by LALM, FALM, and our proposed method for one synthetic image and
two natural images. We use the same essential parameters a = b = 0.1. After careful
tuning of the algorithmic parameters for LALM and FALM, the three compared methods
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Iter = 3314 Iter = 10000 Iter = 30000

Iter = 1416 Iter = 10000 Iter = 30000

Iter = 3526 Iter = 10000 Iter = 30000

Figure 6. This figure shows that one can improve the smoothing qualities of the THC method (for a
nonoptimal choice of the augmentation parameters r1, r2, and r3) by requiring more iterations. We did the
computations with r1 = 0.01, r2 = 10, and r3 = 100, an augmentation parameter choice which is optimal (or
near optimal) for the ``ball"" image, but not for ``square,"" ``star,"" and ``Lena."" Note that the left images are
identical to the corresponding ones in the second column of Figure 5.

(a) (b) (c) (d)

Figure 7. This figure shows that by a proper tuning of the augmentation parameters r1, r2, and r3 one can
significantly improve the smoothing properties of the THC method. Good choices are: (a) r1 = 0.05, r2 = 10,
and r3 = 100 for ``square"". (b) r1 = 0.005, r2 = 10, and r3 = 100 for ``star"". (c) r1 = 0.01, r2 = 10, and
r3 = 300 for ``Lena"". In Figure 7(d) we have visualized for the ``Lena"" image, the variations of the elastica
energy versus the iteration number for the proposed method (blue curve) and for the THC method (red curve):
both methods reached the same limit. These results show that the THC method suffers from a strong image
dependence concerning a good choice for the augmentation parameters r1, r2, and r3.
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r1 = 0.001 r1 = 0.01 r1 = 0.1 r1 = 1

r2 = 1 r2 = 10 r2 = 20 r2 = 30

r3 = 50 r3 = 100 r3 = 500 r3 = 1000

Figure 8. This figure shows the dependence of the THC method computed solution to the augmentation
parameters r1, r2, and r3. The default choice being r1 = 0.01, r2 = 10, and r3 = 100, one varied each time
only one parameter leaving the other two unchanged (here a = b = 0.1 and tol = 1\times 10 - 5).

Table 2
Averaged computational time (in seconds and per image) of the method we propose in this article and of

the THC method, the images being the 30 gray images displayed in Figure 9.

tol Method std = 0.1 std = 0.05 std = 0.02

tol = 1\times 10 - 5 Proposed 7.2 7.2 6.1
THC 74.9 70.3 70.4

tol = 5\times 10 - 5 Proposed 4.5 3.7 3.1
THC 34.4 29.4 29.6

tol = 1\times 10 - 4 Proposed 1.9 1.9 1.6
THC 8.1 8.2 8.0

all obtain very similar results (see the close-up of the images). Especially, since LALM and
FALM methods are based on the framework of augmented Lagrangian method, they are very
sensitive to penalization parameters as THC; see discussions in section 5.2. It seems that the
LALM and FAML are more sentive to the penalization parameters than THC. For instance,
the LALM method could get competitive results for the augmentation parameters r1 = 0.01,
r2 = 1, r3 = 10, but if we change r2 slightly, e.g., setting r2 = 2.5, the result deteriorates

D
ow

nl
oa

de
d 

06
/2

6/
19

 to
 1

13
.5

4.
19

3.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1222 L. DENG, G. ROLAND, AND X.-C. TAI

Figure 9. Display of the 30 gray images we used to evaluate and compare the convergence properties of both
the method we proposed in this article and the THC method. In order to facilitate the display, we managed to
have same size images although they were originally of different sizes.

for the same stopping criterion. In contrast with these methods, the proposed method is
nearly parameter free. We do not compare the computational time, since the work in [21]
only provides C++ code, but the algorithm in [57] and our method are implemented with
MATLAB codes. Moreover, the optimization of the implementation of the codes is also a
rather complicated task. It is not easy to give a fair comparison.

6. Conclusions. In this article, we proposed a simple and efficient operator splitting ap-
proach to solve the Euler elastica model, and applied the proposed method to image smoothing.
Different from the ALM method, the proposed method only needs to tune one parameter, i.e.,
the time step. Numerical experiments demonstrated that the proposed method works well for
the Euler elastica energy and produces good results for image smoothing. Moreover, extensive
test experiments were also designed and implemented to assess the stability and effectiveness
of the proposed method. Furthermore, the comparisons with the THC method also demon-
strated that the proposed method is fast, stable, and robust.

Appendix A. On the Lie scheme for the time-discretization of initial value problems:
A brief introduction.

A.1. Generalities. Let us consider the following autonomous initial value problem:
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std = 0.1 std = 0.05 std = 0.02

Figure 10. Number of iterations (first row) and corresponding computational time (second row) for the THC
method (red curves) and the method introduced in this article (blue curves), both methods using tol = 1\times 10 - 5

for their respective stopping criterion. The two methods are applied to the 30 images of Figure 9, with added
zero mean Gaussian noise, and various standard deviations (std) (std = 0.1, 0.05, and 0.02).

(A.1)

\left\{   
d\phi 

dt
+A(\phi ) = 0 on (0, T ) (with 0 < T \leq +\infty ),

\phi (0) = \phi 0.

Operator A maps the vector space \scrV into itself (modulo a linear duality map if necessary)
and we suppose that \phi 0 \in \scrV . We suppose also that operator A has a nontrivial decomposition
such as

(A.2) A =

J\sum 
j=1

Aj ,

with J \geq 2 (by nontrivial we mean that the operators Aj are individually simpler than A).
Many schemes have been designed to take advantage of decomposition (A.2) when solving

(A.1), the simplest one, namely the Lie scheme will be briefly discussed below.

A.2. Time-discretization of the initial value problem (A.1) by the Lie scheme. Let
\tau (> 0) be a time-discretization step (we suppose \tau uniform, for simplicity): we denote n\tau by
tn. With \phi n denoting an approximation of \phi (tn), the Lie scheme reads as follows (see, e.g.,
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std = 0.1 std = 0.05 std = 0.02

Figure 11. Number of iterations (first row) and corresponding computational time (second row) for the 30
images of Figure 9, using the THC method (red curves) and the method introduced in this article (blue curves).
Both methods use tol = 1\times 10 - 5 for their respective stopping criterion.

[16] and Chapter 6 of [30] for its derivation):

(A.3) \phi 0 = \phi 0,

then, for n \geq 0, \phi n \rightarrow \phi n+1 are updated as follows:

(A.4)

\left\{   
d\phi j

dt
+Aj(\phi j) = 0 on (tn, tn+1),

\phi j(t
n) = \phi n+(j - 1)/J ; \phi n+j/J = \phi j(t

n+1)

for j = 1, . . . , J .
If problem (A.1) is taking place in a finite-dimensional space and if the operators Aj are

smooth enough, then \| \phi n  - \phi (tn)\| = O(\tau ), function \phi being the solution of (A.1).

Remark A.1. The above scheme applies also for multivalued operators (such as the sub-
differential of proper, lower semicontinuous, convex functionals, but in such a case first order
accuracy is not guaranteed anymore). We encounter this situation in section 3 of this article.

Remark A.2. Scheme (A.3), (A.4) is semiconstructive in the sense that one still has to
solve the subinitial value problems in (A.4) for every j (unless some of them are sufficiently
simple to have a closed-form solution). Suppose that one discretizes these subproblems using
just one step of the backward Euler scheme. The resulting scheme reads as follows:

(A.5) \phi 0 = \phi 0,
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std = 0.1 std = 0.05 std = 0.02

Figure 12. Number of iterations (first row) and corresponding computational time (second row) for the 30
images of Figure 9, using the THC method (red curves) and the method introduced in this article (blue curves).
Both methods use tol = 1\times 10 - 4 for their respective stopping criterion.

then, for n \geq 0, assuming that \phi n+(j - 1)/J is known, compute \phi n+j/J via

(A.6)
\phi n+j/J  - \phi n+(j - 1)/J

\tau 
+Aj(\phi 

n+j/J) = 0,

for j = 1, . . . , J . Especially, if operator Aj is multivalued, one should replace (A.6) by

\phi n+j/J + \tau Aj(\phi 
n+j/J) \ni \phi n+(j - 1)/J .

Scheme (A.5), (A.6) is known as the Marchuk--Yanenko scheme (see, e.g., [30, 39] for
more details, and applications (in computational fluid dynamics, in particular)). As the Lie
scheme, the Marchuk--Yanenko scheme is generically first order accurate at best. However,
this low order accuracy is compensated by this scheme simplicity, flexibility, and robustness,
making it a method of choice for those situations where J is large and some of the operators
Aj are poorly differentiable and even nonsmooth (the numerical simulation of time dependent
visco-plastic flows [17]) and the elastica energy minimization problem considered in this work
provides such situations.

A.3. Asymptotic properties of the Lie and Marchuk--Yanenko schemes. Consider now
the steady-state problem associated with (A.1), namely

(A.7) A(\phi ) = 0.
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Clean Noisy LALM FALM Proposed

Figure 13. The results of image smoothing by LALM, FALM, and the proposed method for the images ``ball""
(first row), ``man"" (second row), and ``Lena"" (third row). All methods took a = b = 0.1 and tol = 1 \times 10 - 5.
For the LALM method, we set r1 = 0.01, r2 = 2, r3 = 10, and \delta 1 = 0.1, \delta 2 = 3 \times 10 - 4 for all examples. For
the FALM method, we set r1 = 0.1, r2 = 100, r3 = 500, and \eta = 100 in the code.

Assume that problem (A.1) has steady-state solutions. These solutions are necessarily
solutions of problem (A.7). A classical method to solve (A.7) is then to integrate (A.1) on
the time interval (0,+\infty ), with (if possible) \phi 0 properly chosen. Suppose that decomposition
(A.2) holds. It is then tempting to use either the Lie or Marchuk--Yanenko scheme to capture
these steady-state solutions. It is where one encounters the main drawback of the Lie and
Marchuk schemes, namely their asymptotic inconsistency. Indeed, one observes the following
phenomena, generically:

1. If converging for j = 1, . . . , J , the sequences (un+j/J)n\geq 0 converge to different limits
than the solution of (A.7), the distance between them being O(\tau ) at best.

2. None of the above limits is a steady-state solution, but their distance to a steady-state
solution converges to 0 as \tau \rightarrow 0 (if a steady-state solution does exist).

This behavior has been proved in, e.g., Chapter 6 of [30], for simple situations where the
space \scrV is finite dimensional and the operators Aj affine. These properties for the Aj operators
are not satisfied in the applications to elastica energy minimization. So the convergence of
the schemes proposed in this work for elastica energy minimization, we cannot use existing
convergence theory and need to study them separately.

There are several ways to overcome asymptotic inconsistency: among them, averaging and
symmetrization. Actually, the simplest way to reduce the so-called splitting error is to take a
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small time step \tau . That is the approach followed by the authors of this article.

Remark A.3. TheDouglas--Rachford and Peaceman--Rachford alternating direction schemes
are asymptotically consistent, but they have drawbacks of their own, their (relatively) slow
convergence to steady state, in particular. They also have difficulties at handling large values
of J , particularly if some of the operators Aj are nonsmooth or multivalued. We suggest the
interested readers look at [29], which is dedicated to the numerical solution of

(A.8) | \nabla \Psi |  - | 1 - V.\nabla \Psi | 
c

= 0,

an Eikonal type equation from acoustics, modeling sound propagation in moving media (in
(A.8), c(> 0) is the medium at rest local speed of sound, and V is the medium motion
velocity). Article [29] contains a thorough comparison of operator-splitting methods applied
to the solution of problem (A.8). Among these splitting methods, let us mention the Lie
and Marchuk--Yanenko splitting schemes, and the Peaceman--Rachford and Douglas--Rachford
alternating direction methods.

Remark A.4. The choice of the time-discretization step \tau is a delicate issue a priori. Indeed
a small \tau is required to have a small splitting error. On the other hand, a small \tau may imply a
large number of time steps to achieve convergence. A classical way to overcome this difficulty
is to use a sequence (\tau n)n\geq 0 of time steps, this sequence verifying

(A.9)

\left\{             

\forall n \geq 0, \tau n > 0 and \tau n > \tau n+1,

lim
n\rightarrow +\infty 

\tau n = 0,

+\infty \sum 
n=0

\tau n = +\infty .

Actually, we never used (A.9), or other variable time-step strategies. The main reason for
that being that we obtained good results with ``not so small"" fixed time steps \tau (by good, we
mean that these results were quantitatively comparable to results obtained by other methods
(THC and variants of it, for example) but much faster in terms of the number of iterations
and CPU time per iteration). These comparisons are further discussed in section 5.

Acknowledgments. The authors would like to thank Dr. Zhang in [57] and Dr. Duan in
[21] for providing codes for the comparisons. The authors also thank the anonymous referees
of this article for helpful comments and suggestions.
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