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Abstract

Rain streak removal is an important issue of the outdoor vision system and has
been investigated extensively. In this paper, we propose a novel tensor optimiza-
tion model for video rain streak removal by fully considering the discriminatively
intrinsic characteristics of rain streaks and clean videos. In specific, rain streaks
are group sparse and smooth along the rain streaks’ direction; the clean videos are
smooth along the perpendicular direction of rain streaks and the time direction.
For rain streaks, we use the l2,1 norm to enhance the group sparsity and the Uni-
directional Total Variation (UTV) to promote the smoothness along rain streaks’
direction. For clean videos, we use two UTV to enhance the smoothness along
the perpendicular direction of rain streaks and the time direction. We develop an
efficient alternating direction method of multipliers (ADMM) algorithm to solve
the proposed model. Experiments on synthetic and real data demonstrate the su-
periority of the proposed method over state-of-the-art methods in terms of both
quantitative and qualitative assessments.

Keywords: video rain streak removal, group sparsity, unidirectional total
variation, tensor optimization model, alternating direction method of multipliers.

1. INTRODUCTION

Bad weather impairs visibility of an image and introduces undesirable inter-
ference that can severely hinder the follow-up processing (e.g., object detection,
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recognition, and tracking [1, 2, 3, 4, 5]). This paper mainly focuses on the rain
streak removal problem [6, 7, 8, 9, 10, 11].

The degradation of rainy images is generally modeled as the sum of the un-
known clean images and the rain streaks. A single rainy image is generally mod-
eled as O = B + R [7, 12, 13], where O ∈ Rm×n, B ∈ Rm×n, and R ∈ Rm×n

are the observed rainy image, the unknown clean image, and the rain streaks, re-
spectively. This model can be extended to the video case: O = B +R, where O,
B, and R ∈ Rm×n×t are the observed rainy video, the unknown clean video, and
the rain streaks, respectively. The goal of rain streak removal is to estimate the
clean images from its rainy version. This typical inverse problem is often solved
by regularization methods which are based on additional prior knowledge.

Existing rain streak removal algorithms can be categorized into two classes:
the single image rain streak removal algorithms and the video rain streak removal
algorithms. For the single image rain streak removal, Kang et al. [7] decomposed
a rainy image into low-frequency (LF) and high-frequency (HF) components using
a bilateral filter and then performed morphological component analysis (MCA)-
based dictionary learning and sparse coding to separate the rain streaks in the HF
component. However, learning HF image bases typically results in a loss of de-
tailed image information. To alleviate this problem, Sun et al. [14] exploited the
structural similarity of the derived HF image bases. Nevertheless, the background-
s estimated using their method still tend to be blurry. Chen et al. [12] considered
the pattern of the rain streaks and the smoothness of the background, but the con-
straints in their objective function were not sufficiently strong. Discriminative
sparse coding was adopted by Luo et al.[8]. Their method preserves the clean
content well but is not able to remove most of the rain streaks. The recent work
by Li et al. [13] was the first to utilize Gaussian mixture model (GMM) patch
priors for rain streak removal, with the ability to account for rain streaks of differ-
ent orientations and scales. Nonetheless, their method tends to yield over-smooth
clean images; i.e., the details of the clean image content are not preserved well. To
cope with this issue, Zhu et al. [15] proposed a joint bi-layer optimization method
progressively separate rain streaks from background details, in which the gradient
statistics are analyzed. In [16], the directional property of rain streaks received
attentions. The recently developed deep learning technique is also applied to the
single image rain streak removal task [17, 18].

For the video rain streak removal, Garg et al. [19] firstly raised a video rain
streak removal method with comprehensive analysis of the visual effects of rain
streaks on an imaging system. Since then, multiple methods have been proposed
for the video rain streak removal and attained good rain removing performance in
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videos with different rain circumstances. Tripathi et al. [20] took the spatiotem-
poral properties into consideration. In [12], the similarity and repeatability of rain
streaks were utilized, and a generalized low-rank appearance model was proposed.
Additionally, comprehensive early existing video-based methods are reviewed in
[21]. Kim et al. [6] considered the temporal correlation of rain streaks and the
low-rank nature of clean videos, but the effectiveness of their method is still low
for certain dynamic videos recorded by dynamic cameras. Very recently, the rain
streaks were stochastically modeled as a mixture of Gaussians in [22]. In [23], a
novel tensor-based video rain streak removal approach was proposed, with con-
sidering numerous discriminative prior information.

(a) (b)

Figure 1: (a) The rain streaks, (b) A random sparse image.

In [23], Jiang et at. proposed the model as

min
B,R

α1‖∇xR‖1 + α2‖R‖1 + α3‖∇yB‖1 + α4‖∇tB‖1 + α5‖B‖∗,

s.t. O = B +R, B,R > 0,
(1)

where∇x,∇y, and∇t are the derivative operators along rain streaks direction, the
perpendicular direction of rain streaks, and time direction, respectively. For sim-
plicity, we assume that the rain streaks direction and the perpendicular direction
of rain streaks are the vertical direction and the horizontal direction, respectively.

However, model 1 has two drawbacks. First, the rain streaks are not only s-
parse and but also group sparse; see Figure 1. Second, the clean video does not
exhibit obvious low-rankness; see Figure 2. Hence, there is room for improvemen-
t. Based on the above observations, we introduce the group sparsity regularizer
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Figure 2: From left to right: the singular values of unfolding matrices of the rainy video, the clean
video, and the rain streaks.

for rain streaks and disuse the low-rankness regularizer for the clean video. The
novel tensor optimization model consists of the group sparsity regularizer and the
Unidirectional Total Variation (UTV) regularizer along vertical direction for rain
streaks and the UTV regularizers along horizontal direction and time direction for
clean videos. We build model as

argmin
B,R

α1‖R‖2,1 + α2‖∇xR‖1 + α3‖∇yB‖1 + α4‖∇tB‖1,

s.t. O = B +R, B,R ≥ 0.
(2)

To solve the proposed model, we develop an efficient ADMM [24, 25, 26, 27]
algorithm. Experimental results demonstrate the superior of the proposed method
qualitatively and visually.
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The paper is organized as follows. In Sec. 2, some notations and the basic
knowledge are introduced. In Sec. 3, the proposed model and proposed algorithm
are presented. Experimental results are reported in Sec. 4. Finally, we draw some
conclusions in Sec. 5.

2. TENSOR BASICS

Following [23, 28, 29], we use lower case letters (e.g., x) for scalars, bold
lower case letters (e.g., x) for vectors, bold upper case letters (e.g., X) for ma-
trixes, and bold upper calligraphic letters (e.g., X ) for tensors. An n-mode ten-
sor is denoted as X ∈ RI1×I2×...×In . Its elements are denoted as xi1,...,in , where
1 ≤ ik ≤ Ik and 1 ≤ k ≤ n. The inner product of two same-size tensors is
defined as

〈X ,Y〉 =
∑

i1,i2...in

xi1,i2...in × yi1,i2...in . (3)

Based on (3), the Frobenius norm of a tensor is defined as

‖X‖F := 〈X ,X〉
1
2 = (

∑
i1,i2...in

|xi1,i2...in|2)
1
2 . (4)

For an n-mode tensor, we define the derivative along the k-th direction of X as
∇kX ∈ RI1×I2×...×In in the cyclic boundary condition, where the elements of
∇kX obey that

(∇kX )i1,i2...ik...in = xi1,i2...ik...in − xi1,i2...(ik−1)...in .

When ik = 1, the ik−1 will be Ik. The “unfold” operation along the k-th direction
on a tensor X is defined as

unfoldk(X ) = X(k) ∈ RIk×(I1...Ik−1Ik+1...In). (5)

The projection operator “fold” is defined as

foldk(X(k)) = X . (6)

Based on the unfolding rule (5) and folding rule (6), the tensor and the matrix
can be transformed to each other. It is easy to obtain that, for any 1 ≤ k ≤ n,

‖X‖F = ‖X(k)‖F , 〈X ,Y〉 = 〈X(k),Y(k)〉,
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and
∇kX = foldk(∇1unfoldk(X )).

Suppose x ∈ Rn is a group sparse vector. Let {xgi ∈ Rni : i = 1, ..., s} be
the grouping of x, where gi ⊆ {1, 2, ..., n} is an index set corresponding to the
i-th group, and xgi denotes the subvector of x indexed by gi [30]. Generally, gi’s
can be any index sets, and they are predefined based on prior knowledge. The l2,1
norm is defined as follows:

‖x‖2,1 =
s∑
i=1

‖xgi‖2.

l2,1 norm is known to facilitate group sparsity [30]. For the matrix, each column
is considered as a group. Thus l2,1 norm for a matrix is usually denoted as

‖X‖2,1 =
s∑
i=1

‖xgi‖2.

Here, gi’s are the column index set. Since one column is treated as a group, we
can extend l2,1 norm from the matrix to the tensor as

‖X‖2,1 = ‖unfold1(X )‖2,1.

More extensive overview of group sparsity can be found in [30].

3. THE PROPOSED METHOD

This section gives the proposed model and the algorithm for rain streak re-
moval.

3.1. Proposed model
Without loss of generality, we use O, B, and R to represent the rainy video,

the target clean video, and the rain streaks, respectively. We recall the proposed
model:

argmin
B,R

α1‖R‖2,1 + α2‖∇xR‖1 + α3‖∇yB‖1 + α4‖∇tB‖1,

s.t. O = B +R, B,R ≥ 0,
(7)

where∇x,∇y, and∇t are the derivative operators along the vertical direction, the
horizontal direction, and the time direction, respectively. In what followings, we
will explain all components in our model in details.
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Group sparsity of the rain streaks: The rain component is sparser than the
clean video, and the rain component exhibits line pattern structure rather than
being randomly distributed just like Figure 1. Therefore, we use the term ‖R‖2,1
to characterize the group sparse which can simultaneously enhance the sparsity
and preserve the line pattern. It is superior over the sparsity itself used in [23].

(a) (b)

Figure 3: (a) The histogram of the absolute values of the derivatives along the vertical direction
of the rain streaks. (b) The histogram of the absolute values of the derivatives along the vertical
direction of the clean video.

The smoothness along the rain streak direction of the rain streaks: The
rain streaks share similar directions. When the angle between the direction of rain
streaks and the vertical direction is small, the derivatives of rain streaks and the
clean video along the vertical direction are different, i.e., the derivatives along the
vertical direction of rain streaks are more sparse as compared with those of the
clean video; see Figure 3. Therefore, we use the l1 norm of ∇xR to enhance the
smoothness along the vertical direction of the rain streaks.

The smoothness along the horizontal direction of the clean video: Natural
images are piecewise smooth, which indicates that the derivatives of frames in
a video are not dense along vertical and horizontal directions. The vertical rain
streaks destroy the smoothness along the horizontal direction. Compared with
the rain streaks, the derivatives of the clean video are sparse along the horizontal
direction. As a result, the derivatives along the horizontal direction of rain streaks
are dense, which is shown in Figure 4. Therefore, we use the l1 norm of ∇yB to
enhance the smoothness along the horizontal direction of the clean video.

The smoothness along the time direction of the clean video: Since that
a video maintains at least 25 frames per second, there is a strong smoothness
along time direction. The derivatives of the clean video are sparse along the time
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(a) (b)

Figure 4: (a) The histogram of the absolute values of the derivatives along the horizontal direction
of the rain streaks. (b) The histogram of the absolute values of the derivatives along the horizontal
direction of the clean video.

direction. However, the rain streaks are not smooth. Because of its high velocity,
its smoothness is broken. As displayed in Figure 5, the derivatives along the time
direction of the clean video are sparse while those of the rain streaks Therefore,
we use the l1 norm of ∇tB to enhance the smoothness along the time direction of
the clean video.

Discussion of low-rankness: Meanwhile, we discard the low-rankness reg-
ularizer which is considered in [23]. The clean video is low-rank only when it
is static, but not the case even if there is only a light object moving in the clean
video. Usually the low-rankness regularizer will be slacked to the singular values
of three unfolding matrixes of the video in quantitative analysis. From the singu-
lar value decomposition (SVD) [31] of rain streaks and clean video in Figure 2, it
can be found the singular value of clean video does not have zero elements in any
directions, and the singular values of rain streaks are smaller than those of clean
video.

3.2. Proposed algorithm
The proposed model (7) is a convex optimization problem which can be solved

by various of convex optimization algorithms. We adopt the ADMM, an effective
strategy for solving large scale optimization problems, to solve it. After introduc-
ing four auxiliary tensors Y , S, X , and T ∈ Rm×n×t, we rewrite the proposed
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(a) (b)

Figure 5: (a) The histogram of the absolute values of the derivatives along the time direction of the
rain streaks. (b) The histogram of the absolute values of the derivatives along the time direction of
the clean video.

model (7) as the following equivalent constrained problem:

argmin
R,Y,S,X ,T

α1‖Y‖2,1 + α2‖S‖1 + α3‖X‖1 + α4‖T ‖1,

s.t. Y = R,
S = ∇xR,
X = ∇y(O −R),
T = ∇t(O −R),
O > R > 0.

(8)

Then the augmented Lagrangian function of (8) is:

Lβ(R,Y ,S,X , T ,Λ) =α1‖Y‖2,1 + α2‖S‖1 + α3‖X‖1 + α4‖T ‖1

+ 〈Λ1,Y −R〉+
β1
2
‖Y −R‖2F

+ 〈Λ2,S −∇xR〉+
β2
2
‖S −∇xR‖2F

+ 〈Λ3,X −∇y(O −R)〉+
β3
2
‖X −∇y(O −R)‖2F

+ 〈Λ4, T −∇t(O −R)〉+
β4
2
‖T − ∇t(O −R)‖2F ,

(9)
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where Λ = [Λ1,Λ2,Λ3,Λ4] are Lagrange multipliers and β = [β1, β2, β3, β4]
are four positive penalty parameters. This joint minimization problem can be
decomposed into five subproblems which can be easily solved. By separating the
variables of (9) into two groups: R and (Y , S, X , T ), (9) fits the framework of
ADMM. It requests us to solve variables of each group by keeping another group
fixed. The solution of the five subproblems will be introduced in the following.
Y sub-problem: With other variables fixed, the Y sub-problem is

argmin
Y

α1‖Y‖2,1 +
β1
2
‖Y −R+

Λ1

β1
‖2F , (10)

which has a closed-form solution by the soft-shrinkage formula [30], thus Y could
be updated as

Y t+1
gi

= max

(
‖Qgi‖2 −

α1

β1
, 0

)
Qgi
‖Qgi‖2

,Qgi = Rt
gi
− (Λ1

t)gi
β1

, (11)

where Qgi denotes the i-th group of the video.
S, X , and T sub-problems: With other variables fixed, S, X , and T sub-

problems are

argmin
S

α2‖S‖1 +
β2
2
‖S −∇xR+

Λ2

β2
‖2F

argmin
X

α3‖X‖1 +
β3
2
‖X −∇y(O −R) +

Λ3

β3
‖2F

argmin
T

α4‖T ‖1 +
β4
2
‖T − ∇t(O −R) +

Λ4

β4
‖2F ,

(12)

which have closed-form solutions by soft-thresholding , thus S, X , and T could
be updated as

S(t+1) = Shrinkα2
β2

(
∇xR(t) − Λ

(t)
2

β2

)
, (13)

X (t+1) = Shrinkα3
β3

(
∇y(O −R(t))− Λ

(t)
3

β3

)
, (14)

T (t+1) = Shrinkα4
β4

(
∇t(O −R(t))− Λ

(t)
4

β4

)
. (15)
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R-subproblem: TheR sub-problem is a least squares problem:

argmin
R

β1
2
‖Y −R+

Λ1

β1
‖2F +

β2
2
‖S −∇xR+

Λ2

β2
‖2F

+
β3
2
‖X −∇y(O −R) +

Λ3

β3
‖2F +

β4
2
‖T − ∇t(O −R) +

Λ4

β4
‖2F .

With the problem is transformed to

(β1I + β2∇T
x∇x − β3∇T

y∇y−β4∇T
t∇t)R =

β1Y(t+1) + Λ
(t)
1 +∇T

x(β2S(t+1) + Λ
(t)
2 )

+∇T
y(β3X (t+1) − β3∇xO + Λ

(t)
3 )

+∇T
t (β4T (t+1) − β4∇tO(t+1) + Λ

(t)
4 ).

The solution has the following closed-form solution:

R(t+1) = F−1
(
F(K1)

F(K2)

)
, (16)

where F and F−1 denote the fast Fourier transform (FFT) and its inverse trans-
form, respectively. Here

K1 =β1Y(t+1) + Λ
(t)
1 +∇T

x(β2S(t+1) + Λ
(t)
2 ) +∇T

y(β3X (t+1)

− β3∇xO + Λ
(t)
3 ) +∇T

t (β4T (t+1) − β4∇tO(t+1) + Λ
(t)
4 )

and
K2 = β1I + β2∇T

x∇x − β3∇T
y∇y − β4∇T

t∇t.

Multipliers updating: Finally, following the framework of the ADMM, the
Lagrange multipliers Λ = [Λ1,Λ2,Λ3,Λ4] are updated as:

Λ
(t+1)
1 = Λ

(t)
1 + β1(Y(t+1) −R(t+1)),

Λ
(t+1)
2 = Λ

(t)
2 + β2(S(t+1) −∇xR(t+1)),

Λ
(t+1)
3 = Λ

(t)
3 + β3(X (t+1) −∇y(O −R(t+1))),

Λ
(t+1)
4 = Λ

(t)
4 + β4(T (t+1) −∇t(O −R(t+1))).

(17)

The proposed algorithm is summarized in Algorithm 1. Since the proposed
model is convex, the convergence of the proposed algorithm is theoretically guar-
anteed under the ADMM framework [32].
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Algorithm 1 Algorithm for video rain streak removal
Input: The rainy video O;

1: Initialization: B(0) = O,R(0) = zeros(m× n× t);
2: while not converged do
3: Update Y via (11);
4: Update S via (13), X via (14), and T via (15);
5: UpdateR via (16);
6: Update the multipliers via (17);
7: end while

Output: The estimation of rain streaksR and the clean video B = O −R.

4. EXPERIMENTAL RESULTS

Preprocessing: The color video is a four-mode tensor of size m× n× 3× t.
We convert videos from the RGB color space to YUV color space and only con-
duct the method on the Y channel. Thus the videos that we process become a
three-mode tensor of size m× n× t. To reduce the boundary effect, we pad the
input tensors O ∈ Rm×n×t by 5-pixel-width under reflective boundary condition.
Thus the size of the input tensors becomes (m+10)×(n+10)×(t+10). To validate
the effectiveness of the proposed method, we compare the proposed method with
two state-of-the-art methods: rain streak removal using temporal correlation and
low-rank matrix completion (LRMC) [6] and rain streak removal using discrimi-
natively intrinsic priors (DIP) [23]. Readers can find the Matlab code (p-code) to
test the performance of our method there.

4.1. Synthetic data
For synthetic data, since the clean videos are available, the peak signal to noise

ratio (PSNR) and structure similarity (SSIM) [33] are selected to measure the
performance of methods. Six videos named as “carphone”, “container”, “coast-
guard”, “bridgefar”, “highway” and “foreman”1 are selected as our test datasets.
These videos can be viewed as four-mode tensors of size 144× 176× 3× 150.

Rainy videos generation: The rainy videos are generated by the following
steps. (1) The salt and pepper noise is added to a zero tensor with the same size
as the clean video tensor. (2) The noise tensor is blurred by Gaussian blur. (3)
The blurred and noisy tensor is further blurred by motion blur. There exists 5-15

1http://trace.eas.asu.edu/yuv/.
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degrees between motion direction and vertical direction. (4) Finally, the blurred
and noisy tensor is directly added to the clean videos, and the intensity values
greater than 1 are set as 1.

Parameters setting: The parameters {β1, β2, β3, β4} are set as 50, and other
parameters {α1, α2, α3, α4} are selected from {0.1, 0.3, 1, 3, 10, 30, 100, 300,
1000}. The stopping criterion is that the relative error of rain streaks is less than
5× 10−3 or the iteration number is larger than 250.

Performance comparisons: We can observe from Table 1, that the proposed
method significantly outperforms the companying methods in terms of PSNR val-
ues and SSIM values. For light and heavy rain, the proposed method achieves the
highest PSNR and SSIM values except the last video for light rain streaks. In av-
erage, the PSNR values of the proposed method are 8.016 dB and 2.966 dB higher
than those of LRMC and DIP for heavy rain streaks. In average, the PSNR values
of the proposed method are 7.292 dB and 0.330 dB higher than those of LRMC
and DIP for light rain streaks.

Moreover, the frames of estimated videos are displayed in Figures 6 and 7 for
visual inspection. As observed, the proposed method achieves significantly better
visual quality than the compared methods in rain streak removal, visibility en-
hancement, and detail preservation. There are two main reasons. The first reason
is that LRMC and DIP both assume the clean video is low-rank, which leads to
that some obvious details are lost. However, we disuse the low-rankness of the
clean video, which preserves the details in dynamic clean video. For example,
DIP and LRMC remove the street lights in “highway” for both heavy rain streaks
and light rain streaks . In “bridgefar”, although the clean video is almost static,
some small objects such as water pattern destroy the low-rankness. Thus, the de-
tails of water pattern are lost in the results of DIP and LRMC. Another reason is
that we use the group sparsity to characterize rain streaks, which helps to preserve
the line pattern and keep the continuity of the rain streaks, leading to more accu-
rate rain streak removal results than other methods. In comparison, DIP does not
extract sufficient rain streaks and does not preserve the continuity of rain streaks,
e.g., “coastguard” and “foreman” for heavy rain streaks and “carphone” for light
rain streaks. Since the continuity is more significant for heavy rain streaks, the
proposed method equipped with group sparsity term outperforms the companying
methods for heavy rain streaks.

Discussion of each term: We investigate the role of each term in our mod-
el (7) by changing one parameter while fixing the others. Figure 8 shows the
PSNR curves of the proposed method using different parameter settings, where
the testing parameter is chosen from the geometric series {0.1, 0.121, ..., 0.1 ×
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Figure 6: Rain streak removal results by different methods. From left to right: the rainy frames, the
results by LRMC [6], DIP [23], the proposed method, and the ground truth. From top to bottom:
the “carphone”, “container”, “coastguard”, “highway” “bridgefar” and “foreman” videos with the
heavy synthetic rain streaks, respectively.
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Figure 7: Rain streak removal results by different methods. From left to right: the rainy frames, the
results by LRMC [6], DIP [23], the proposed method, and the ground truth. From top to bottom:
the “carphone”, “container”, “coastguard”, “highway” “bridgefar” and “foreman” videos with the
light synthetic rain streaks, respectively.
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Figure 8: The PSNR values of the proposed method using different parameter settings.

1.1k, ..., 1000}. It could be found that each parameter has an important contribu-
tion to the performance of the proposed method.

Discussion of groups: The group size is an vital important parameter which
is set as one column in this paper unless otherwise specified. And it is very in-
teresting to investigate the influence on the performance the proposed model with
different group sizes. Table 2 shows the PSNR and SSIM values of the proposed
model using different group sizes. From Table 2, we can observe that the group
size has an impact on the performance of the proposed model. More specially,
heavy videos favor large group sizes while light videos favor small group sizes.
For simplicity, we choose one column as default in all experiments because there
is no significant difference between different group sizes.

Discussions of the oblique rain streaks: Generally, the rain drops are falling
from top to bottom and the rain streaks are close to being vertical. As we exhibited
above, our method is robust to a small range of the angles since the rain streaks in
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the synthetic data are not strictly vertical. However, the assumption is not always
established (the angle between the direction of the rain streaks and the vertical
direction would be very large). The proposed model consists of 4 regularization
terms, which simultaneously contribute to the rain streak removal. When the rain
streaks are oblique, the one regularizer corresponding to the directional property
and the group sparsity of the rain streaks would not be helpful. Nonetheless,
the temporal and the horizontal continuity of the background still exist. Thus,
tuning the parameters to enlarge the effects of these two regularizers would help
the proposed method to remove the rain streaks. Figures 9 and Table 3 show
the results on two synthetic videos the “highway2”(35-55 degrees between the
direction of the rain streaks and the vertical direction) and the “waterfall” (15-35
degrees between the direction of the rain streaks and the vertical direction) with
oblique rain streaks. It can be found that when the rain streaks are not vertical,
our method still works and achieves promising performances.

Figure 9: Rain streak removal results by different methods. From left to right: the rainy frames, the
results by LRMC [6], DIP [23], the proposed method, and the ground truth. From top to bottom:
the “highway2”and “waterfall” videos, respectively.

Discussions of the preprocessing: Before applying our algorithm, there are
two preprocessing steps, i.e., (a) the conversion from RGB space to YUV space,
and (b) adding reflective boundary condition. We would like to illustrate the influ-
ence of the two preprocessing steps using the video, “carphone”, with heavy rain
streaks and light rain streaks. Table 4 shows the quantitative effects from these
two preprocessing steps. It can be found from Table 4 that our algorithm generat-
ed comparative results with and without the conversion from RGB space to YUV
space. This conversion would largely reduce the running time and hardly affect
the performance. Meanwhile, as we expected, the reflective boundary condition
slightly improved the performance. The method in [6] is designed for the RGB

17



videos so that we fed the RGB videos to it. The algorithm in [23] is also a ten-
sor based method and involves the fast calculation using Fourier transform. For
fair comparison, we did the same preprocessing steps when running the algorithm
in [23]. It can be found that without the two preprocessing steps, the proposed
method still work best.

4.2. Real data
We test two real rainy videos. One is a clipped part of size 260×440×3×128

from the movie “the Matrix”, and the other one is a backyard video of size 512×
256 × 3 × 128 recorded in a rainy day. It is worth mentioning that the proposed
method is not sensitive to parameters. The parameters for real data are the same
as those in the first synthetic experiments.

Performance comparisons: For the first real video, we compare all the meth-
ods on one extreme cases. The first video is a very challenge video under lightning
which enlarges the difference between adjacent frames and breaks the the conti-
nuity along time direction. The rain streak removal results are displayed in Figure
10. And we can observe from Figure 10 that the rain streaks are more effectively
removed by the proposed methods as compared with the other methods.

For the second real video, the rain streak removal results are displayed in
Figure 11. We observe from Figure 11 that due to the clean video is static, which
makes low-rankness a good video description, DIP performs well for this video.
In spite of this, the rain streaks are more effectively removed by the proposed
methods as compared with the other methods.

5. CONCLUSIONS

In this paper, we propose a tensor-based rain streak removal model. We use
the group sparsity and the smoothness along the vertical direction to characterize
rain streaks, and use the smoothness along the horizontal direction of rain streaks
and the time direction to characterize the clean video. Meanwhile we discuss
low-rankness. We develop an efficient ADMM algorithm to solve the proposed
model. The experiments on synthetic and real data demonstrate the superiority
of the proposed method over state-of-the-art method in terms of both quantitative
and qualitative assessments. We will explore the group sparsity of the derivatives
in the vertical direction of the rain streaks in our further work.
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Figure 10: Rain streak removal results by different methods. From left to right: the rainy frames,
the results by LRMC[6], DIP [23], and the proposed method. From top to bottom: three frames of
the first real video.
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Figure 11: Rain streak removal results by different methods. From left to right: the rainy frames,
the results by LRMC[6], DIP [23], and the proposed method.
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Table 1: Quantitative comparisons of rain streak removal results by LRMC [6], DIP [23], and the
proposed method, on the selected 6 synthetic videos, respectively.

Rain type Heavy Light
Video Method PSNR SSIM TIME(S) PSNR SSIM TIME(S)

carphone

Rainy 28.151 0.751 - 36.641 0.926 -
LRMC 30.496 0.848 2230.193 36.490 0.978 1381.876

DIP 35.196 0.955 190.997 42.742 0.987 280.895
Proposed 38.486 0.971 230.311 43.021 0.991 343.444

container

Rainy 28.551 0.758 - 37.162 0.929 -
LRMC 31.338 0.877 1850.684 37.426 0.982 1240.786

DIP 39.093 0.970 184.324 51.061 0.998 259.875
Proposed 45.252 0.993 293.509 51.363 0.998 317.864

coastguard

Rainy 28.128 0.833 - 36.579 0.956 -
LRMC 34.955 0.960 2709.774 34.880 0.955 1980.656

DIP 34.338 0.963 203.535 40.070 0.985 285.622
Proposed 35.951 0.971 344.890 40.222 0.986 423.444

highway

Rainy 29.056 0.744 - 37.524 0.925 -
LRMC 33.388 0.890 1752.019 38.511 0.968 1308.776

DIP 39.469 0.968 238.900 43.564 0.985 297.554
Proposed 41.281 0.974 367.434 43.629 0.982 444.590

bridgefar

Rainy 28.945 0.713 - 37.264 0.910 -
LRMC 34.392 0.900 1678.564 41.852 0.974 1298.344

DIP 42.221 0.979 186.909 48.672 0.992 239.443
Proposed 45.743 0.983 333.867 49.921 0.994 397.441

foreman

Rainy 28.341 0.808 - 36.954 0.947 -
LRMC 30.101 0.855 2200.713 36.300 0.974 1460.754

DIP 34.650 0.965 190.546 41.122 0.988 254.388
Proposed 36.050 0.967 289.332 41.055 0.987 338.564
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Table 2: Quantitative comparisons of rain streak removal results by the proposed method with one
column, half of one column, quarter of one column, eighth of one column.

Rain type Heavy Light
Video Method PSNR SSIM TIME(S) PSNR SSIM TIME(S)

carphone

Rainy 28.151 0.751 - 36.641 0.926 -
one column 38.486 0.971 230.311 43.021 0.991 343.444

half of one column 38.138 0.973 224.136 41.372 0.990 330.496
quarter of one column 37.486 0.973 234.334 42.248 0.991 344.667
eighth of one column 35.166 0.956 242.899 43.081 0.991 339.799

container

Rainy 28.551 0.758 - 37.162 0.929 -
one column 45.252 0.993 293.509 51.363 0.998 317.864

half of one column 45.146 0.992 289.778 51.900 0.998 328.565
quarter of one column 44.677 0.991 288.526 52.347 0.998 331.965
eighth of one column 44.837 0.993 299.657 52.430 0.998 329.999

coastguard

Rainy 28.128 0.833 - 36.579 0.956 -
one column 35.951 0.971 344.890 40.222 0.986 423.444

half of one column 35.982 0.970 339.756 40.538 0.986 434.899
quarter of one column 35.934 0.965 346.813 40.665 0.987 423.131
eighth of one column 35.754 0.970 334.287 40.497 0.986 435.998

highway

Rainy 29.056 0.744 - 37.524 0.925 -
one column 41.281 0.974 367.434 43.629 0.982 444.590

half of one column 39.899 0.970 359.142 43.326 0.986 435.827
quarter of one column 41.799 0.976 339.982 43.413 0.985 437.896
eighth of one column 41.842 0.977 378.869 43.223 0.983 447.867

bridgefar

Rainy 28.945 0.713 - 37.264 0.910 -
one column 45.743 0.983 333.867 49.921 0.994 397.441

half of one column 46.005 0.985 340.665 50.518 0.994 403.676
quarter of one column 46.203 0.985 328.443 50.924 0.994 399.674
eighth of one column 45.989 0.984 329.441 51.167 0.995 402.335

foreman

Rainy 28.341 0.808 - 36.954 0.947 -
one column 36.050 0.967 289.332 41.055 0.987 338.564

half of one column 36.090 0.966 296.996 40.693 0.986 365.447
quarter of one column 35.781 0.966 302.154 39.327 0.986 336.732
eighth of one column 36.009 0.966 288.838 40.317 0.988 332.655
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Table 3: Quantitative comparisons of rain streak removal results by LRMC [6], DIP [23], and the
proposed method, on the selected 2 synthetic videos, respectively.

Rain video Quantitative comparisons
Video Method PSNR SSIM TIME(S)

highway2

Rainy 27.170 0.803 -
LRMC 27.640 0.878 2530.393

DIP 33.406 0.929 258.067
Proposed 36.783 0.953 343.453

waterfall

Rainy 28.551 0.758 -
LRMC 31.338 0.877 1850.684

DIP 35.593 0.939 184.324
Proposed 37.782 0.960 293.509

Table 4: Quantitative comparisons of rain streak removal results by LRMC [6], DIP [23], and the
proposed method on the “carphone”synthetic videos, respectively.

Rain type Heavy Light
Method PSNR SSIM TIME(s) PSNR SSIM TIME(s)
Rainy 28.151 0.751 - 36.641 0.926 -
LRMC 30.496 0.848 2230.193 36.490 0.978 1381.876

DIP 35.196 0.955 190.997 42.742 0.987 280.895
Proposed 38.486 0.971 230.311 43.021 0.991 343.444

Proposed without (a) 38.406 0.969 763.256 43.005 0.990 1027.011
Proposed without (b) 37.856 0.962 221.054 42.958 0.989 310.520
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