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Joint-Sparse-Blocks and Low-Rank Representation
for Hyperspectral Unmixing

Jie Huang , Ting-Zhu Huang, Liang-Jian Deng, and Xi-Le Zhao

Abstract— Hyperspectral unmixing has attracted much
attention in recent years. Single sparse unmixing assumes that
a pixel in a hyperspectral image consists of a relatively small
number of spectral signatures from large, ever-growing, and
available spectral libraries. Joint-sparsity (or row-sparsity) model
typically enforces all pixels in a neighborhood to share the same
set of spectral signatures. The two sparse models are widely used
in the literature. In this paper, we propose a joint-sparsity-blocks
model for abundance estimation problem. Namely, the abundance
matrix of size m × n is partitioned to have one row block and
s column blocks and each column block itself is joint-sparse. It
generalizes both the single (i.e., s = n) and the joint (i.e., s = 1)
sparsities. Moreover, concatenating the proposed joint-sparsity-
blocks structure and low rankness assumption on the abundance
coefficients, we develop a new algorithm called joint-sparse-
blocks and low-rank unmixing. In particular, for the joint-sparse-
blocks regression problem, we develop a two-level reweighting
strategy to enhance the sparsity along the rows within each
block. Simulated and real-data experiments demonstrate the
effectiveness of the proposed algorithm.

Index Terms— Abundance estimation, hyperspectral
images (HSIs), joint-sparse-blocks regression, low-rank matrix,
spectral unmixing.

I. INTRODUCTION

SPECTRAL unmixing for hyperspectral images (HSIs)
has attracted much interest in recent few decades [1].

It consists of identifying the pure spectral signatures, called
endmembers, and estimating their corresponding fractions,
called abundances. Many research works have been dedicated
to address either one task or both two. The first task is
commonly known as endmember extraction. A number of
endmember extraction algorithms have been proposed from
statistical and geometrical aspects (see [2]–[6] and references
therein). Many abundance estimation algorithms, including our
proposed one, address the latter task under the assumption
that the spectral signatures of the endmembers are
available [7]–[13].
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A modeling mixture process is a fundamental but dif-
ficult task in abundance estimation. It seeks a balance
between model accuracy and tractability. The linear mixture
model (LMM) has been adopted by diverse abundance estima-
tion approaches. It assumes that each pixel’s spectral signature
is a linear combination of the spectral signatures of the end-
members, weighted by their corresponding abundances. Recall
that the spectral signatures of the endmembers are assumed
available and belong to a predefined set usually called dictio-
nary. By natural, the abundance vector of a mixed pixel in an
HSI should satisfy abundance nonnegative constraint (ANC)
and abundance sum-to-one constraint (ASC) [14]. This leads
to a constrained spectral unmixing problem.

Sparse constraint exploits another physically prior knowl-
edge for spectral unmixing. It assumes that each mixed pixel
in an HSI linearly consists of, according to LMM, only a
few of spectral signatures compared with large-scale avail-
able dictionaries. In addition, suitable sparsity-inducing prior
distributions are used for fractional abundances in Bayesian
schemes [15]–[17]. The sparsity assumption usually incorpo-
rates with the classic ANC and ASC in the literature [7].
The sparse constrained spectral unmixing shows significant
advantages, lying at the center of interest of unmixing algo-
rithms. Since the sparsity is imposed on the abundance vector
of each pixel, we shall call it as single sparsity to distinguish
from other sparse structures mentioned later. In other words,
the single sparse assumption only focuses on each single pixel,
ignoring potential information, specifically spatial information,
offered by other pixels.

Besides single sparse assumption, spatial correlation
between each pixel and its neighbors has been exploited for
better spectral unmixing results. Suppose that nearby pixels
in the homogeneous regions of HSIs have a high degree of
correlation among their spectral signatures. It probably leads
to a high correlation among the corresponding abundance
vectors. Hyperspectral unmixing with spatial correlation con-
straint becomes a powerful unmixing scheme, leading to many
state-of-the-art algorithms (see [8], [10], [12], [18]–[21] and
reference therein).

Specifically, assuming that the abundance matrix is piece-
wise smooth for the same endmember among adjacent pixels,
Iordache et al. [8] include the total variation (TV) spatial
regularization to the sparse unmixing scheme, providing a
promising unmixing performance. The TV regularizer term is,
however, an overstrict assumption that adjacent pixels should
have both similar mixing endmembers and similar abundance
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fractions. A joint-sparsity (or row-sparsity) model provides a
less strict assumption that neighboring pixels share the same
support set of endmembers; that is, the pixels consist of similar
endmembers, but they do not necessarily have similar abun-
dances for the same endmember [10]. Nevertheless, the joint-
sparsity model might cause some aliasing artifacts for the
pixels on the boundaries of different constituent endmem-
bers [21]. Many other joint-sparse models have been proposed
for a hyperspectral unmixing problem. For example, nonlocal
self-similarity regularization is incorporated into the classical
joint-sparsity regression model to further exploit the spatial
contextual information [22]. Also, a probabilistic joint-sparse
regression model assumes an exponential prior distribution for
fractional abundances and utilizes implicit relations of neigh-
boring pixels [23]. Recently, pixels within general segments
(superpixels) of HSIs are assumed to share the same sparse
structure in abundances [24], [25], saying again that utilizing
spatial information can lead to an improvement in unmixing
performance.

On the other hand, a low-rank constraint of the abundance
matrix has been increasingly adopted for sparse unmixing,
providing a new perspective for spatial correlation [12], [21],
[26]–[28], and as well as in other applications, such as
compressive sensing [29] and tensor completion [30], [31].
The spatial correlation among pixels in an HSI translates
into linear dependence among their corresponding abundance
vectors. The resulting abundance matrix thus admits a low-
rank property. Notice that the low-rank property does by no
means invalidate sparsity; Giampouras et al. [12] simultane-
ously impose single sparsity and low rankness on abundance
matrices, taking into account both sparsity and spatial correla-
tion information in HSIs. Recently, a low-rank local abundance
regularizer has collaborated with joint sparsity and TV spatial
regularizer for unmixing problem [32]. The effectiveness of
these unmixing algorithms is illustrated by extensive simulated
and real-data experiments.

In this paper, we propose a joint-sparsity-blocks model
for spectral unmixing. Namely, the abundance matrix of size
m × n is partitioned to have one row block and s column
blocks, and each column block itself is joint-sparse. The
proposed sparse model promotes that pixels in one block share
the same support set and is thus a special case of typical
joint sparsity. On the other hand, the joint-sparsity-blocks
assumption generalizes both the single and the joint sparsities
by varying the value of s. That is, if s = n, then each joint-
sparse column block reduces to a single sparse vector, whereas
if s = 1, then all the pixels are in one block and we get exactly
a typical joint-sparse abundance matrix.

For a hyperspectral unmixing problem, we propose to simul-
taneously impose the joint-sparsity-blocks structure and low
rankness on abundance matrices for pixels in a sliding window.
We then develop a new algorithm called joint-sparse-blocks
and low-rank unmixing (JSpBLRU) under the classic alter-
nating direction method of multipliers (ADMM) framework.
Specifically, we develop a new two-level reweighting strategy
for joint-sparse-blocks regression problem. That is, weighting
coefficients are assigned differently to each row within each
block at each iteration. The first simulated experiment in

Section IV-C demonstrates the effectiveness of this strategy.
Other simulated and real-data experiments in Section IV show
the efficacy of the proposed algorithm.

The rest of this paper is structured as follows. Section II
introduces a joint-sparse-blocks regression problem and
presents some related properties. In Section III, we derive a
JSpBLRU algorithm. The effectiveness of JSpBLRU is demon-
strated by both simulated experiments in Section IV-A and a
real-data experiment in Section IV-B. Section IV-C discusses
the parameters selection of JSpBLRU. Finally, concluding
remarks are given in Section V.

II. JOINT-SPARSE-BLOCKS REGRESSION

Sparse representation has been well studied in many appli-
cations, such as compressive sensing [33], image processing
[34]–[38], hyperspectral unmixing [7], [8], [10], and HSI
super-resolution [39], to name a few. Suppose X ∈ R

m×n , and
the �0 quasi-norm, to describe the sparsity of X, is defined as

�X�0 = the number of nonzero elements in X.

The discrete, nonconvex, and non-Lipschitz character of �0
quasi-norm makes applications difficult. Its usual replacement
in the literature is �1 norm defined as

�X�1,1 =
m�

i=1

n�
j=1

|xi, j |

where xi, j denotes the (i, j)th element of X. We note that the
�1 norm is the best convex approximate of �0 norm. Another
favorable sparse representation is joint sparsity by applying
mixed �2,1 norm

�X�2,1 =
m�

i=1

�x[i]�2 (1)

where x[i] is the i th row of X. Joint sparsity is an important
extension of the single sparsity and has been well studied in,
e.g., [10], [11], [21], [25], [34], and [40]–[45]. The �2,1 reg-
ularization promotes structured sparse recovery with a small
number of nonzero rows of X. It reduces the degrees of free-
dom in the solution and the possible computational difficulty
occurring in hyperspectral unmixing problems, compressive
sensing problems, and so on. It is worth noting that the �2,1
norm is a convex relaxation of a row-�0 quasi-norm [46]

�X�row,0 = the number of nonzero rows in X. (2)

Two typical variant �2,1 regularizations have been well con-
sidered. One is the �p,q regularization in [47]–[49] measured
by an �p,q norm,

�X�p,q =
�

m�
i=1

�x[i]�q
p

� 1
q

, 0 ≤ q ≤ 1 ≤ p.

The other utilizes weighted �2,1 norm defined by

�X�w,2,1 =
m�

i=1

wi�x[i]�2
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for w = [w1, . . . , wm ] ≥ 0 (see [41], [50]). The variants pro-
mote structured sparse solutions and improve the performance
of sparsity recovery results.

Block sparsity is also an important extension of single
sparsity [51]–[53]. It assumes that sparse signals have nonzero
entries occurring in blocks. That is, a vector (respectively,
a matrix) with M blocks is called block-sparse if only
k < M of its blocks have nonzero Euclidean (respectively,
Frobenius) norm. Similarly, group sparsity assumes solutions
having a natural grouping of its components and the compo-
nents within a group are likely to be either all zeros or all
nonzeros [54], [55]. The joint single and group sparsity,
namely, concatenates the group sparsity and the single sparsity
to yield sparse solutions at both the group and individual
feature levels [56], [57]. These sparse models improve the
performance of single sparsity in many applications. Recently,
a block-row sparse regularizer [58] concatenates the joint
sparsity via an �2,1 norm and the block sparsity via a Frobenius
norm. It avoids the adverse impact of not only the redundant
views but also the noisy features for multiview image classi-
fication.

Here, we propose a joint-sparsity-blocks structure, that is, X
is first partitioned to have one row block and several column
blocks, and then, each column block is joint-sparse. To be
more specific, we partition X as

X = [X1, · · · , Xs ] (3)

where X j ∈ R
m×d j , for j = 1, . . . , s,

�s
j=1 d j = n, and

block number s is a positive integer for 1 ≤ s ≤ n. Then,
define row-�0-blocks quasi-norm of X as

�X�row,0,b :=
s�

j=1

�X j�row,0 (4)

a sum of the number of nonzero rows of each block of X.
It immediately follows two extreme cases of �X�row,0,b with
respect to s.

1) If s = 1, correspondently, d1 = n, then X itself is one
block and �X�row,0,b becomes �X�row,0.

2) If s = n, correspondently, d1 = · · · = dn = 1, then
each column of X is one block and �X�row,0,b becomes
�X�0.

Hence, the proposed row-�0-blocks quasi-norm generalizes the
�0 norm and row-�0 quasi-norm. The generalization is novel,
as far as we know.

We now consider the joint-sparse-blocks regression problem
via row-�0-blocks regularization

min
X

1

2
�X − Y�2

F + w

s�
j=1

�X j�row,0 (5)

where Y ∈ R
m×n is given, X is partitioned as in (3),

w > 0 is a regularization parameter, and s denotes the
number of blocks. Fig. 1 graphically shows the effectiveness
of the proposed row-�0-blocks regularizer. Since the problem
(5) is nonconvex and non-Lipschitz, it is generally hard to
solve directly. A common approach is to relax the row-�0
regularization to �2,1 regularization, and consequently, row-
�0-blocks regularization becomes, here we called, �2,1-blocks

regularization. To be more general, we adopt a weighted �2,1
norm for each block. Thus, we attain the following weighted
�2,1-blocks minimization problem:

min
X

1

2
�X − Y�2

F +
s�

j=1

�X j�w j ,2,1 (6)

where the weighted �2,1 norm of X j is defined as

�X j�w j ,2,1 =
m�

i=1

wi, j
��X[i]

j

��
2 (7)

X[i]
j is the i th row of the j th block of X, w j =

[w1, j , . . . , wm, j ]T ∈ R
m is a nonnegative weighting vector, for

i = 1, . . . , m, j = 1, . . . , s, and T denotes the transposition.
Clearly, different weights are assigned to different rows in
different blocks.

To solve (6), we first similarly partition Y = [Y1, . . . , Ys]
as X and obtain the reformulated problem

min
X1,...,Xs

s�
j=1

�
1

2
�X j − Y j�2

F + �X j�w j ,2,1

�
. (8)

Since the above-mentioned object function is proper, strictly
convex, and separable, we equivalently decouple the mini-
mization problem (8) to s subproblems

min
X j

1

2
�X j − Y j�2

F + �X j �w j ,2,1 (9)

for j = 1, . . . , s. Clearly, from [34], each subproblem admits
a unique block solution, and the i th row of the unique block
solution X̂ j , i.e., X̂[i]

j , of (9), can be written explicitly as

X̂[i]
j = vect-softwi, j

	
Y[i]

j



for i = 1, . . . , m, j = 1, . . . , s, where vect-softα(·) is a
nonlinear operator defined by

vect-softα(x) = x
max {�x�2 − α, 0}

max {�x�2 − α, 0} + α
(10)

for ∀ x ∈ R
N and α > 0. Thus, we arrive at a useful result

that extends the work about group separable �2 regularization
problem in [34].

Theorem 1: For any matrices X, Y ∈ R
m×n . Partition X =

[X1, . . . , Xs ], and correspondingly, Y = [Y1, . . . , Ys ], where
s is a positive integer for 1 ≤ s ≤ n. Denote the i th row of
the j th block of Y as Y[i]

j , for i = 1, . . . , m and j = 1, . . . , s.
Then, the minimization problem in (6) has a unique solution

X̂ = [X̂1, . . . , X̂s ], X̂[i]
j = vect-softwi, j

�
Y[i]

j

�
for i = 1, . . . , m and j = 1, . . . , s, where vect-softwi, j (·) is a
nonlinear operator defined in (10).

We now consider the solution X̂ of (6) when s = n. For
this purpose, we first define that softα(·) is a nonlinear soft-
thresholding operator defined componentwise by

(softα(x))i = xi
max {|xi | − αi , 0}

max {|xi | − αi , 0} + αi
(11)

for ∀ x = [x1, . . . , xN ]T ∈ R
N and a weighting vector

α = [α1, . . . , αN ]T ≥ 0. Naturally, the vect-soft operator is
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Fig. 1. Graphical illustration of the effect of the proposed row-�0-blocks quasi-norm regularizer. In this example, the abundance matrix is composed of three
column blocks and each column block is joint-sparse. Within each block, non-active members of the considered spectral library A are represented in white
color.

a vectorial soft. If s = n, then each column of X̂ is one block.
Consequently, Y[i]

j reduces to the (i, j)th element of Y, for
i = 1, . . . , m and j = 1, . . . , n. If we handle Y columnwise,
vect-softwi, j (Y

[i]
j ), i = 1, . . . , m, compactly reformulates to

the soft-threshold softw j (Y j ). This says that each column of
the unique solution X̂ of (6) can be obtained by

X̂ j = softw j (Y j ), j = 1, . . . , n.

III. JSPBLRU

In this section, we propose to simultaneously impose the
joint-sparsity-blocks structure and low rankness on abundance
estimation for HSI unmixing problem. We will first give
the problem formulation and then the proposed unmixing
algorithm, followed by a new reweighting strategy.

A. Problem Formulation

Let Y ∈ R
L×n be the observed data matrix, where L is

the number of bands and n is the number of pixels. Let
A = [a1, . . . , am] ∈ R

L×m be the dictionary, in which each
column a j = [a1, j , . . . , aL , j ]T is the spectral signature of the
j th endmember, for j = 1, . . . , m. The mixing process, under
the LMM, can be modeled as

Y = AX + N

where X ∈ R
m×n is the fractional abundance matrix, each

column of which corresponds with the abundance fractions of
the endmembers in a pixel, and N ∈ R

L×n is an independent

and identically distributed (i.i.d.) zero-mean Gaussian noise
matrix. According to physical background, two constraints are
often imposed on X

X ≥ 0, 1T X = 1T

namely, the ANC and the ASC, respectively. Here, the inequal-
ity X ≥ 0 is considered elementwise nonnegative and 1 is a
column vector of 1s. Similarly, as in [7] and [12], we relax the
sum-to-one constraint to focus on the exploitation of structural
characters of X.

Giampouras et al. [12] simultaneously impose single spar-
sity and low rankness on the abundance matrix for pixels lying
in the homogeneous regions of HSIs. The resulting unmixing
algorithms exploit both spatial correlation by the weighted
nuclear norm and single sparse structure by the weighted �1
norm for pixels in a small, e.g., 3 × 3, sliding window. The
unmixing results are promising. Instead of using single spar-
sity in [12], we utilize the joint-sparse-blocks representation to
further exploit the spatial information in HSIs. At this point,
we propose to simultaneously impose the joint-sparsity-blocks
structure and low rankness on the abundance matrix for the
pixels lying in a sliding window. Then, we obtain the following
optimization problem for spectral unmixing:

min
X∈Rm×K

1

2
�Y − AX�2

F + λ�X�row,0,b + τ rank(X)

s.t. X ≥ 0 (12)

where λ and τ are nonnegative regularization parameters
and K denotes the number of pixels in a sliding window.
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The above-mentioned optimization problem is nonconvex and
NP-hard and, thus, difficult to solve.

Instead of directly solving the model in (12), we first give a
convex relaxation by replacing the row-�0-blocks quasi-norm
with the �2,1-blocks norm and replacing the rank of X with
the well-known nuclear norm: �X�∗ = �r

i=1 σi (X), where
r = rank(X) and σi (X) is the i th singular value of X, for
i = 1, . . . , r . Recall from the definition in (4) and partition X
as in (3), the surrogate convex optimization problem is

min
X∈Rm×K

1

2
�Y − AX�2

F + λ

s�
j=1

�X j�2,1 + τ�X�∗

s.t. X ≥ 0. (13)

We remark that the above-mentioned model can reduce to
three state-of-the-art unmixing models: the ADSpLRU model
of [12] if s = n, the CLSUnSAL model of [10] if s = 1 and
τ = 0, and the SUnSAL model of [7] if s = n and τ = 0.

In an attempt to enhance sparsity along the rows in each
block in (13), we update the �2,1 norm of X j to the weighted
�2,1 norm defined as in (7). In addition, we use the weighted
nuclear norm defined by

�X�b,∗ =
r�

i=1

biσi (X) (14)

where b = [b1, . . . , br ] is a nonnegative weighting vector.
The weighted nuclear norm treats the individual singular
values differently and enhances the sparsity on the singular
values [29], [59]–[61]. Thus, we attain the optimization model
as

min
X∈Rm×K

1

2
�Y − AX�2

F + λ

s�
j=1

�X j�w j ,2,1 + τ�X�b,∗

s.t. X ≥ 0 (15)

where w j = [w1, j , . . . , wm, j ]T is a nonnegative weighting
vector, for j = 1, . . . , s. Clearly, the weighted �2,1-blocks
norm is always convex for nonnegative wi, j values. Also,
it is known that if nonnegative weights bi , i = 1, . . . , r ,
are descending, then the weighted nuclear norm is convex
[29], [60]. Under these conditions, thus, the overall cost
function in (15) is convex. For simplicity, we will solve the
model (15) under the assumption of bi = b, for i = 1, . . . , r ,
in Section III-B. We will propose an adaptive selection of
bi and wi, j values by computing weights used for the next
iteration from the obtained estimations in Section III-C.

B. Joint-Sparse-Blocks and Low-Rank Unmixing Algorithm

In this section, we solve the proposed model in (15) under
the ADMM framework. The ADMM is a convex optimiza-
tion method, a variant of the classic augmented Lagrangian
method [62]. It has been widely used in a number of areas,
such as machine learning and image processing (see [63], [64]
and references therein).

To begin, we partition X with s blocks as in (3)

X = [X1, . . . , Xs].

Introducing three variables V1, V2, and V3 and partitioning
V1 = [V1,1, . . . , V1,s] as X, we transform (15) to an equiva-
lent model

min
X

1

2
�Y − AX�2

F + λ

s�
j=1

�V1, j�w j ,2,1

+ τ�V2�b,∗ + ιR+(V3)

s.t. X = V1, X = V2, X = V3 (16)

where ι� is the indicator function of a set �, i.e., ι�(x) = 0
if x ∈ � and ι�(x) = +∞ otherwise.

To make notations more concise, we let

g(X, V) = 1

2
�Y − AX�2

F + λ

s�
j=1

�V1, j�w j ,2,1

+ τ�V2�b,∗ + ιR+(V3) (17)

and define

V =
⎛
⎝V1

V2
V3

⎞
⎠, G =

⎛
⎝ I

I
I

⎞
⎠ ∈ R

3m×m . (18)

Then, we obtain a compact form of (16)

min
X,V

g(X, V)

s.t. GX = V. (19)

Let

Lμ(X, V; �) = g(X, V) + μ

2
�GX − V − ��2

F (20)

where μ > 0 is a penalty parameter and
� = (�T

1 ,�T
2 ,�T

3 )T ∈ R
3m×n . Then, the ADMM framework

is derived ⎧⎪⎨
⎪⎩

Xk+1 = argminX Lμ(X, Vk; �k)

Vk+1 = argminV Lμ(Xk+1, V; �k)

�k+1 = �k − (GXk+1 − Vk+1).

(21)

We now show that each subproblem of (21) has a closed-
form solution. To begin, the X-subproblem, after dropping
constant terms, is equivalent to solve

Xk+1 = argmin
X

g(X, Vk) + μ

2
�GX − Vk − �k�2

F

= argmin
X

1

2
�Y − AX�2

F + μ

2

��X − Vk
1 − �k

1

��2
F

+ μ

2

��X − Vk
2 − �k

2

��2
F + μ

2

��X − Vk
3 − �k

3

��2
F .

It is a least-squares problem. A simple calculation gives

Xk+1

= (AT A+3μI)−1	AT Y+μ
	
Vk

1+�k
1+Vk

2+�k
2+Vk

3+�k
3

��
.

We decouple the V-subproblem of (21) to three independent
subparts with respect to V1, V2, and V3, and each subproblem
has a closed-form solution. For V1-subproblem, after dropping
constant terms, we obtain

Vk+1
1 = argmin

V1

λ

s	
j=1

�V1, j�w j ,2,1 + μ

2

��Xk+1 − V1 − �k
1

��2
F .

(22)
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Recall X = [X1, . . . , Xs ] and V1 = [V1,1, . . . , V1,s], and we
correspondently partition �1 = [�1,1, . . . ,�1,s]. Then, from
Theorem 1, we obtain the i th row of the j th block of Vk+1

1	
Vk+1

1, j


[i] = vect-soft λ
μ wi, j

		
Xk+1

j − �k
1, j

�[i]�
(23)

for i = 1, . . . , m and j = 1, . . . , s.
Before solving the V2-subproblem, we give some def-

initions. Recall r = rank(X) and let σi denote the i th
singular value of X, i = 1, . . . , r . Denote elementwise
(·)+ = max(·, 0) and X = ŨDiag(σ1, . . . , σr )ṼT is the
singular value decomposition (SVD) of X. Define the singular
value thresholding operator SVTb,β(·) on X as

SVTb,β(X) = ŨDiag((σ1 − βb1)+, . . . , (σr − βbr )+)ṼT .

The closed-form solution to the V2-subproblem is

Vk+1
2 = argmin

V2

τ�V2�b,∗ + μ

2

��Xk+1 − V2 − �k
2

��2
F

= SVTb, τ
μ

	
Xk+1 − �k

2

�
. (24)

For V3-subproblem, we have

Vk+1
3 = argmin

V3

ιR+(V3) + μ

2

��Xk+1 − V3 − �k
3

��2
F .

It is easy to obtain that

Vk+1
3 = max

	
Xk+1 − �k

3, 0
�
.

Finally, we update the multipliers⎧⎪⎨
⎪⎩

�k+1
1 = �k

1 − �
Xk+1 − Vk+1

1

�
�k+1

2 = �k
2 − �

Xk+1 − Vk+1
2

�
�k+1

3 = �k
3 − �

Xk+1 − Vk+1
3

�
.

To make it more clear, we summarize the proposed
JSpBLRU algorithm in the following.

Algorithm 1 Pseudocode of the JSpBLRU Algorithm
1. Input: Y, A.
2. Selected parameters: λ, τ , μ, partition strategy of X,

b, w j ( j = 1, . . . , s), maximum iterations.
3. Initialization: �0

l , V0
l , l = 1, 2, 3, and set k = 0.

4. Repeat:

5. Xk+1 = (AT A + 3μI)−1
�

AT Y

+ μ(Vk
1 + �k

1 + Vk
2 + �k

2 + Vk
3 + �k

3)



.

6. Partition
Xk+1 = [Xk+1

1 , . . . , Xk+1
s ],

�k
1 = [�k

1,1, . . . ,�
k
1,s].

Compute the i th row of the j th block of Vk+1
1 by

(Vk+1
1, j )[i] = vect-soft λ

μ wi, j
((Xk+1

j − �k
1, j )

[i]),
for i = 1, . . . , m, j = 1, . . . , s.

7. Vk+1
2 = SVTb, τ

μ
(Xk+1 − �k

2).

8. Vk+1
3 = max(Xk+1 − �k

3, 0).

9. �k+1
l = �k

l − (Xk+1 − Vk+1
l ), l = 1, 2, 3.

10. until some stopping criterion is satisfied.
11. Output: X̂ = Xk+1.

Clearly, the most expensive step in JSpBLRU is to perform
an SVT operator, specifically, the SVD, with complexity
O(m2 K ) at each iteration. Here, we recall that K is the
number of pixels in one sliding window and m is the number
of endmembers. Computing Xk+1 also requires complexity
O(m2 K ), whereas computing the others requires O(mK ).
Hence, the overall computational complexity of JSpBLRU is
O(m2 K ) per iteration. Concerning the convergence, recall that
the cost function g in (19) is closed, proper, and convex if
bi = b, for i = 1, . . . , r . The matrix G in (19) clearly has full
column rank. Under these conditions, [65, Th. 1] ensures that
if (19) has a solution, JSpBLRU converges, for any μ > 0.

C. Weighting Coefficients Selection

To enhance the sparsity along the rows in each block and the
sparsity on the singular values, we now consider the selection
of weighting coefficients of wi, j values in (23) for weighted
�2,1-blocks norm and bi s in (24) for weighted nuclear norm.

For the weighted �2,1-blocks norm regularization, first,
we set wi, j for the next iteration computed from the argument
of the vect-soft operator in (23). Specifically, we propose to
use

wk+1
i, j = 1��	Xk+1

j − �k
1, j

�[i]��
2 + 


(25)

where 
 = 10−16 is a small constant added to avoid sin-
gularities. Clearly, it is a two-level reweighting strategy. On
one hand, different blocks are treated differently, leading to
different joint-sparsity patterns among blocks. It is expected
to enhance the structured sparsity for pixels on the boundaries
between different regions in one sliding window. Within each
block, on the other hand, different endmembers are treated
differently, which promotes sparsity along the rows. Notice-
ably, the proposed weights in (25) is an extension of weights
for reweighted �1 minimization. To be specific, if s = n, then
weighted �2,1-blocks norm reduces to weighted �1 norm, and
consequently, wk+1

i, j becomes the reweighting coefficient for
weighted �1 minimization in [12] and [66]. Our numerical test
in Section IV-C will show that JSpBLRU with the reweighting
coefficients (25) provides significant advantages over one
without weights, i.e., wk+1

i, j = 1. To the best of our knowledge,
the reweighting strategy (25) is new for the mixed �2,1 norm.

Similarly, we select the weights bk+1
i for weighted nuclear

norm based on the singular values of the argument in (24).
That is,

bk+1
i = 1

σ̃ k+1
i + 


(26)

where σ̃ k+1
i is the i th singular value of the argument

Xk+1 − �k
2, i = 1, . . . , rank(Xk+1 − �k

2). The reweight-
ing strategy is widely used for many practical problems
(see [12], [29], [61]).

It should be mentioned that the above-mentioned reweights
in (25) and (26) render the minimization problem in (15)
nonconvex. Though theoretical convergence analysis is hard
to estimate, a series of research works has numerically shown
the remarkable performance of the reweighting �1 in [12] and
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[66] as well as reweighted nuclear norm in [29], [48], [60],
and [61]. In this spirit, we adopt the reweighting strategies
for JSpBLRU to promote the sparsity not only on the singular
values but also on the lines within each block.

IV. EXPERIMENTS

In this section, we demonstrate the proposed JSpBLRU
algorithm on both simulated and real data. For simulated test
problems, three spectral libraries are considered.

1) A1 ∈ R
224×498: The Chapter 1 of the U.S. Geological

Survey (USGS) spectral library (splib06a).1 It comprises
498 spectral signatures with reflectance values measured
in 224 spectral bands, distributed uniformly ranging
from 0.4 to 2.5 μm.

2) A2 ∈ R
224×240: A randomly selected subset of A1.

3) A3 ∈ R
100×120: A subset of a library of 262 spec-

tral signatures with 100 spectral bands generally found
on satellites from the National Aeronautics and Space
Administration Johnson Space Center Spacecraft Mate-
rials Spectral Database.

We will compare JSpBLRU with four state-of-the-art algo-
rithms: SUnSAL [7], CLSUnSAL [10], SUnSAL-TV2 [8], and
ADSpLRU3 [12]. Notice that SUnSAL-TV has been widely
used as a nonsliding window approach (see [13], [67] and
reference therein); hence, we do not give the comparison for
Examples 1–4 in one sliding window. Our tests were done
by using MATLAB R2016a on a MacBook Pro laptop with
2.3 GHz Intel Core i7 and 8 GB memory. The floating-point
precision is 10−16.

For all five algorithms, regularization parameters are tuned
to their best performance with respect to root-mean-square
error (RMSE) defined by

RMSE =
���� 1

mn

n�
i=1

�x̂i − xi�2
2

where n is the number of pixels, m is the number of endmem-
bers, and x̂i and xi are estimated and exact abundance vectors
of the i th pixel, respectively. Generally speaking, the smaller
the RMSE, the higher quality of the unmixing results. Another
metric evaluating the performance of unmixing results is the
signal-to-reconstruction error (SRE)

SRE (dB) = 10 log10

�
1
n

�n
i=1 �x̂i�2

2
1
n

�n
i=1 �x̂i − xi�2

2

�
.

Specifically, we select optimal regularization parame-
ters in all compared algorithms: SUnSAL, CLSUnSAL,
SUnSAL-TV, ADSpLRU, and JSpBLRU from the following
sequence:

{0, 10−6, 10−5, 0.0001, 0.0005, 0.001,

0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} (27)

1Available online: http://speclab.cr.usgs.gov/spectral.lib06.
2The MATLAB codes of SUnSAL, CLSUnSAL, and SUnSAL-TV are

available at http://www.lx.it.pt/ bioucas/publications.html.
3Available online: http://members.noa.gr/parisg/demo_splr_unmixing.zip.

for Examples 1–4 and from a slightly wider range

{0, 10−6, 10−5, 0.0001, 0.0005, 0.001, 0.005,

0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} (28)

for Examples 5 and 6. Notice that each of SUnSAL and
CLSUnSAL only has one regularization parameter, whereas
each of SUnSAL-TV, ADSpLRU, and JSpBLRU has two.
Thus, all possible combinations of these parameters from
(27) or (28) were considered for SUnSAL-TV, ADSpLRU,
and JSpBLRU. We also note that choosing optimal regulariza-
tion parameters of SUnSAL-TV, ADSpLRU, and JSpBLRU
costs much more computational time than that of SUnSAL
and CLSUnSAL. In addition, for JSpBLRU, we empirically
and initially set the augmented Lagrangian penalty parameter
μ = 0.01 for all simulated test problems and μ = 0.1
for a real-data test problem. For ADSpLRU, we initially set
μ = 0.01 for all test problems in a sliding window, i.e.,
Examples 1–4, as in [12], and μ = 0.1 for nonsliding-
window experiments, i.e., Examples 5 and 6 and the
real-data experiment (after empirically optimization). For
SUnSAL-TV, we choose optimal penalty parameter μ from
10−3, 10−2, 10−1, and 1 to get the best RMSE values.

To make JSpBLRU easy to implement, we now propose
a partition strategy of X in (3). Recall that n denotes the
total number of pixels. Assume that d is a positive integer for
1 ≤ d ≤ n. If n can be exactly divided by d , then we set the
number of blocks s = n/d and each block X j in (3) has d
columns, i.e.,

d = d1 = d2 = · · · = ds . (29)

Otherwise, let s = 	n/d
 be the largest integer no greater than
n/d , and each of the first s −1 blocks contains d columns and
the last block contains the remains, that is,

d = d1 = d2 = · · · = ds−1, ds = n − (s − 1) × d. (30)

For both cases, it is easy to check that n = �s
j=1 d j .

Particularly, we empirically set block size d = 3 for all test
problems. Other choices of d are discussed in Section IV-C.

For JSpBLRU, we use a similar adaptive strategy based on
the primal and the dual ADMM variables as in [10]–[12].
Define the primal residual rk and the dual residuals dk at the
kth JSpBLRU iteration as

rk = GXk − Vk

dk = μGT (Vk − Vk−1).

We stop the JSpBLRU iteration if both of the termination
criteria

�rk�F ≤ ζ, �dk�F ≤ ζ,

are satisfied or when the number of iterations has reached
2000. In our tests, we set ζ = ((3m + L)K )(1/2)ζ rel as in
[11] and [12], where K is the number of pixels in the sliding
window, and the relative tolerance ζ rel > 0 is empirically set
to 5×10−6.

In the following, we first test JSpBLRU on six simulated
examples in Section IV-A. The first four examples are in
a sliding window and the last two are nonsliding-window
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TABLE I

PERFORMANCE OF JSPBLRU WITH DIFFERENT
PARAMETER VALUES FOR EXAMPLE 1

experiments. Specifically, we give a toy problem in Example 1.
Examples 2 and 3 demonstrate the performance of JSpBLRU
under different conditions. Example 4 considers two cases with
more general distribution of the abundances. Two widely used
synthetic HSIs are used to test different unmixing algorithms
in Examples 5 and 6, respectively. Section IV-B applies
JSpBLRU on a real HSI. Finally, we discuss the parameters
selection of JSpBLRU in Section IV-C.

A. Experiments on Simulated Data

Example 1 (Toy Problem): Our purpose, in this test, is to
demonstrate the performance of the combination of the joint-
sparsity-blocks constraint and the low-rank constraint in JSp-
BLRU. We first consider JSpBLRU with a single constraint.
To this end, on one hand, we consider only the low rankness
by setting λ = 0 in (15). On the other hand, only the joint-
sparsity-blocks constraint is considered by setting τ = 0.
It should be mentioned that when one of the regularization
parameters λ and τ is fixed, the other is fine-tuned for a
minimum RMSE. In addition, we consider three different
values of d: d = 1, 3, and K in JSpBLRU with fine-tuned
λ and τ .

For the test data, we generate an m × K , with m = 50 and
K = 9, abundance matrix with rank 3. The sparsity levels
for three blocks are set to be 20% (i.e., 20% elements are
nonzero), 15%, and 10%, respectively. The true abundance
matrix is displayed in Fig. 2(a). We randomly select m = 50
endmembers from A1 to construct the spectral dictionary. The
observed matrix Y is generated by the LMM and corrupted
by Gaussian noise with an SNR of 30 dB.

Table I lists the RMSE and SRE (dB) values of JSpBLRU
with different parameter values. From Table I, we see that
JSpBLRU with only low rankness constraint gives lower
RMSE and higher SRE (dB) values than one with only joint-
sparsity-blocks constraint. It shows again that besides the
sparsity constraint, assuming low rankness on the abundance
matrix is effective for spectral unmixing. Moreover, concate-
nating low rankness and sparsity improves the abundance
estimation performance. Particularly, JSpBLRU with d = 3
is better than with d = 1 and K . Estimated abundances
by JSpBLRU with different parameter values are shown
in Fig. 2(b)–(f). Clearly, visual comparison from Fig. 2 is
consistent with the quantitative observation from Table I. From
the results, we can see that imposing simultaneously joint-
sparsity-blocks structure and low rankness in JSpBLRU gives
more accurate and structured sparse estimations.

Example 2 (Different Low Rankness and Sparsity
Levels): This example shows the effectiveness of JSpBLRU

TABLE II

PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS WITH
DIFFERENT LOW RANKNESS AND SPARSITY LEVELS FOR EXAMPLE 2

for abundance estimation with different low rankness and
sparsity levels. We have done six experiments, each of
which is performed independently 50 times. We set the
number of endmembers m = 50 and the sliding window
size 3 × 3, and, correspondingly, the number of pixels in the
window K = 9. For the first experiment, we set rank 1 and
sparsity level 100% so that the abundance is only low-rank.
For the last experiment, we set rank 9 and sparsity level
5%, so the abundance matrix is sparse. In the remaining
four experiments, we consider the abundance matrices are
simultaneously low-rank and sparse, in which we set rank
2 or 3 with sparsity level 10% or 20%, respectively. For each
experiment, we randomly select 50 endmembers from A1 to
construct the spectral dictionary. The linearly mixed data are
corrupted by the Gaussian noise of SNR = 30 dB.

Table II lists the RMSE and SRE (dB) values and the
elapsed CPU time in seconds [denoted by Time (s)] of
SUnSAL, CLSUnSAL, ADSpLRU, and JSpBLRU. We can see
from Table II that SUnSAL and CLSUnSAL are much faster
than ADSpLRU and JSpBLRU for all tests. It is consistent
with the previous theoretical analysis that both the ADSpLRU
and JSpBLRU algorithms perform an SVD per iteration. In
addition, JSpBLRU is always faster than ADSpLRU except
for the rank 9 and sparsity level 5% case.

We can also see from Table II that for the rank 1 and sparsity
level 100% case, that is, the nonsparse fractional abundances,
ADSpLRU and JSpBLRU provide better results than SUnSAL
and CLSUnSAL. Particularly, the RMSE and SRE (dB) values
of ADSpLRU and JSpBLRU are close. It can be expected
that since ADSpLRU and JSpBLRU differ in the sparse
representation of abundances, the two algorithms probably
give similar unmixing results for nonsparse abundances. For
simultaneous low rankness and sparsity, i.e., rank 2 or 3,
sparsity level 10% or 20%, we can see that CLSUnSAL pro-
vides better or competitive RMSEs and SREs compared with
SUnSAL. Clearly, ADSpLRU and JSpBLRU provide better
results than SUnSAL and CLSUnSAL. Moreover, JSpBLRU
provides the best RMSE and SRE (dB) values and it is
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Fig. 2. Abundance estimation by JSpBLRU with different parameter values for Example 1. (a) Ground truth. (b) JSpBLRU with λ = 0. (c) JSpBLRU with
τ = 0. (d) JSpBLRU with d = 1. (e) JSpBLRU with d = 3. (f) JSpBLRU with d = K .

Fig. 3. Average RMSE, SRE (dB), and Time (s) after 50 runs against SNR
with (Top row) Gaussian noise and (Bottom row) colored noise by different
unmixing algorithms for Example 3.

particularly better for the sparsity level 10% cases. This
observation is also clear for sparse-only abundance estimation.
Therefore, we conclude that the proposed JSpBLRU algorithm
outperforms its rivals not only in either sparse-only or low-
rank-only abundances but also in both low rank and
sparse.

Example 3 (Different Noise Levels): In this experiment,
we exploit the abundance estimation performance of differ-
ent unmixing algorithms when observations are corrupted
by Gaussian and correlated noise. True abundance matrices
are of rank 3 and sparsity level 20%, the number of pixels
K = 9, and the number of endmembers m = 50. The spectral
dictionary is generated by randomly selecting 50 endmembers
from A1. The observation data are generated by the LMM and
then corrupted by the Gaussian noise (on the one hand) and
also with spectrally correlated noise (on the other hand) result-
ing from low-pass i.i.d. Gaussian noise, with a normalized

TABLE III

AVERAGE RMSE, SRE (dB), AND TIME (s) AFTER 50 RUNS BY

DIFFERENT UNMIXING ALGORITHMS WHEN THE SIMULATED

OBSERVATIONS ARE CORRUPTED BY GAUSSIAN
OR COLORED NOISE FOR EXAMPLE 3

cutoff frequency of 20. The noise levels of SNR are ranging
from 10 to 40 dB. Each test has been performed 50 times and
average RMSE, SRE (dB), and Time (s) are recorded.

Fig. 3 shows the values of RMSE, SRE (dB), and
Time (s) against the SNR of Gaussian noise and colored
noise by different unmixing algorithms. We can see from
the figure that ADSpLRU and JSpBLRU provide better
SREs and RMSEs than SUnSAL and CLSUnSAL for all
examined SNRs. In addition, JSpBLRU obtains compara-
ble RMSEs for SNR ≤ 20 dB and lower RMSEs for
SNR > 20 dB compared with ADSpLRU. Clearly,
the SRE (dB) values of JSpBLRU are higher than those
of ADSpLRU for all examined SNRs. It should be noted
that when SNR ≤ 20 dB, all four algorithms show a poor
performance. We also see that SUnSAL and CLSUnSAL are
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Fig. 4. Estimated abundance matrices of different unmixing algorithms for observation data corrupted by the Gaussian noise of SNR = 30 dB for Example 3.
(a) True abundance matrix of rank 3 and sparsity level 20%. (b) SUnSAL with λopt = 0.005, SRE (dB) = 4.13, RMSE = 0.0763, and Time (s) = 0.05.
(c) CLSUnSAL with λopt = 0.005, SRE (dB) = 4.38, RMSE = 0.0736, and Time (s) = 0.08. (d) ADSpLRU with λopt = 0.0005 and τopt = 0.01,
SRE (dB) = 5.76, RMSE = 0.0633, and Time (s) = 1.13. (e) JSpBLRU with λopt = 0.001 and τopt = 0.01, SRE (dB) = 9.23, RMSE = 0.0466, and
Time (s) = 0.31.

Fig. 5. Estimated abundance matrices of different unmixing algorithms for observation data corrupted by the colored noise of SNR = 30 dB for
Example 3. (a) True abundance matrix of rank 3 and sparsity level 20%. (b) SUnSAL with λopt = 0.1, SRE (dB) = 0.36, RMSE = 0.1133,
and Time (s) = 0.02. (c) CLSUnSAL with λopt = 0.05, SRE (dB) = −0.18, RMSE = 0.1125, and Time (s) = 0.02. (d) ADSpLRU with
λopt = 0.01 and τopt = 0.1, SRE (dB) = 0.78, RMSE = 0.1031, and Time (s) = 1.16. (e) JSpBLRU with λopt = 0.01 and τopt = 0.1,
SRE (dB) = 2.48, RMSE = 0.0967, and Time (s) = 1.40.

much faster than ADSpLRU and JSpBLRU. This results from
the computation burden of SVDs at each ADSpLRU and
JSpBLRU iteration round. Noticeably, JSpBLRU is faster than
ADSpLRU for SNR ≥ 20 dB.

To further compare the performance of different unmixing
algorithms, we list the average SRE (dB), RMSE, and Time (s)
values for SNR = 20, 30, and 40 dB in Table III. The
results of other SNRs show a similar conclusion, and therefore,
we omit them here. Furthermore, we perform the competing
four algorithms one more realization for Gaussian noise and
correlated noise of SNR = 30 dB and show the estimated
abundance matrices in Figs. 4 and 5, respectively. Images for
other SNRs, e.g., SNR ≥ 20 dB, show a similar conclusion,
and so again, we omit them here. From Figs. 4 and 5, we see
that JSpBLRU eliminates many low abundance values sup-
posing to be zero, reduces the degree of freedom in solutions,
and gives structural fractional abundances with joint-sparsity
blocks as expected.

Example 4 (General Distribution of Abundances): In this
test, we consider two cases with more general distribution of
the abundances: there exists one pixel (case 1) or two pixels

(case 2) having different constituent endmembers compared
with other pixels in a sliding window. True abundance matrices
are partitioned to three blocks with sparsity levels 20%,
15%, and 10%, respectively. The number of endmembers
m = 50 and the number of pixels K = 9. Without loss
of generality, the fifth pixel in case 1 and the third and
the seventh pixels in case 2 contain different constituent
endmembers. The true abundance matrices have ranks 4 and 5
for cases 1 and 2, respectively. The spectral library of each case
is constructed by randomly selecting 50 endmembers from A1.
The observation data are generated by the LMM and then
corrupted by the Gaussian noise with SNR = 30 dB. For both
cases 1 and 2, we perform 50 times independently. Average
RMSE, SRE (dB), and Time (s) are recorded in Table IV.
Figs. 6 and 7 show the true and estimated abundances by four
different unmixing algorithms after one more realization for
cases 1 and 2, respectively.

From Table IV, we see that SUnSAL and CLSUnSAL are
fast for both cases. ADSpLRU and JSpBLRU provide better
RMSE and SRE (dB) values with more computational time.
Clearly, JSpBLRU gives best RMSE and SRE (dB) results.
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Fig. 6. Estimated abundance matrices of different unmixing algorithms when the simulated observations are corrupted by Gaussian noise with SNR = 30 dB
for Example 4. (a) True abundance matrix. (b) SUnSAL with λopt = 0.05, SRE (dB) = 8.56, RMSE = 0.0500, and Time (s) = 0.03. (c) CLSUnSAL
with λopt = 0.01, SRE (dB) = 8.04, RMSE = 0.0530, and Time (s) = 0.03. (d) ADSpLRU with λopt = 0.005 and τopt = 0.05, SRE (dB) = 9.54,
RMSE = 0.0445, and Time (s) = 0.84. (e) JSpBLRU with λopt = 0.005 and τopt = 0.05, SRE (dB) = 10.68, RMSE = 0.0417, and Time (s) = 0.24.

Fig. 7. Estimated abundance matrices of different unmixing algorithms when the simulated observations are corrupted by Gaussian noise with SNR = 30 dB
for Example 4. (a) True abundance matrix. (b) SUnSAL with λopt = 0.01, SRE (dB) = 7.62, RMSE = 0.0570, and Time (s) = 0.02. (c) CLSUnSAL with
λopt = 0.01, SRE (dB) = 6.22, RMSE = 0.0636, and Time (s) = 0.04. (d) ADSpLRU with λopt = τopt = 0.01, SRE (dB) = 8.90, RMSE = 0.0505, and
Time (s) = 0.71. (e) JSpBLRU with λopt = τopt = 0.001, SRE (dB) = 10.00, RMSE = 0.0477, and Time (s) = 0.22.

Fig. 8. True abundance maps of selected endmembers for Example 5. (a) Endmember #1. (b) Endmember #2. (c) Endmember #3. (d) Endmember #4.
(e) Endmember #5.

In addition, for each algorithm, the RMSE and SRE (dB)
values of case 1 are better than those of case 2.

Fig. 6(a) shows that the fifth pixel is composed of differ-
ent constituent endmembers from other pixels. Fig. 6(b)–(d)
shows that SUnSAL, CLSUnSAL, and ADSpLRU maintain
the overall abundance structure but produce many low abun-
dance values. JSpBLRU eliminates most of these values and
provides clear structural abundances in Fig. 6(e). A similar
conclusion can be obtained from Fig. 7. In addition, we see

from Figs. 6 and 7 that for each algorithm, the estimated
abundances in case 2 are less accurate than those in case 1.
These observations are in line with those already recorded
in Table IV. Finally, it is worth noting that in this test,
JSpBLRU not only gives abundances with the joint-sparsity-
blocks structure for pixels having similar constituent endmem-
bers as expected but also attains competitive abundances for
pixels having different constituent endmembers within one
block.
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Fig. 9. Estimated abundance maps for (Top row) endmembers #2 and (Bottom row) #5 by different unmixing algorithms for one realization of Example 5.
(a) SUnSAL with λopt = 0.005, SRE (dB) = 7.85, RMSE = 0.0119, and Time (s) = 101.20. (b) CLSUnSAL with λopt = 0.1, SRE (dB) = 10.60,
RMSE = 0.0090, and Time (s) = 109.69. (c) SUnSAL-TV with λopt = 5 × 10−4 and λTV,opt = 0.005, SRE (dB) = 15.46, RMSE = 0.0055, and
Time (s) = 1559.90. (d) ADSpLRU with λopt = 5 × 10−4 and τopt = 10, SRE (dB) = 10.80, RMSE = 0.0090, and Time (s) = 681.37. (e) JSpBLRU with
λopt = 5 × 10−4 and τopt = 1, SRE (dB) = 17.51, RMSE = 0.0044, and Time (s) = 693.51.

TABLE IV

AVERAGE RMSE, SRE (dB), AND TIME (s) AFTER 50 RUNS OF

DIFFERENT UNMIXING ALGORITHMS WHEN THE SIMULATED

OBSERVATIONS ARE CORRUPTED BY GAUSSIAN

NOISE WITH SNR = 30 dB FOR EXAMPLE 4

Example 5 (Synthetic HSI I): We illustrate the performance
of JSpBLRU on a widely used simulated data cube, for
instance, in [8] and [27], which contains 75 × 75 pixels with
224 bands per pixel. The spectral library A2 ∈ R

224×240 is
used in this experiment. We generate the test data according to
the LMM by five randomly selected spectral signatures from
A2 as endmembers. True fractional abundances for each of
the five endmembers are shown in Fig. 8. After generated by
the LMM, the data cube is corrupted by white Gaussian i.i.d.
noise with SNR = 30 dB. We run 10 times independently.
The estimated abundance maps of endmembers #2 and #5,
after one realization, by different unmixing algorithms are
shown in Fig. 9. Abundance maps for other endmembers
show a similar behavior, so we omit here for space con-
siderations. Notice that the abundance matrix is simultane-
ously low-rank and sparse. We thus apply the ADSpLRU
and JSpBLRU algorithms as nonsliding-window approaches,
i.e., K denotes the number of pixels in the synthetic HSI
here.

Fig. 10. True abundance maps of selected endmembers for Example 6.
(a) Endmember #1. (b) Endmember #2. (c) Endmember #3. (d) End-
member #4. (e) Endmember #5. (f) Endmember #6. (g) Endmember #7.
(h) Endmember #8. (i) Endmember #9.

From Fig. 9, we clearly observe that JSpBLRU delineates
all square regions in the estimated abundance maps of both
endmembers, especially, endmember #2, but with less smooth
background. SUnSAL-TV provides a satisfactory abundance
map for endmember #5. Meanwhile, though, it provides an
oversmoothed one with several square regions vanished for
endmember #2. Clearly, CLSUnSAL is better than SUnSAL
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Fig. 11. Estimated abundance maps for (from top row to bottom row) endmembers #2, #4, #6, and #9 by different unmixing algorithms for one realization of
Example 6. First column: SUnSAL with λopt = 0.05, SRE (dB) = 6.99, RMSE = 0.0280, and Time (s) = 85.67. Second column: CLSUnSAL with λopt = 0.1,
SRE (dB) = 4.49, RMSE = 0.0344, and Time (s) = 100.08. Third column: SUnSAL-TV with λopt = 0.01 and λTV,opt = 0.005, SRE (dB) = 11.71,
RMSE = 0.0166, and Time (s) = 1185.05. Fourth column: ADSpLRU with λopt = 0.01 and τopt = 10, SRE (dB) = 16.46, RMSE = 0.0108, and
Time (s) = 483.80. Fifth column: JSpBLRU with λopt = 0.005 and τopt = 1, SRE (dB) = 18.23, RMSE = 0.0089, and Time (s) = 720.20.

for both endmembers. In addition, ADSpLRU and JSpBLRU
produce similar fractional abundance maps for endmember #5.
However, the estimated background by JSpBLRU is slightly
smoother than that by ADSpLRU.

Moreover, the average RMSE and SRE (dB) values after
10 realizations of JSpBLRU, from Table V, are better than
other algorithms, in line with the qualitative observations on
abundance maps already shown in Fig. 9. It is worth noting
that SUnSAL-TV costs more running time than others. The
running time of JSpBLRU is more than that of ADSpLRU
and much more than that of SUnSAL and CLSUnSAL due to
the SVDs per JSpBLRU and ADSpLRU iteration.

Example 6 (Synthetic HSI II): This example demonstrates
the effectiveness of JSpBLRU on another widely used simu-
lated data set. The spectral library matrix is A3, which has
also been used in [9], [13], and [68]. Nine signatures are
randomly chosen from A3 and then used to generate a true
100 × 100-pixel data cube by the LMM. The true frac-
tional abundances, also used in [8], [9], and [13], are shown
in Fig. 10. After the above-mentioned procedure, the true
data cube is contaminated by white Gaussian i.i.d. noise with
SNR = 30 dB. We perform 10 independent realizations.

Fig. 11 shows the estimated abundance maps of endmem-
bers #2, #4, #6, and #9 by five unmixing algorithms after
one realization. Other estimated abundance maps show a
similar behavior and therefore omit them here. From Fig. 11,
we observe that all five algorithms attain abundance maps
with accurate spatial distribution. SUnSAL and CLSUnSAL,
however, delineate the regions with high fractional abundance
of endmembers #4 and #6 with less accuracy. SUnSAL-TV
provides abundance maps with spatial consistency as expected.
Both ADSpLRU and JSpBLRU well delineate high fractional
abundance regions for all considered endmembers, whereas
JSpBLRU better reduces toward zero the low fractional abun-
dance values that are not present in the true abundance maps.
For further comparison, Fig. 12 shows the true abundances
of selected adjacent 100 pixels in this realization and the
estimations by the considered unmixing algorithms. Clearly,
JSpBLRU produces more similar fractional abundances to the
ground truth than other compared algorithms.

Moreover, we list the average RMSE, SRE (dB), and
Time (s) values after 10 realizations of different unmixing
algorithms for this example in Table V. From this table,
we can see that SUnSAL and CLSUnSAL take much less
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Fig. 12. True abundances of 100 selected adjacent pixels and the estimations by different algorithms for one realization of Example 6. (a) True abundances.
(b) SUnSAL. (c) CLSUnSAL. (d) SUnSAL-TV. (e) ADSpLRU. (f) JSpBLRU.

Fig. 13. USGS map showing the location of different minerals in the Cuprite
mining disctrict in Nevada.

computational time than other algorithms. JSpBLRU uses
more computation time than ADSpLRU and SUnSAL-TV
costs most among all compared algorithms. We can also
see that JSpBLRU attains the lowest RMSE and highest

TABLE V

AVERAGE RMSE, SRE (dB), AND TIME (s) AFTER 10 RUNS BY
DIFFERENT UNMIXING ALGORITHMS WHEN THE SIMULATED

OBSERVATIONS ARE CORRUPTED BY GAUSSIAN NOISE

WITH SNR = 30 dB FOR EXAMPLES 5 AND 6

SRE (dB) values, in line with the qualitative observations
in Figs. 11 and 12.

B. Experiment on Real Data

In this test, we demonstrate the performance of the pro-
posed JSpBLRU algorithm on the well-known Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) Cuprite data set.4

Fig. 13 shows a mineral map produced in 1995 by USGS. We
use a square 350×350 pixel subscene with 188 spectral bands.
The 188 × 240 spectral library matrix in this experiment is
generated from the USGS library that includes all exposed
minerals of interest. This real data cube has been widely
applied to validate the effectiveness of unmixing algorithms
in the literature [9], [11], [13] (see [7], [8], [10] for more
details).

4Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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Fig. 14. Qualitative comparison between the classification maps of the AVIRIS Cuprite subscene produced by Tetracorder 4.4 and the abundance maps
estimated by different unmixing algorithms for four different minerals. (a) Alunite. (b) Buddingtonite. (c) Chalcedony. (d) Muscovite.

Similarly, as in [10]–[12], the regularization parameters for
SUnSAL and CLSUnSAL in this experiment were empirically
set to 0.001 and 0.01, respectively. Also, we set both reg-
ularization parameters λ = λTV = 0.001 for SUnSAL-TV,
as in [8], and use fine-tuned parameters λ = τ = 0.001
for both ADSpLRU and JSpBLRU. Notice that the abun-
dance matrix is already low-rank and sparse, and therefore,
in this experiment, we apply ADSpLRU and JSpBLRU as
nonsliding-window approaches, as in Examples 5 and 6 in
Section IV-A. Since the detailed ground-truth information
is unavailable, we just make a qualitative comparison with
reference to the Tetracorder 4.4 software product5 [69].

Fig. 14 shows the estimated abundance maps obtained by
SUnSAL, CLSUnSAL, SUnSAL-TV, ADSpLRU, and JSp-
BLRU for four minerals: alunite, buddingtonite, chalcedony,
and muscovite. From Fig. 14, it can be observed that all five
unmixing algorithm produce similar abundance maps. Never-
theless, the fractional abundances estimated by JSpBLRU are
generally comparable or higher in the regions considered as
respective materials in comparison with those by other algo-
rithms. Generally speaking, by simultaneously imposing joint-

5Available online: https://speclab.cr.usgs.gov/PAPERS/tetracorder/.

Fig. 15. Convergence histories of JSpBLRU with and without reweighting
coefficients for �2,1-blocks regularization.

sparse blocks and low rankness on abundances, JSpBLRU
qualitatively gives the comparable unmixing results of the
considered real HSI.

C. Parameters Selection

In this section, we discuss four parameters selection of
JSpBLRU, including the reweighting �2,1-blocks coefficients
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TABLE VI

PERFORMANCE OF JSPBLRU WITH DIFFERENT BLOCK SIZE d VALUES FOR ONE REALIZATION OF EXAMPLES 5 AND 6 EACH.
NOTE THAT n IS THE TOTAL NUMBER OF PIXELS

Fig. 16. Average RMSE, SRE (dB), and Time (s) of Examples 5 and 6 (one realization each) against d in JSpBLRU. Note that n is the total pixel number.

wk
i, j in (25), each block size d in (29) or (30), the sliding

window size, and the regularization parameters λ and τ .
1) Comparisons of JSpBLRU With and Without �2,1-Blocks

Reweighting Coefficients: We aim to demonstrate the effi-
ciency of the reweighting �2,1-blocks coefficients wk

i, j in (25)
of JSpBLRU. We mention that the weighted nuclear norm
strategy in (26) is applied for JSpBLRU with and without
�2,1-blocks reweighting coefficients. We do 50 realizations.
True 50 × 9 abundance matrices are of rank 3 and can be
partitioned to three blocks with three pixels per one block.
The three blocks are of sparsity levels 15%, 10%, and 5%,
respectively. We randomly select 50 endmembers from A1 to
construct the spectral library. The spectrum matrix is gener-
ated according to the LMM and contaminated by Gaussian
noise with the SNR of 30 dB. The maximum number of
iterations is set to be 2000. Regularization parameters λ and
τ are fine-tuned for JSpBLRU with and without �2,1-blocks
reweights.

Fig. 15 shows the normalized mean square estimation error
(NMSE) that is defined as

NMSE(k) = 1

t

t�
i=1

��X̂k
(i) − X(i)

��2
F

�X(i)�2
F

where X(i) and X̂k
(i) are the exact abundance matrix and its esti-

mation at the kth iteration of the i th realization, respectively,
as the iteration number increases. Here, we set t = 50. From
Fig. 15, we observe that JSpBLRU provides lower NMSE

values with �2,1-blocks reweights than without �2,1-blocks
reweights. Moreover, though the reweighting strategies in (25)
and (26) render the model (15) nonconvex and convergence
has not been theoretically guaranteed yet, JSpBLRU presents
a robust convergence behavior.

2) Each Block Size Selection in JSpBLRU: We explore the
influence of number of pixels per one block, denoted as d
in (29) or (30), to choose an optimal d for JSpBLRU. We
consider d = 1, 3, 5, 7, 9, 20, 50, 200, and the total number of
pixels n for Examples 5 and 6 in Section IV-A. Regularization
parameters λ and τ are fine-tuned for optimal RMSE values.
Table VI lists the RMSE, SRE (dB), and Time (s) values
by JSpBLRU with different values of d , and corresponding
optimal λ and τ , i.e., λopt and τopt, respectively.

From Table VI, we see that JSpBLRU with d ≥ 7
gives competitive RMSE and SRE (dB) values. It says that
Example 5 prefers a larger d value in JSpBLRU. Moreover,
d = 200 is optimal among examined values of d for
Example 5. A simple calculation gives that the five true
abundance maps shown in Fig. 8 have total 95.56% nonzero
elements, meaning that each mixed pixel probably has nonzero
fractions at the same positions. As a result, forcing the joint
sparsity within a larger block gives better unmixing results,
since spatial information among adjacent pixels has been better
considered. For Example 6, however, d ≤ 5 gives competitive
abundance estimations and d = 3 is the best. JSpBLRU here
shows a preference for a smaller d value, in line with the
observation from Fig. 12 that the local neighboring pixels
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Fig. 17. Average RMSE as a function of sparsity parameter λ and low-rank parameter τ in JSpBLRU for different low rankness and sparsity levels for
Example 2. (a) Rank 1, sparsity level 100%. (b) Rank 2, sparsity level 10%. (c) Rank 2, sparsity level 20%. (d) Rank 3, sparsity level 10%. (e) Rank 3,
sparsity level 20%. (f) Rank 9, sparsity level 5%.

TABLE VII

PERFORMANCE OF JSPBLRU FOR DIFFERENT
SLIDING WINDOW SIZES AND LRLs

within a smaller block exhibit a stronger joint-sparse structure.
In other words, it is hard to get an optimal value of d for both
Examples 5 and 6.

In order to obtain a good estimation of d , we plot average
RMSE, SRE (dB), and Time (s) values of Examples 5 and
6 against d in Fig. 16. We can observe from this figure that
d = 3 gives better average RMSE and SRE (dB) values. The
runtime decreases as d increases. Overall, d = 3 provides
competitive unmixing results, though it may demand more
runtime compared with other larger values.

3) Sliding Window Size Selection: We compare the perfor-
mance of JSpBLRU against the pixel number K in the square
sliding window to choose an optimal sliding window size for
hyperspectral unmixing problems. We also consider different
low rankness levels (LRLs) defined in [12]

LRL = min{K , m}
rank (X)

where m is the number of endmembers and X is the true
abundance matrix. Similarly, as in [12], the LRL decreases

as the size of K increases in our tests. Here, we set the
number of endmembers m = 50 and the sparsity level
of the exact abundance matrix to be 20%. We randomly
select 50 endmembers from A1 to built the spectral library.
The exact data are generated according to the LMM and
then corrupted by Gaussian noise with SNR = 30 dB. We
perform 50 independent realizations. The RMSE, SRE (dB),
and Time (s) values of different values of K and LRL are
reported in Table VII.

From Table VII, we observe that K = 9, i.e., a 3 × 3
sliding window, provides best RMSE and SRE (dB) results.
The computation time increases as the number of pixels K
increases. This is expected since the size of the abundance
matrix increasing requires more runtime.

4) Role of Regularization Parameters λ and τ : From the
model (15), we observe that regularization parameters λ and
τ control the tradeoff between sparsity and low rankness. They
are crucial but hard to obtain their optimal values in real
applications. In all our simulations, unless specifically stated,
we consider all possible combinations of λ and τ in (27) and
choose the optimal parameter pair according to the minimum
RMSE value. Without loss of generality, we consider the influ-
ence of sparse parameter λ and low-rank parameter τ on JSp-
BLRU for the six experiments in Example 2 in Section IV-A.
For each experiment, we show an average RMSE, after
50 independent runs, as a function of λ and τ in Fig. 17.

From Fig. 17(a), we see that optimal sparse parameter λ
can be small, even close to zero. It is reasonable because the
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corresponding abundance matrix is low-rank but dense, and
thus, the sparsity prior has little impact on abundance esti-
mation. From Fig. 17(b)–(e), we see that the average optimal
parameters λ and τ are about 0.001 and 0.01, respectively. This
means that both two parameters have an impact on abundance
estimation. From Fig. 17(f), we see that average optimal τ
can be values from 0 to 0.01, but optimal λ is about 0.001. It
implies that compared with the sparse parameter λ, the low-
rank parameter τ plays a less important role for estimating
abundance matrix with rank 9 and sparsity level 5%. This
results from the observation that the sparsity prior of the abun-
dance matrix is more dominant than the low rankness prior.
It should be noted that optimal λ and τ are often problem-
dependent, and thus, fine-tuning techniques are suggested to
use in JSpBLRU to achieve better unmixing results.

V. CONCLUSION

In this paper, we have proposed a joint-sparse-blocks regres-
sion problem, which promotes pixels belonging to the same
block to share the same support set of endmembers. The pro-
posed joint-sparsity-blocks structure considers not only spar-
sity in a single pixel but also spatial correlation among nearby
pixels. It generalizes the classic single and joint sparsities.
For the hyperspectral unmixing problem, we have proposed a
simultaneously JSpBLRU model. We solve this model under
the ADMM framework, leading to a new algorithm called
JSpBLRU. In particular, we have designed a two-level �2,1-
blocks reweighting strategy for JSpBLRU to enhance the
sparsity along the rows in each block. Simulated and real-data
experiments have demonstrated the efficacy of the proposed
algorithm. In the future, we will extend the proposed joint-
sparsity-blocks structure to blind unmixing or its tensor edition
for HSI processing.
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