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Abstract: Remote sensing images are often polluted by stripe noise, which leads to negative impact1

on visual performance. Thus, it is necessary to remove stripe noise for the subsequent applications,2

e.g., classification, recognition, etc. This paper commits to remove the stripe noise to enhance the3

visual quality of images, in the meanwhile preserves image details of stripe-free regions. Instead4

of solving the underlying image by various algorithms, we first estimate the stripe noise from the5

degraded images, then computing the final destriping image by the difference of the known stripe6

image and the estimated stripe noise. In this paper, we propose a non-convex `0 sparse model for7

remote sensing image destriping by taking full consideration of the intrinsically directional and8

structural priors of stripe noise, as well as the locally continuous property of underlying image.9

Moreover, the proposed non-convex model is solved by a proximal alternating direction method of10

multipliers (PADMM) based algorithm and we also give the corresponding theoretical analysis of the11

proposed algorithm. Extensive experimental results on simulated and real data demonstrate that12

the proposed method outperforms recently state-of-the-art destriping methods, both visually and13

quantitatively.14

Keywords: Non-convex `0 sparse model; PADMM based algorithm; Mathematical program with15

equilibrium constraints (MPEC); Stripe noise removal.16

1. Introduction17

Stripe noise (all denoted as “stripes” in this paper), which is generally caused by the inconsistence18

of the detecting element scanning or the influence of the detector moving and temperature changes, etc.,19

are an universal phenomenon in remote sensing images. They will result in a bad influence not only on20

visual quality but also on subsequent applications in remote sensing images. Therefore, it is necessary21

to remove stripes and simultaneously maintain the healthy pixels from the degraded images. In22

general, the stripes have strongly directional and structural information, e.g., pixels normally damaged23

on row by row or column by column.24

Recently, many approaches for destriping problems have been proposed, which may be roughly25

divided into three categories, mainly including filtering-based methods, statistics-based methods26

and optimization-based methods. Note that the proposed method belongs to the category of27

optimization-based methods.28

The filtering-based methods, which are easy to obtain the results with various filters, have been29

widely utilized for remote sensing image destriping, see [1–4]. In [1], Chen et al. propose an approach30

for remote sensing image destriping tasks based on a finite-impulse response filter (FIR) in frequency31

domain, as well as exhibit the results on the experimental CMODIS data. However, the given method32

unavoidably leads to ringing and ripple artifacts. In [3], the wavelet analysis and adaptive fourier33
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zero-frequency amplitude normalization are used for hyperspectral image destriping problems, and34

this wavelet-based method shows promising ability for both stripes and random noise.35

The statistics-based methods are mainly to analyze the distribution of stripes. These approaches36

hold strong directional characters, to formulate excellent priors for the remote sensing image destriping,37

e.g., [5–11]. In [7], Weinreb et al. introduce a method based on matching empirical distribution functions38

(EDFs) for GOES-7 data, while the limitations and unstable property are caused by assuming the39

similarity and regularity among the stripes. To conquer the instability when the stripes are irregular or40

nonlinear, Rakwatin et al. [9] introduce a method, using both histogram-matching algorithm and local41

least squares fitting, to remove the stripes of Aqua MODIS band 6. In [10], spectral moment matching42

(SpcMM) method, which can remove various frequencies stripes in a specific band automatically, is43

proposed for Hyperion image destriping. In addition, Shen et al. [11] employ a piece-wise destriping44

method, which uses correction coefficients of each portion by considering neighbouring normal row,45

for nonlinear and irregular stripes, but it can not automatically select a threshold to divide the image46

into different parts.47

Recently, the optimization-based methods show superiorities for remote sensing image destriping48

problems, e.g., [12–23]. The image destriping generally results in an ill-posed problem which fails49

to obtain a meaningful, stable and unique solution. Therefore, a common strategy for ill-posed50

problem is to construct a regularization model via investigating the underlying image priors. For51

the optimization-based methods, they focus on searching and discovering the intrinsically prior52

knowledge to generate reasonable regularization models. In [17], the authors present a unidirectional53

total variational (UTV) model for MODIS image stripes removal by fully considering the directional54

information of stripes. The UTV model is motivated by the classical TV model and the analysis of55

directional stripes. Chang et al. [21] propose an optimization model combining the UTV with sparse56

priors of stripes applying to denoising and destriping simultaneously. In [22], the authors utilize the57

split Bregman iteration method with an anisotropic spectral-spatial total variation regularization to58

remove multispectral image stripes.59

In summary, although these optimization-based methods can yield excellent results of removing60

stripes, there still exists much room to improve. Most of them are implemented only from the61

perspective of noise removal, but without considering the typical properties of stripes, e.g., directional62

and structural properties. Even though considering these properties, the formulated sparse destriping63

models fail to accurately depict the typical properties of stripes, see [24], [25]. Moreover, the designed64

algorithms for non-convex models, e.g., `0 sparse model, can not obtain the most precise solution.65

These motivate us to develop a more reasonable model and effectively design the corresponding66

algorithm, which theoretically guarantees the convergence, to solve the remote sensing destriping67

problems.68

In this paper, to remove the stripes of remote sensing images, we propose a non-convex sparse69

model which mainly consists of three sparse priors, including an `0 sparse prior by fully considering70

the directional property of stripes (y-axis), an `1 sparse prior by considering the discontinuity of71

underlying image (x-axis), and the sparsity of stripes by considering the structural property of stripes.72

Moreover, we design a PADMM based algorithm to solve the proposed non-convex sparse model. In73

particular, the convergence to the KKT point of the optimization problem is theoretically proven in74

the work. Results of several simulated and real images show that the proposed method is superior to75

recently state-of-the-art destriping methods.76

The contributions of this work are summarized as follows77

1) Fully considering the latent priors of stripes, we formulate an `0 sparse model which depicts78

the intrinsically sparse character more accurately than `1 sparse model.79

2) We solve the non-convex model by a designed PADMM based algorithm which we have given80

the corresponding theoretical analysis of the proposed algorithm by this paper (see Appendix A).81

3) The proposed method, which is less sensitive to related parameters, outperforms recently82

several state-of-the-art image destriping methods.83
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The outline of this paper is organized as follows. In Section 2, we will briefly introduce the related84

work. The proposed model and detailed solving algorithm will be shown in Section 3. In section 4, we85

compare the proposed method with some state-of-the-art remote sensing image destriping methods,86

and discuss the results with different stripes. Finally, conclusions are drawn in Section 5.87

2. Related work88

2.1. Destriping problem formulation89

The striping effects in remote sensing images mainly make up of additive and multiplicative
components [15]. However, the multiplicative stripes can be described as additive case by the logarithm
[26]. Thus, many researches more focus on the additive stripes model

b(x, y) = u(x, y) + s(x, y) (1)

where b(x, y), u(x, y) and s(x, y) separately denote the components of the observe image, the
underlying image and stripes at the location (x, y). For convenience, a matrix-vector form can be
written as follows

b = u + s, (2)

where b, u and s ∈ Rn represent the lexicographical order vectors of b(x, y), u(x, y) and s(x, y),90

respectively. The purpose of our work is to estimate the stripes s, then the underlying image will be91

recovered by the formula of u = b− s.92

2.2. UTV for remote sensing image destriping93

The total variation (TV) model, which is first proposed by Rudin, Oshaer and Fatemi (ROF) [27],
has shown powerful ability in many image applications, e.g., image unmixing [28], image deblurring
[29], image inpainting [30], etc. It has the following form

E(u) =
1
2

∫
Ω
||u− b||2 + λTV(u), (3)

where λ is a positive regularization parameter, and TV(u) represents the regularization expressed as

TV(u) =
∫

Ω
|∇u| =

∫
Ω

√(
∂u
∂x

)2
+

(
∂u
∂y

)2
dxdy. (4)

In many approaches, s(x, y) is usually regarded as constant in a given line. Although this94

assumption has shown stability in MOS-B, it fails in MODIS. Not only predominant nonlinear effects,95

but also the data quality of random stripes have been obtained in many emissive bands. Thus, more96

realistic assumptions are introduced to design an efficient destriping method.97

Without loss the generality, we can assume that the stripes are along the vertical direction (y-axis).
Fully considering the directional property of stripes, the authors in [17] consider the following relation∣∣∣∣∂s(x, y)

∂y

∣∣∣∣� ∣∣∣∣∂s(x, y)
∂x

∣∣∣∣ , (5)

where we denote y-axis is along stripes direction, and x-axis is across stripes direction. By the relation
in Eq. (5), we have ∫

Ω

∣∣∣∣∂s(x, y)
∂y

∣∣∣∣ dxdy�
∫

Ω

∣∣∣∣∂s(x, y)
∂x

∣∣∣∣ dxdy, (6)

which means
TVy(s)� TVx(s) (7)
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where TVx and TVy are horizontal and vertical variations, respectively. The authors in [17] encourage
the robustness of stripes removal by minimizing the unidirectional total variation (UTV) model as
follows

E(u) = TVy(u− b) + λTVx(u), (8)

which can be solved by Euler-Lagrange equation based algorithm.98

In [17], the UTV model can effectively deal with remote sensing image destriping problems,99

which has been demonstrated holding promising ability on Aqua and Terra MODIS data. Although100

TV model preserves image edges well, it can not accurately depict the specifically directional property101

of stripes, and leads to undesired results. The UTV model that involves unidirectional constraint can102

remove stripes excellently in the meanwhile not destroy the underlying image details. Inspired by103

the UTV model, we fully consider the intrinsically directional and structural priors of stripes and the104

continuous property of the underlying image. Finally, we form a unidirectional and sparse based105

optimization model.106

3. The proposed method107

Combining the stripes model (2), we will give the proposed optimal model with unidirectional108

prior motivated by the extension of the UTV model. In what follows, the detailed explanations of the109

proposed model and the corresponding solving algorithm will be exhibited.110

3.1. The proposed model111

3.1.1. Local smoothness along stripe direction112

The stripes of remote sensing images are generally appeared with column-by-column (y-axis)
or row-by-row (x-axis), without loss of generality, we view all stripes as column-by-column case to
formulate the finally directional model1. Considering the smoothness within the stripes, the difference
between adjacent pixels is quite small, or even close to zero, thus we generally use sparse prior for
this character along the stripe direction (y-axis). The first regularization for the difference within the
stripes is given as follows

R1 = ||∇ys||0, (9)

where ∇y is a partial difference operator along stripe direction2. Comparing with some popular113

sparse measures, e.g., `1-norm and `p-norm (0 < p < 1), the `0-norm that stands for the number of114

non-zero elements of a vector is the most accurate measure to depict sparse property, thus here we115

employ `0-norm to describe the sparsity of ∇ys. Although this term will lead to the non-convexity116

of the proposed model, we utilize the designed PADMM based algorithm to guarantee the solution117

converging to the KKT point.118

3.1.2. Local continuity of the underlying image119

In general, the underlying image u along x-axis is viewed as being continuous. When adding
column-by-column stripes s to the underlying image, the local continuity of u is broken, which means
that we should force ∇xu being small to keep the continuity of u. By this assumption and the relation
u = b− s, we utilize the following `1-norm regularization to describe the local continuity of the
underlying image

R2 = ||∇x(b− s)||1, (10)

1 The row-by-row stripes can be easily rotated to column-by-column stripes to fit in the proposed model.
2 ∇yu represents the vector form of ∇yU where U is a 2D image. The similar meaning is ∇xu.
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where ∇x represents the difference operator in the across-stripe direction. Note that this term is120

actually the second term of the UTV model (8).121

3.1.3. Global sparsity of stripes122

In many destriping approaches, e.g., [24,25,31,32], the stripes can be naturally viewed as being
sparse when the stripes are not heavy. Inspired by their excellent works, here we take the `1-norm to
depict the sparsity of stripes, see as follows

R3 = ||s||1. (11)

Even though the stripes are heavy, this sparse term (11) is still necessary to retain, since it can123

effectively avoid the undesired effect and keep the robustness of the proposed method (see more124

discussion from the results section).125

Combining the above three regularization terms, we finally formulate the `0 sparse model for
remote sensing image destriping,

min
s
||∇ys||0 + µ||s||1 + λ||∇x(b− s)||1, (12)

where µ and λ are two positive parameters.126

(a) (b)

Figure 1. The number of nonzero of s (a) and ∇ys (b), where s is estimated from a real image example
(see Fig. 4) by the method [24]. It is clear that ∇ys is more sparse than s.

Note that, the proposed model (12) is similar as the model in [24], since they both employ the127

directional property of stripes. However, there still exists an important difference that the model in [24]128

enforces `1 norm to∇ys and `0 norm to s whereas our model enforces `1 norm to s and `0 norm to∇ys.129

It can be seen that our model is more reasonable than the model in [24], because ∇ys is significantly130

more sparse than s. For instance, Fig. 1 shows the number of non-zeros of s (Fig. 1(a)) and ∇ys (Fig.131

1(b)), where s is estimated from a real image example by the method [24], it is clear that ∇ys is almost132

all around 0, whereas s is not. The `0 norm is the best way to depict sparsity, thus our model which133

enforces `0 norm to ∇ys.134

In what follows, we will exhibit how to solve the proposed non-convex sparse model by135

introducing the PADMM based algorithm, as well as give the theoretical analysis of the convergence.136

3.2. The solution137

Before solving the proposed model (12), we first present an excellent work, i.e., Mathematical138

program with equilibrium constraints (MPEC) [31], to transfer the non-convex `0 regularization term139

to the other equivalent one.140

141

Equivalent MPEC reformulation: For the non-convex `0 regularization term, there exist many
approaches to approximate it, e.g., `1-norm [33], the logarithm function [34] or the penalty
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decomposition algorithm (PDA) [35]. In this work, we are inspired by a recently elegant work,
i.e., MPEC, to transfer the `0 regularization term to an equivalent problem, so that we can design a
PADMM based algorithm to efficiently solve the equivalent model, in the meanwhile theoretically
guarantee the convergence. Lemma: [MPEC equation [31]] For any given w ∈ Rn, it holds that

||w||0 = min
0≤v≤1

〈1, 1− v〉, s.t. v� |w| = 0, (13)

and v∗ = 1− sign(|w|) is the unique optimal solution of the minimization problem (13).142

Proof: See details in [31].143

From Lemma 3.2, the `0-norm sparse optimization model in Eq. (12) is equivalent to

min
0≤v≤1,s

〈1, 1− v〉+ µ||s||1 + λ||∇x(b− s)||1,

s.t. v� |∇ys| = 0,
(14)

where � denotes the elementwise product. According to the analysis of [31], if s∗ is the globally144

optimal solution of Eq. (12), then (s∗, 1− sign(|∇ys∗|)) is the unique global minimizer of Eq. (14).145

Note that the Eq. (14) is still a non-convex problem, and the non-convexity is only caused by the146

constraint v� |∇ys| = 0. However, this problem (14) is similar to the main problem in [31], which147

is efficiently solved by a PADMM3 based algorithm that theoretically guarantees the convergence.148

Therefore, we employ the designed PADMM based algorithm to solve the resulted problem (14), as149

well as give the theoretical analysis of the convergence.150

In the following, we will use the PADMM based algorithm to solve the optimization problem (14).151

3.3. PADMM based Algorithm152

Considering the non-smooth `1 terms in problem (14), we take the following variable substitutions
to get the new optimization problem,

min
0≤v≤1,s

〈1, 1− v〉+ µ||z||1 + λ||w||1,

s.t v� |h| = 0,∇ys = h, s = z,∇x(b− s) = w,
(15)

with the auxiliary variables h, z, w ∈ Rn. The augmented Lagrangian function L of Eq. (15) is as
follows

L(h, z, w, v, s, π1, π2, π3, π4, β1, β2, β3, β4)

= 〈1, 1− v〉+ µ||z||1 + λ||w||1 + 〈∇ys− h, π1〉

+
β1

2
||∇ys− h||22 + 〈s− z, π2〉+

β2

2
||s− z||22

+ 〈∇x(b− s)−w, π3〉+
β3

2
||∇x(b− s)−w||22

+ 〈v� |h|, π4〉+
β4

2
||v� |h|||22,

(16)

where π1, π2, π3 and π4 are Lagrange multipliers, and β1, β2, β3 and β4 are positive parameters. The153

minimization problem (16) can be solved by the PADMM based algorithm. Next, we discuss the154

solution of each subproblem.155

3 Actually, PADMM method is an extended version of ADMM method, which has been applicated to many image applications,
e,g., image deblurring [36], image denoising [37], tensor completion [38], etc.



Version December 26, 2017 submitted to MDPI 7 of 25

1) The h-subproblem can be written to the minimized problem as follows

min
h
〈∇ysk − h, πk

1〉+
β1

2
||∇ysk − h||22

+〈vk � |h|, πk
4〉+

β4

2
||vk � |h|||22.

(17)

Now, let hi is the i-th pixel of h and we discuss two situations when the element hi 6= 0,
if hi > 0,

hi =
(β1(∇ys)i + (πk

1)i)− (πk
4)i � (vk)i

β1 + β4(vk)i � (vk)i
, (18)

if hi < 0,

hi = (−1)
−(β1(∇ysk)i + (πk

1)i)− (πk
4)i � (vk)i

β1 + β4(vk)i � (vk)i
. (19)

In summary, the h-subproblem has the closed-form solution as follows

hk+1 = sign(qk) ∗
|qk| −πk

4 � vk

β1 + β4vk � vk , (20)

where qk = β1∇ysk + πk
1 .156

2) The z-subproblem is given as follows

min
z

µ||z||1 + 〈sk − z, πk
2〉+

β2

2
||sk − z||22, (21)

which has the closed-form solution by soft-thresholding strategy [39]

zk+1 = Shrink(sk +
πk

2
β2

,
µ

β2
), (22)

where Shrink(a, T) = sign(a) ∗max(|a− T|, 0).157

3) Similar to z-subproblem, w-subproblem is written as follows

min
w

λ‖w‖1 +
β3

2
||∇x(b− sk)−w +

πk
3

β3
||22. (23)

The problem (23) has the following closed-form solution by the soft-shrinkage formulation,

wk+1 = Shrink(qk,
λ

β3
), (24)

where qk = ∇x(b− sk) +
πk

3
β3

.158

4) The v-subproblem can be written as follows

min
0≤v≤1

〈v, ck〉+ β4

2
||v� |hk+1|||22, (25)

where ck = 1−πk
4 � |hk+1|. Combining with the constraint 0 ≤ v ≤ 1, it has the closed-form solution,

vk+1 = min(1, max(0,
−ck

β4|hk+1| � |hk+1|
)). (26)
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Algorithm 1: The algorithm for model (12)

Input: The observed image b (with stripes), the parameters λ, µ, βi, i = 1, 2, 3, 4,
the constant κ ∈ (0, 1

β1||∇T
y ||2+β2+β3||∇T

x ||2
), the maximum number of iterations Miter,

and the calculation accuracy tol.
Output: The stripes s
Initialize:

1) k← 0, v0 ← 1, s0 ← b, rho← 1
While rho> tol and k < Miter

2) k← k + 1
3) Solve hk by Eq. (20)
4) Solve zk by Eq. (22)
5) Solve wk by Eq. (24)
6) Solve vk by Eq. (26)
7) Solve sk by Eq. (28)
8) Update the multipliers πi, i = 1, 2, 3, 4, by Eq. (29)
9) Calculate the error

rho = ||∇ysk+1 − hk+1||2 + ||sk+1 − zk+1||2 + ||∇x(b− sk+1)−wk+1||2 + ||vk+1 � |hk+1|||2.
Endwhile

159

5) Here, PADMM based algorithm needs to introduce an extra convex proximal term 1
2 ||s− sk||2D,

which is defined as ||x||2D = xTDx, and D is a symmetric positive definite matrix. The s-subproblem
becomes a strong convex optimization problem as

min
s
〈∇ys− hk+1, πk

1〉+
β1

2
||∇ys− hk+1||22

+ 〈s− zk+1, πk
2〉+

β2

2
||s− zk+1||22

+ 〈∇x(b− s)−wk+1, πk
3〉

+
β3

2
||∇x(b− s)−wk+1||22 +

1
2
||s− sk||2D,

(27)

where
D =

1
κ

I− (β1∇T
y∇y + β2 + β3∇T

x∇x),

κ ∈
(

0,
1

β1||∇y||22 + β2 + β3||∇x||22

)
.

Then, Eq. (27) will be equivalent to:

sk+1 = arg min
s

1
2
||s− gk||22, (28)

where gk = sk − κ[β1(∇ysk − hk+1) + β2(sk − zk+1)− β3∇T
x (∇xb−∇xsk −wk+1)].160

6) Finally, we update the Lagrangian multipliers by

πk+1
1 = πk

1 + β1(∇ysk+1 − hk+1),

πk+1
2 = πk

2 + β2(sk+1 − zk+1),

πk+1
3 = πk

3 + β3(∇x(b− sk+1)−wk+1),

πk+1
4 = πk

4 + β4(vk+1 � |hk+1|).

(29)
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Combining steps 1) to 6), we formulate the final algorithm to iteratively solve the proposed `0161

sparse model (12). In particular, the subproblems all have the closed-form solutions to ensure the162

accuracy of the algorithm. Finally, the solving process has been summarized in Algorithm 1.163

In Algorithm 1, λ, µ, β1, β2, β3, β4 are some pre-defined parameters, tol and Miter represent the164

positive tolerance value and the maximum iterations, respectively. In this work, we set tol = 1/255165

and Miter = 103. In the following, we discuss the convergence of the Algorithm 1.166

4. Experiment results167

In this section, we compare the proposed method with several state-of-the-art destriping methods,168

including the wavelet Fourier adaptive filter (WFAF) [3], the statistical linear destriping (SLD) [26],169

the unidirectional total variation model (UTV) [17], the global sparsity and local variational (GSLV)170

[24], and the Low-Rank Single-Image Decomposition (LRSID) [25], on both simulated and real remote171

sensing data. The codes of these methods, except the GSLV method, are available4. As suggested in172

[25], we utilize the same periodic/nonperiodic stripes function adding stripes intensity [0, 255] to the173

underlying images. By the similar measure as in [25], the degraded images were normalized between174

[0, 1]. All experiments are conducted in MATLAB (R2016a) on a desktop with 16Gb RAM and Inter(R)175

Core(TM) CPU i5-4590: @3.30GHz.176

To evaluate the effects of different destriping methods, we will compare several qualitative and
quantitative assessments. On the qualitative aspect, we show the visual results, the mean cross-track
profile and the power spectrum of different methods. We also employ some acknowledged indexes,
i.e., peak signal-to-noise ratio (PSNR)[40], structural similarity index (SSIM) [40] and the relative error
(ReErr), to evaluate the performance of different approaches. The ReErr formula is as follows,

ReErr =
||sadded − srestored||2

||sadded||2
,

where the sadded and srestored represent the added stripes and restored stripes by different methods,177

respectively. Then, we will discuss how to select parameters. We note that we test the comparing178

methods according to the default or suggested parameters in their papers and codes.179

4.1. Simulated experiments180

In simulated experiments, the stripes with periodic (Per) and nonperiodic (NonPer) noise are181

mainly determined by “Intensity” and r. Here, the “Intensity” means the added absolution value of182

the stripe scope, and the r represents the stripes ratio level within the remote sensing images. For183

convenience to compare, different stripes added to remote sensing images will be denoted as a vector184

with three elements, e.g., (Per, 10, 0.2) which represents the periodic stripes, the “Intensity” 10 and185

stripes ratio 0.2.186

We take six experimental images, which the first, second, third and sixth examples are available187

on the website5, and the forth and fifth examples are available on the website6, to test the performance188

of different methods. To compare these methods clearly, we zoom in destriping details on the bottom189

left or bottom right of the image.190

1) Periodic Stripes. For the periodic stripes case, we only take one example, i.e., the first column191

of Fig. 2 with added stripes (Per, 10, 0.2), to compare the performance. Almost of all existing methods192

performs quite excellent due to the simple structures of periodic stripes. The first column of Fig. 2 also193

demonstrates the consistent conclusion that all comparing approaches remove the periodic stripes and194

well preserve the image details of stripe-free regions.195

4 http://www.escience.cn/people/changyi/codes.html.
5 DigitalGlobe with http://www.digitalglobe.com/product-samples.
6 MODIS data with https://ladsweb.nascom.nasa.gov/

http://www.escience.cn/people/changyi/codes.html.
http://www.digitalglobe.com/product-samples.
https://ladsweb.nascom.nasa.gov/
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Table 1. The ReErr results between sadded and srestored for different methods

images (a) (b) (c) (d) (e) (f)
WFAF 0.1588 0.2828 0.2519 0.2468 0.2386 0.2574
SLD 0.0874 0.1670 0.1723 0.1664 0.1330 0.1346
UTV 0.0831 0.1542 0.2371 0.1818 0.1314 0.1375
GSLV 0.0867 0.1030 0.2385 0.1926 0.0912 0.1654
LRSID 0.0917 0.1884 0.2731 0.2125 0.1450 0.1897
Ours 0.0193 0.0693 0.0365 0.0892 0.0304 0.0813

2) Nonperiodic Stripes. For the non periodic stripes case, we test five remote sensing images from196

the second column to the end column in Fig. 2 with added stripes (NonPer, 100, 0.6), (NonPer, 50, 0.2),197

(NonPer, 60, 0.4), (NonPer, 100, 0.4) and (NonPer, 50, 0.6), respectively. Then, we display the destriping198

results of WFAF, SLD, UTV, GSLV, LRSID and the proposed method for different simulated remote199

sensing images starting from third row to the end row. See the visual results of the second column, the200

WFAF method has a obvious black line and changes the intensity contrast of the underlying image201

significantly. Although the other comparing methods can remove stripes, some regions change the202

intensity contrast of the underlying image on the left and the right parts, and the proposed method203

shows a good performance. Then, from the third to sixth examples, we can clearly observe the residual204

stripes and blurring effects resulted by the others comparing methods. Moreover, our method not only205

removes stripes completely but also preserves image details well. From Fig. 3, we display the smaller206

patches of Fig. 2 for visual quality comparisons, and ours results have a better performance than the207

others.208

Fig. 4 shows the estimated stripes based on Fig. 2. From Fig. 4, we know that the other comparing209

methods may generate blurring effect and change intensity contrast. Meanwhile, the estimated stripes210

of the proposed method neither eliminate image structures nor bring in blurring effects for both211

periodic and nonperiodic stripes cases.212

In Fig. 5, we show the difference/residuals between the added stripes and restored ones. Although213

ours results have some residuals, the proposed method shows a better performance than the others214

compared methods. Moreover, we utilize the ReErr results to show the differences/residuals of Fig. 5215

in quantitative aspect. The ReErr results have shown in Table 1. From Table 1, our results outperform216

than the other compared methods.217
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Figure 2. The visual results of different simulated images. From top to bottom: underlying images,
degraded images, the destriping results of WFAF, SLD, UTV, GSLV, LRSID and Ours. The degraded
images in the second row are respectively added the stripes (from left to right): (Per, 10, 0.2), (NonPer,
100, 0.4), (NonPer, 50,0.2), (NonPer, 60, 0.4), (NonPer, 100, 0.4) and (NonPer, 50, 0.6). Readers are
recommended to zoom in all figures for better visibility.

良豆�
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Figure 3. The zoom results of different simulated images in Fig. 2. From top to bottom: zoom of the
underlying images, the degrsded images, the destriping results of WFAF, SLD, UTV, GSLV, LRSID and
Ours. Note that the levels of stripes are same as Fig. 2.
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Figure 4. The stripes s of different simulated images in Fig. 2. From top to bottom: the added stripes
on the underlying image, the extracted stripe components of WFAF, SLD, UTV, GSLV, LRSID and Ours.
Note that the levels of stripes are same as Fig. 2.
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Figure 5. The difference of the added stripes and restored ones. From top to bottom: the difference
results of WFAF, SLD, UTV, GSLV, LRSID and Ours. Note that the levels of stripes are same as Fig. 2.

2) Averagely quantitative performance on 32 test images. To quantitatively test robustness218

and effectiveness of the proposed method, Table 2 and Table 3 report the averagely quantitative219

comparisons on 32 remote sensing images, which are randomly selected from three websites7. In the220

tables, the best PSNR and SSIM results have been identified in bold. Especially, we compare these221

methods on 32 remote sensing images with fixed parameters for each method.222

Table 2 shows the PSNR and SSIM results on periodic stripes with different stripe levels. Although223

variance of PSNR is not the smallest, the SSIM of the proposed method holds the best performance,224

and SSIM is an important index to indicate stability on structural similarity of one method. Moreover,225

our method has the best mean value results of PSNR and SSIM which show the significant advantages226

than the other comparing methods.227

7 1) “DigitalGlobe” with http://www.digitalglobe.com/product-samples. 2) some subimages of “hyperspectral image of
Washington DC Mall” with https://engineering.purdue.edu/~biehl/MultiSpec/. 3) “MODIS” data with https://ladsweb.
nascom.nasa.gov/

http://www.digitalglobe.com/product-samples
https://engineering.purdue.edu/~biehl/MultiSpec/
https://ladsweb.nascom.nasa.gov/
https://ladsweb.nascom.nasa.gov/
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Table 2. The mean value of PSNR and SSIM of 32 images with periodic noise

Intensity Intensity=10 Intensity=50 Intensity=100
Ratio r=0.2 r=0.6 r=0.2 r=0.6 r=0.2 r=0.6
WFAF 41.400±3.601 41.702±3.870 37.160±1.975 37.553±1.975 32.196±1.457 32.501±1.732
SLD 42.037±2.927 41.048±2.909 41.710±2.930 41.957±2.928 40.614±2.549 41.644±2.836

PSNR UTV 42.030±3.229 41.032±2.886 40.920±2.773 43.086±2.298 41.470±3.385 41.058±3.299
GSLV 42.552±2.955 42.630±2.886 42.202±3.058 43.533±2.856 43.431±3.091 43.801±2.705
LRSID 43.948±2.104 42.775±2.010 42.308±2.169 44.548±1.976 43.779±2.500 44.035±2.014
Ours 52.918±4.074 49.497±3.956 52.853±4.910 49.212±4.390 52.854±4.902 49.182±4.368

WFAF 0.9934±0.0058 0.9936±0.0062 0.9887±0.0084 0.9905±0.0078 0.9818±0.0103 0.9847±0.0085
SLD 0.9966±0.0029 0.9966±0.0029 0.9965±0.0031 0.9965±0.0032 0.9962±0.0033 0.9964±0.0037

SSIM UTV 0.9959±0.0027 0.9959±0.0027 0.9911±0.0025 0.9928±0.0023 0.9954±0.0024 0.9937±0.0076
GSLV 0.9991±0.0077 0.9968±0.0076 0.9916±0.0079 0.9903±0.0082 0.9966±0.0085 0.9969±0.0053
LRSID 0.9990±0.0107 0.9945±0.0056 0.9932±0.0044 0.9947±0.0032 0.9936±0.0047 0.9957±0.0031
Ours 0.9994±0.0007 0.9987±0.0011 0.9994±0.0013 0.9986±0.0016 0.9994±0.0062 0.9986±0.0019

Table 3. The mean value of PSNR and SSIM of 32 images with nonperiodic noise

Intensity Intensity=10 Intensity=50 Intensity=100
Ratio r=0.2 r=0.6 r=0.2 r=0.6 r=0.2 r=0.6
WFAF 40.971±2.523 39.372±2.249 30.536±1.508 37.609±2.263 24.849±1.573 22.594±1.541
SLD 41.476±2.592 40.935±2.201 35.964±1.510 42.007±3.020 30.963±1.414 28.403±1.729

PSNR UTV 41.153±2.880 38.615±2.041 35.648±1.527 42.505±3.010 31.055±4.687 31.599±2.578
GSLV 42.282±2.359 39.018±1.654 41.985±1.239 39.838±2.903 36.184±1.399 35.408±2.472
LRSID 42.672±1.418 39.034±1.302 42.814±1.349 40.497±2.024 37.779±1.212 33.559±1.132
Ours 48.801±3.985 44.700±3.784 49.057±4.791 49.057±4.492 44.365±5.106 39.452±4.494

WFAF 0.9925±0.0056 0.9903±0.0069 0.9744±0.0104 0.9905±0.0081 0.9364±0.0207 0.9029±0.0565
SLD 0.9965±0.0031 0.9952±0.0031 0.9950±0.0041 0.9964±0.0032 0.9907±0.0060 0.9823±0.0142

SSIM UTV 0.9958±0.0029 0.9934±0.0052 0.9937±0.0042 0.9914±0.0056 0.9886±0.0193 0.9851±0.0122
GSLV 0.9982±0.0016 0.9917±0.0042 0.9962±0.0101 0.9967±0.0088 0.9956±0.0091 0.9933±0.0152
LRSID 0.9983±0.0032 0.9934±0.0113 0.9891±0.0070 0.9962±0.0042 0.9975±0.0091 0.9924±0.0402
Ours 0.9991±0.0006 0.9956±0.0035 0.9990±0.0010 0.9986±0.0016 0.9979±0.0012 0.9942±0.0042

For the nonperiodic stripes, we show the mean value results in Table 3. The WFAF method shows228

the instability, and the PSNR and SSIM of LRSID method are consistent with the results in [25]. From229

the two tables, our method always shows a good performance significantly.230

In Fig. 6, we take two examples of Table 2 to show the PSNR and SSIM performance of all231

comparing methods on each image. The y-axis stands for the value of PSNR or SSIM and the x-axis232

represents the i-th image of 32 examples. Fig. 6 (I) and Fig. 6 (II) are the PSNR and SSIM performance233

of stripes (Per, 100, 0.6), and Fig. 6 (III) and Fig. 6 (IV) are that of stripes (NonPer, 50, 0.2), respectively.234

Although the PSNR results fluctuate with respect to different images, our method holds the best235

PSNR results on almost of all images. Moreover, the SSIM results show the best performance with the236

smallest variance, which is consistent with the results of Table 2 and Table 3. From Fig. 6, our method237

is superior to the other comparing methods.238
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Figure 6. The PSNR and SSIM performance on 32 images for the stripes (Per, 100, 0.6) and (NonPer,
50, 0.2). The x-axis represents each image and the quantitative results are shown in y-axis. (I) and (II)
are the PSNR and SSIM results for the stripes (Per, 100, 0.6), respectively. (III) and (IV) respectively
represent the PSNR and SSIM performance of the stripes (NonPer, 50, 0.2).

4.2. Real experiments239

We also display the destriping results of six methods for six real remote sensing images, which240

are also available on the website8, see Fig. 7. Similar to Fig. 2, the six real images with different stripes241

are shown in the first row, and the destriping results of all comparing methods are presented from the242

second row to the end row.243

In Fig. 7, for the first, fifth and last real images, the proposed method not only removes the stripes244

completely, but also preserves image details on stripe-free regions well. Note that the methods GSLV245

and LRSID fail to obtain excellent results for the first image as the mentioned in their papers. For the246

forth column, there are also several stripe residuals with WFAF and SLD, and the wide black shadow247

areas appear by the UTV, GSLV and LRSID methods. Moreover, the destriping results of the WFAF248

and SLD leave significant stripes for the second image, and still exist the wispy stripes for the third249

example. According to several real experiments, the results demonstrate the universal effectiveness250

and stability of the proposed method.251

4.3. More discussion252

1) Qualitative Analysis. For the further comparisons of different destriping methods for253

simulated and real remote sensing images, we show the following two assessments. One is the254

mean cross-track profile that the x-axis stands for the column number of an image and the y-axis255

represents the mean value of each column, see Fig. 8 and Fig. 10. The other is the power spectrum that256

the x-axis is the normalized frequencies of an image, and the y-axis shows the spectral magnitude with257

a logarithmic scale, see Fig. 9 and Fig. 11.258

In simulated experiments, the mean cross-track profile of the first image of Fig. 2 has been shown259

in Fig. 8. Note that Fig. 8 (a) shows the mean cross-track profile of the underlying image, and Fig. 8 (b)260

is the result of the degraded image. Moreover, Fig. 8 (c)-(f) are the mean cross-track profile results of261

the six destriping methods, respectively. From the overall perspective, Fig. 8 (d) and Fig. 8 (e) have262

obvious change of the intensity contrast. Seeing the details, Fig. 8 (c)-(g) have some mild fluctuations263

which are different with the underlying image in Fig. 8 (a). The proposed method shows the best264

performance, since it is almost same as the original one.265

In addition, the power spectrum results of the second image of Fig. 2 has been shown in Fig. 9.266

We denote the power spectrum results as Fig. 9 (a)-(h) which represent the power spectrum results of267

the underlying image, the degraded image and the destriping results of six methods, respectively. Fig.268

9 (c)-(g) have more fluctuations which indicate these methods may have the stripe residuals or bring a269

8 https://ladsweb.nascom.nasa.gov/

https://ladsweb.nascom.nasa.gov/
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Figure 7. The visual results of different real images. From top to bottom: the real images, the destriping
results of WFAF, SLD, UTV, GSLV, LRSID and Ours. Readers are recommended to zoom in all figures
for better visibility.
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little new noise in their destriping processes. For our method, i.e., Fig. 9 (f), it not only removes all270

stripes, but also preserves almost the essential details such as edges.271
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Figure 8. Spatial mean cross-track profiles for simulated image of the first simulated example of Fig. 2.
(a) Underlying image. (b) Degraded image. Destriping results by (c) WFAF, (d) SLD, (e) UTV, (f) GSLV,
(g) LRSID, (h) Ours.
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Figure 9. Power spectrum for simulated image of the second example of Fig. 7. (a) Underlying image.
(b) Degraded image. Destriping results by (c) WFAF, (d)SLD, (e) UTV, (f) GSLV, (g) LRSID, (h) Ours.

In real experiments, we also show the mean cross-track profile and the power spectrum in Fig.272

10 and Fig. 11, respectively. Fig. 10 shows the mean cross-track profile results of the first column of273

Fig. 7. Note that Fig. 10 (a) is the mean cross-track profile result of the first real remote sensing image,274

and Fig. 10 (b)-(g) show the profile results of six destriping methods, respectively. In general, the275
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profiles of the destriping method should smoothen huge fluctuates and maintain primary structure276

information. However, the profiles of WFAF and LRSID have obvious fluctuations where the stripes277

still exist, and that of SLD is over-smooth missing a lot of underlying image details. In Fig. 10 (d) and278

Fig. 10 (e), although stripes are mostly removed, the destriping profiles have some mild burrs and279

too much smoothness because of the unidirectional property of UTV and the global sparsity of GSLV,280

respectively. In addition, the profile of the proposed method, i.e., Fig. 10 (g), can realize the desired281

result both on removing stripes and keeping underlying image details.282

In Fig. 11, the power spectrum results of the forth example of Fig. 7 are plotted. Fig. 11 (a)-(h)283

represent the power spectrum results of the forth real remote sensing image and six destriping methods,284

respectively. We observe that the real remote sensing image in Fig. 11 (a) has much fluctuates where285

stand for stripes. According to the power spectrum results of the six methods in Fig. 11 (b)-(f), although286

the stripes are almost removed well, there are still some slight blurring regions, while the proposed287

method shows the best performance in Fig. 11 (g).288
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Figure 10. Spatial mean cross-track profiles for the first real example of Fig. 7. (a) Real image.
Destriping results by (b) WFAF, (c)SLD, (d) UTV, (e) GSLV, (f) LRSID, (g) Ours.

2) The influence of different regularization terms in the proposed model. Fully considering289

the destriping problem (2) and the optimization model (12), we assume that R2 is a necessary term,290

since R2 is the only term to describe the property of the underlying image u. To confirm whether both291

R1 and R2 are necessary priors as well as have significant contribution for destriping performance,292

in Fig. 12, we give the mean value of PSNR and SSIM for 32 images as before. Here, R12 represents293

R1 + R2, R23 stands for R2 + R3 and R123 represents R1 + R2 + R3 (i.e., the proposed model). Please294

find the definitions of R1, R2, R3 from Eq. (9), Eq. (10) and Eq. (11), respectively.295

Fig. 12 (I) and Fig. 12 (II) show the mean value of PSNR and the mean value of SSIM on 32 images296

same as before for periodic stripes. The periodic stripe levels (a)-(f) are (Per, 10, 0.2), (Per, 10, 0.6), (Per,297

50, 0.2), (Per, 50, 0.6), (Per, 100, 0.2) and (Per, 100, 0.6), respectively. Moreover, Fig. 12 (III) and Fig. 12298

(IV) display the mean value of PSNR and the mean value of SSIM on 32 images for nonperiodic stripes.299

The nonperiodic stripe levels (a)-(f) stand for (NonPer, 10, 0.2), (NonPer, 10, 0.6), (NonPer, 50, 0.2),300

(NonPer, 50, 0.6), (NonPer, 100, 0.2) and (NonPer, 100, 0.6), respectively.301

From the results in Fig. 12, we can conclude three points. 1) The results both PSNR and SSIM of302

the proposed model (i.e., R123) perform the best than those of the other two models. 2) For R12 and R23,303

R23 shows more stability than R12 as the green bars do not significantly change with different stripes.304
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Figure 11. Power spectral for the forth real example of Fig. 7. (a) Real image. Destriping results by (b)
WFAF, (c)SLD, (d) UTV, (e) GSLV, (f) LRSID, (g) Ours.
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Figure 12. The influence of different terms in the proposed model. R12 represents R1 +R2, R23 stands for
R2 + R3 and R123 represents R1 + R2 + R3 (i.e., the proposed model). (I) The mean PSNR performance
on 32 images for periodic stripes with different stripe levels; (II) The mean SSIM performance on 32
images for periodic stripes with different stripe levels; The stripe levels (a)-(f) stand for (Per, 10, 0.2),
(Per, 10, 0.6), (Per, 50, 0.2), (Per, 50, 0.6), (Per, 100, 0.2) and (Per, 100, 0.6), respectively. (III) The mean
PSNR performance on 32 images for nonperiodic stripes with different stripe levels; (IV) The mean
SSIM performance on 32 images for nonperiodic stripes with different stripe levels. The stripe levels
(a)-(f) stand for (NonPer, 10, 0.2), (NonPer, 10, 0.6), (NonPer, 50, 0.2), (NonPer, 50, 0.6), (NonPer, 100,
0.2) and (NonPer, 100, 0.6), respectively.

3) R3 actually plays a more important role than R1 with respect to PSNR (see Fig. 12 (I) and Fig. 12305

(III)). On the contrary, R1 plays a more important role than R3 with respect to SSIM (see Fig. 12 (II) and306

Fig. 12 (IV)). Fig. 12 demonstrates the effectiveness of the proposed model and the importance of the307

three terms.308

3) Parameters selection. In this paper, the proposed method mainly involves six parameters λ, µ,309

β1, β2, β3 and β4. The stripes of different types can be removed by setting different parameters. For310

example, if the stripes are heavy, the µ should be small and the λ should be large.311

For the simulated experiments, the parameters have the following setting: 1) For the periodic312

stripes, we empirically set the parameters as λ = 1, µ = 0.1, β1 = β2 = β3 = 100, β4 = 1000.313

Under this parameter setting, it can generate a good performance for most of all examples. 2) For314

the non-periodic stripes, the parameters are empirically set as λ = 1, µ = 0.1, β1 = 100, β2 = 10,315
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β3 = 10 and β4 = 1000. Similarly, the proposed method can obtain an excellent performance under316

this parameter setting for most of images. For the real experiments, most of all examples show the317

superior results with λ = 10, µ = 1 and β1 = β2 = β3 = β4 = 1. Note that, if fine tuning parameters318

for each images would get better results. To simplify the process of the parameter adjustment, we319

unify parameters to demonstrate the stability of the proposed method.320

5. Conclusion321

In this paper, we proposed a directionally non-convex `0 sparse model for remote sensing image322

destriping. This model was efficiently solved by the designed PADMM algorithm based on the MPEC323

reformulation. Furthermore, we also theoretically gave the corresponding proof of the convergence324

to the KKT point by this work. Experimental results on simulated and real data demonstrated325

the effectiveness of the proposed method, both quantitatively and visually. Moreover, the mean326

performance of Table 2 and Table 3 also exhibited the stability of our method to parameters and327

different stripes.328

In the future, we will extend the proposed model to the oblique stripes removal by fully329

considering the latent properties of oblique stripes. Furthermore, the proposed method was only330

applied to single-band image stripe removal. We may extend our framework to multispectral or331

hyperspectral image stripe removal by some intrinsic properties, e.g., low-rank and non-local priors.332
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Appendix A Convergence of the proposed method336

In fact, the global convergence of the ADMM algorithm has been proved under some conditions337

[41], and that of the generalized ADMM is also verified in [42]. Wen et al. [43] show that the sequence338

formed by ADMM can converge to a KKT point. Moreover, some researches give the convergence339

property of proximal ADMM (PADMM), see [31] and [44]. Considering our non-convex optimization340

model, convergence to a stationary point (local minimum) is the best convergence property. Similarly,341

in this paper, we design a PADMM based algorithm to solve the remote sensing image destriping342

problem, as well as prove the convergence of the proposed algorithm which can converge to the KKT343

point. Here, we denote that the limitation of vector is defined as pointwise convergence. For instance,344

for xk = (xk
1, · · · , xk

n)
T

, limk→∞ xk+1 − xk = 0 represents that limk→∞ xk+1
i − xk

i = 0, i = 1, · · · , n.345

theorem[Convergence of Algorithm 1] Let P , (h, z, w, v, s), Q , (π1, π2, π3, π4). {Pk, Qk}∞
k=1346

is a sequence of the solution of Algorithm 1 after k-th iteration. Assume that limk→∞347

(Qk+1 −Qk) = 0 and limk→∞ sk+1 − sk = 0, then the accumulation point of the subsequence {Pk, Qk}348

is the KKT point which satisfies the KKT conditions.349

Proof: For convenience, we define

∆ = {z | 0 ≤ z ≤ 1}.

Recall our optimization model

min
v∈∆, s

〈1, 1− v〉+ µ||z||1 + λ||w||1

s.t. v� |h| = 0, ∇ys = h, s = z, ∇x(b− s) = w.
(A1)

The Lagrange function L is

L(h, z, w, v, s, π1, π2, π3, π4) = 〈1, 1− v〉+ µ||z||1 + λ||w||1 + 〈∇ys− h, π1〉
+ 〈s− z, π2〉+ 〈∇x(b− s)−w, π3〉+ 〈v� |h|, π4〉,

(A2)
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where π1, π2, π3 and π4 are Lagrange multipliers. Now, we give the first-order optimal conditions of
the proposed problem for L(h∗, z∗, w∗, v∗, s∗, π∗1 , π∗2 , π∗3 , π∗4 ).

0 = ∇T
y π∗1 + π∗2 −∇T

x π∗3 ,

0 ≤ 〈π∗4 � |h∗| − 1, v− v∗〉, ∀v ∈ 4
0 ∈ −π∗1 + π∗4 � v∗ � ∂||h∗||1
0 ∈ −π∗2 + µ∂||z||1
0 ∈ −π∗3 + λ∂||w||1
0 = ∇ys∗ − h∗

0 = s∗ − z∗

0 = ∇x(b− s∗)−w∗

0 = v∗ � |h∗|

(A3)

The Robinson’s constraint qualification can guarantee the existence of the optimization solution.350

Next, we will confirm the convergence property of the designed PADMM based algorithm with a351

convergence sequence under the similar assumption condition in [43]. The augmented Lagrangian352

function L(h, z, w, v, s, π1, π2, π3, π4, β1, β2, β3, β4), which is in Eq. (16), is denoted as Lβ. Note that,353

the Lagrangian function L is used to get the KKT conditions. Then we prove that the solution of the354

augmented Lagrangian function L, which is solved by Algorithm 1, can satisfy the KKT conditions.355

(i) According to the limit of Qk and the update formula of the multipliers Qk+1, we can get

lim
k→∞

∇ysk+1 − hk+1 = 0, (A4)

lim
k→∞

sk+1 − zk+1 = 0, (A5)

lim
k→∞

∇x(b− sk+1)−wk+1 = 0, (A6)

lim
k→∞

vk+1 � |hk+1| = 0. (A7)

(ii) According to the limit of πk
1 , πk

4 , and the hk+1 subproblem of Lβ in Eq. (17) , we can get

lim
k→∞

hk+1 ∈ arg min
h
〈∇ysk+1−h, πk+1

1 〉+ β1

2
||∇ysk+1−h||2 + 〈vk+1� |h|, πk+1

4 〉+ β4

2
||vk+1� |h|||2,

By the first optimality condition of h, we have

lim
k→∞

−πk+1
1 + πk+1

4 � vk+1 � ∂||hk+1||1 3 0. (A8)

(iii) According to the limit of πk
2 , and the zk+1 subproblem of Lβ in Eq. (21), we can get

lim
k→∞

zk+1 ∈ arg min
z

µ||z||1 + 〈sk+1 − z, πk+1
2 〉+ β2

2
||sk+1 − z||2,

By the first optimality condition of z, we have

lim
k→∞

−πk+1
2 + µ∂||zk+1||1 3 0. (A9)

(iv) According to the limit of πk
3 , and the wk+1 subproblem of Lβ in Eq. (23), we can get

lim
k→∞

wk+1 ∈ arg min
w

λ‖w‖1 +
β3

2
||∇x(b− sk+1)−w +

πk+1
3
β3
||2,
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By the first optimality condition of w, we have

lim
k→∞

−πk+1
3 + λ∂||wk+1||1 3 0. (A10)

(v) According to the limit of πk
4 , hk and the vk+1 subproblem of Lβ in Eq. (25), we can get

lim
k→∞

vk+1 ∈ arg min
0≤v≤1

〈v, πk+1
4 � |hk+1| − 1〉+ β4

2
||v� |hk+1|||2,

By the first optimality condition of v, we have

lim
k→∞

〈πk+1
4 � |hk+1| − 1, v− vk+1〉 ≥ 0, ∀v ∈ 4. (A11)

(vi) According to the limit of sk+1 and the update formula of sk+1 subproblem of Lβ in Eq. (27),
we have the first optimality condition of s is

∇T
y πk+1

1 + β1∇T
y (∇ysk+1 − hk+1) + πk+1

2 + β2(sk+1 − zk+1)−∇T
x πk+1

3

− β3∇T
x (∇T

x (b− sk+1)−wk+1) + D(sk+1 − sk) = 0.

Combining it with (A4), (A5), (A6) and (A7), then we have

lim
k→∞

∇T
x πk+1

1 + πk+1
2 −∇T

y πk+1
3 + D(sk+1 − sk) = 0. (A12)

Since the formula limk→∞ sk+1 − sk = 0 and the matrix D is a positive definite, so we have
limk→∞ D(sk+1 − sk) = 0. Thus, we have

lim
k→∞
∇T

x πk+1
1 + πk+1

2 −∇T
y πk+1

3 = 0. (A13)

Combining (A4), (A5), (A6), (A7), (A8), (A9), (A10), (A11) and (A13), we conclude that the356

{Pk, Qk} is the sequence generated by the Algorithm 1, and as k → ∞, there exists a subsequence357

{Pk, Qk}, whose accumulation point satisfies the KKT conditions in Eq. (A3).358

References359

1. Chen, J.S.; Shao, Y.; Guo, H.D.; Wang, W.M.; Zhu, B.Q. Destriping CMODIS data by power filtering. IEEE360

Transactions on Geoscience and Remote Sensing 2003, 41, 2119–2124.361

2. Münch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and ring artifact removal with combined wavelet362

Fourier filtering. Optics Express 2009, 17, 8567–8591.363

3. Pande-Chhetri, R.; Abd-Elrahman, A. De-striping hyperspectral imagery using wavelet transform and364

adaptive frequency domain filtering. ISPRS Journal of Photogrammetry and Remote Sensing 2011, 66, 620–636.365

4. Pal, M.K.; Porwal, A. Destriping of Hyperion images using low-pass-filter and366

local-brightness-normalization. IEEE International Geoscience and Remote Sensing Symposium (IGARSS).367

IEEE 2015, pp. 3509–3512.368

5. Gadallah, F.L.; Csillag, F.; Smith, E.J.M. Destriping multisensor imagery with moment matching.369

International Journal of Remote Sensing 2000, 21, 2505–2511.370

6. Horn, B.K.P.; Woodham, R.J. Destriping Landsat MSS images by histogram modification. Computer371

Graphics and Image Processing 1979, 10, 69–83.372

7. Weinreb, M.P.; Xie, R.; Lienesch, J.H.; Crosby, D.S. Destriping GOES images by matching empirical373

distribution functions. Remote Sensing of Environment 1989, 29, 185–195.374

8. Wegener, M. Destriping multiple sensor imagery by improved histogram matching. International Journal of375

Remote Sensing 1990, 11, 859–875.376



Version December 26, 2017 submitted to MDPI 24 of 25

9. Rakwatin, P.; Takeuchi, W.; Yasuoka, Y. Restoration of Aqua MODIS band 6 using histogram matching and377

local least squares fitting. IEEE Transactions on Geoscience and Remote Sensing 2009, 47, 613–627.378

10. Sun, L.X.; Neville, R.; Staenz, K.; White, H.P. Automatic destriping of Hyperion imagery based on spectral379

moment matching. Canadian Journal of Remote Sensing 2008, 34, S68–S81.380

11. Shen, H.F.; Jiang, W.; Zhang, H.Y.; Zhang, L.P. A piece-wise approach to removing the nonlinear and381

irregular stripes in MODIS data. International Journal of Remote Sensing 2014, 35, 44–53.382

12. Fehrenbach, J.; Weiss, P.; Lorenzo, C. Variational algorithms to remove stationary noise: applications to383

microscopy imaging. IEEE Transactions on Image Processing 2012, 21, 4420–4430.384

13. Fehrenbach, J.; Weiss, P. Processing stationary noise: model and parameter selection in variational methods.385

SIAM Journal on Imaging Sciences 2014, 7, 613–640.386

14. Escande, P.; Weiss, P.; Zhang, W.X. A variational model for multiplicative structured noise removal. Journal387

of Mathematical Imaging and Vision 2017, 57, 43–55.388

15. Shen, H.F.; Zhang, L.P. A MAP-based algorithm for destriping and inpainting of remotely sensed images.389

IEEE Transactions on Geoscience and Remote Sensing 2009, 47, 1492–1502.390

16. Chen, Y.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Huang, J. Stripe noise removal of remote sensing images by391

total variation regularization and group sparsity constraint. Remote Sensing 2017, 9, 559.392

17. Bouali, M.; Ladjal, S. Toward optimal destriping of MODIS data using a unidirectional variational model.393

IEEE Transactions on Geoscience and Remote Sensing 2011, 49, 2924–2935.394

18. Zhang, H.Y.; He, W.; Zhang, L.P.; Shen, H.F.; Yuan, Q.Q. Hyperspectral image restoration using low-rank395

matrix recovery. IEEE Transactions on Geoscience and Remote Sensing 2014, 52, 4729–4743.396

19. Zhou, G.; Fang, H.Z.; Yan, L.X.; Zhang, T.X.; Hu, J. Removal of stripe noise with spatially adaptive397

unidirectional total variation. Optik-International Journal for Light and Electron Optics 2014, 125, 2756–2762.398

20. Liu, H.; Zhang, Z.L.; Liu, S.Y.; Liu, T.T.; Chang, Y. Destriping algorithm with L0 sparsity prior for remote399

sensing images. IEEE International Conference on Image Processing (ICIP) 2015, pp. 2295–2299.400

21. Chang, Y.; Yan, L.X.; Fang, H.Z.; Liu, H. Simultaneous destriping and denoising for remote sensing images401

with unidirectional total variation and sparse representation. IEEE Geoscience and Remote Sensing Letters402

2014, 11, 1051–1055.403

22. Chang, Y.; Yan, L.X.; Fang, H.Z.; Luo, C.N. Anisotropic Spectral-Spatial Total Variation Model for404

Multispectral Remote Sensing Image Destriping. IEEE Transactions on Image Processing 2015, 24, 1852–1866.405

23. He, W.; Zhang, H.Y.; Zhang, L.P.; Shen, H.F. Total-variation-regularized low-rank matrix factorization for406

hyperspectral image restoration. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 178–188.407

24. Liu, X.X.; Lu, X.L.; Shen, H.F.; Yuan, Q.Q.; Jiao, Y.L.; Zhang, L.P. Stripe Noise Separation and Removal in408

Remote Sensing Images by Consideration of the Global Sparsity and Local Variational Properties. IEEE409

Transactions on Geoscience and Remote Sensing 2016, 54, 3049–3060.410

25. Chang, Y.; X., Y.L.; Wu, T.; Zhong, S. Remote Sensing Image Stripe Noise Removal: From Image411

Decomposition Perspective. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 7018–7031.412

26. Carfantan, H.; Idier, J. Statistical linear destriping of satellite-based pushbroom-type images. IEEE413

Transactions on Geoscience and Remote Sensing 2010, 48, 1860–1871.414

27. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D:415

Nonlinear Phenomena 1992, 60, 259–268.416

28. Zhao, X.L.; Wang, F.; Huang, T.Z.; Ng, M.K.; Plemmons, R.J. Deblurring and sparse unmixing for417

hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing 2013, 51, 4045–4058.418

29. Ma, T.H.; Huang, T.Z.; Zhao, X.L.; Lou, Y.F. Image Deblurring With an Inaccurate Blur Kernel Using a419

Group-Based Low-Rank Image Prior. Information Sciences 2017, 408, 213–233.420

30. Getreuer, P. Total variation inpainting using split Bregman. Image Processing On Line 2012, 2, 147–157.421

31. Yuan, G.Z.; Ghanem, B. l0TV: A new method for image restoration in the presence of impulse noise. IEEE422

Conference on Computer Vision and Pattern Recognition 2015, pp. 5369–5377.423

32. Shen, H.F.; Li, X.H.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.F. Missing information reconstruction of remote424

sensing data: A technical review. IEEE Geoscience and Remote Sensing Magazine 2015, 3, 61–85.425

33. Dong, B.; Zhang, Y. An efficient algorithm for `0 minimization in wavelet frame based image restoration.426

Journal of Scientific Computing 2013, 54, 350–368.427

34. Fan, Y.R.; Huang, T.Z.; Ma, T.H.; Zhao, X.L. Cartoon-texture image decomposition via non-convex low-rank428

texture regularization. Journal of the Franklin Institute 2017, 354, 3170–3187.429



Version December 26, 2017 submitted to MDPI 25 of 25

35. Lu, Z.S.; Zhang, Y. Sparse approximation via penalty decomposition methods. SIAM Journal on Optimization430

2013, 23, 2448–2478.431

36. Liu, J.; Huang, T.Z.; Selesnick, I.W.; Lv, X.G.; Chen, P.Y. Image restoration using total variation with432

overlapping group sparsity, Information Sciences. Information Sciences 2015, 295, 232–246.433

37. Mei, J.J.; Dong, Y.Q.; Huang, T.Z.; Yin, W.T. Cauchy noise removal by nonconvex ADMM with convergence434

guarantees. Journal of Scientific Computing First Online: 30 May 2017, DOI: 10.1007/s10915-017-0460-5.435

38. Ji, T.Y.; Huang, T.Z.; Zhao, X.L.; Ma, T.H.; Deng, L.J. A non-convex tensor rank approximation for tensor436

completion. Applied Mathematical Modelling 2017, 48, 410–422.437

39. Donoho, D.L. De-noising by soft-thresholding. IEEE transactions on information theory 1995, 41, 613–627.438

40. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assesment: From Error Visibility to439

Structural Similarity. IEEE Transactions on Image Processing 2004, 13, 600–612.440

41. He, B.S.; Yuan, X.M. On the O(1/n) Convergence Rate of the Douglas Rachford Alternating Direction441

Method. SIAM Journal on Numerical Analysis 2012, 50, 700–709.442

42. Deng, W.; Yin, W.T. On the global and linear convergence of the generalized alternating direction method443

of multipliers. Journal of Scientific Computing 2016, 663, 889–916.444

43. Wen, Z.W.; Yang, C.; Liu, X.; Marchesini, S. Alternating direction methods for classical and ptychographic445

phase retrieval. Inverse Problems 2012, 28, 115010.446

44. Fazel, M.; Pong, T.K.; Sun, D.F.; Tseng, P. Hankel matrix rank minimization with applications to system447

identification and realization. SIAM Journal on Matrix Analysis and Applications 2013, 34, 946–977.448

c© 2017 by the authors. Submitted to MDPI for possible open access publication under the terms and conditions449

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).450

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Destriping problem formulation
	UTV for remote sensing image destriping

	The proposed method
	The proposed model
	Local smoothness along stripe direction
	 Local continuity of the underlying image
	 Global sparsity of stripes

	The solution
	PADMM based Algorithm

	Experiment results
	Simulated experiments
	Real experiments
	More discussion

	Conclusion
	Convergence of the proposed method
	References

