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Abstract

Rain streaks removal is an important issue of the outdoor
vision system and has been recently investigated extensive-
ly. In this paper, we propose a novel tensor based video
rain streaks removal approach by fully considering the dis-
criminatively intrinsic characteristics of rain streaks and
clean videos, which needs neither rain detection nor time-
consuming dictionary learning stage. In specific, on the one
hand, rain streaks are sparse and smooth along the rain-
drops’ direction, and on the other hand, the clean videos
possess smoothness along the rain-perpendicular direction
and global and local correlation along time direction. We
use the l1 norm to enhance the sparsity of the underlying
rain, two unidirectional Total Variation (TV) regularizers
to guarantee the different discriminative smoothness, and a
tensor nuclear norm and a time directional difference op-
erator to characterize the exclusive correlation of the clean
video along time. Alternation direction method of multi-
pliers (ADMM) is employed to solve the proposed concise
tensor based convex model. Experiments implemented on
synthetic and real data substantiate the effectiveness and
efficiency of the proposed method. Under comprehensive
quantitative performance measures, our approach outper-
forms other state-of-the-art methods.

1. Introduction

Outdoor vision system is frequently affected by bad
weather, one of which is the rain. Due to its scattering
light out and into the complementary metal oxide semicon-
ductor of cameras and its high velocities, raindrops usually
bring the bright streaks to the images or videos. Moreover,
rain streaks also interfere with the nearby pixels, because of
their specular highlights, scattering, and blurring effect [6].
This undesirable interference will degrade the performance
of various subsequent computer vision algorithms, such as
event detection [7], object detection [8, 9], tracking[10], and
recognition [11], and scene analysis [12]. Therefore, re-
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Figure 1. From left to right: 1) the histograms of difference of
the 1st and 2nd frame from the rainy video, clean video and rain
streaks, respectively; 2) the singular values of O(3), B(3) and R(3)

in decreasing order, severally; 3) some example frames of rainy
video, clean video and rain streaks; 4) the histograms (c-1,2,3) of
rain directional difference of the 10th frame, and the intensities of
a row (d-1,2,3) of the rainy video, clean video and rain streaks,
respectively.

moval of rain streaks is indeed considerable and essential,
and has recently received much attention[1, 2, 3, 4, 5].

In general, the observation model of rainy image is for-
mulated as O = B + R [6, 1, 2], which can be generalized

1
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Table 1. Comparison of related recent works on rain removal

Method Priors or assumptions Detection or dictio-
nary learning

Kang et al.[1] Rain streaks exist only in the HF part and can be decomposed by MCA
based dictionary learning and sparse coding Both

Yi-Lei Chen et al.[2] Rain streaks are spatio-temporally correlated, and TV regularization is
discriminative for image content from highly-patterned rain streaks Nor

Hakim et al.[3] Rain streaks are sparse and the clean video is low-rank Nor
Kim et al.[4] Rain streaks are temporally correlated and the clean video is low-rank Both

Luo et al.[5] Local patches from both image and rain can be sparsely modeled in a
learned dictionary, and their sparse codes are sufficiently discriminative Dictionary learning

Li et al.[6] GMM patch priors and gradient sparsity of background Dictionary learning

to the video case: O = B + R, where O, B and R ∈
Rm×n×t are three 3-mode tensors, indicating the observed
rainy video, the unknown rain-free video and rain streaks,
respectively. Rain streaks removal methods aim at separat-
ing clean video and rain streaks from the input rainy video.
As we know, it is an ill-posed problem, which is tradition-
ally coped with by enforcing priors with corresponding reg-
ularizations, in low-level computer vision. Therefore, from
this perspective, the most significant issue is to rationally
extract and fully utilize the prior knowledge, which is dis-
criminative for separating the to-be-reconstructed rain-free
video and rain streaks. Meanwhile, as shown in Table 1,
many recent state-of-the-art rain streaks removal methods
can also be viewed as conducting the separation based on
some priors or assumptions.

These approaches mentioned in the Talbe. 1 are demon-
strated to be effective, however there are a few drawbacks.
To begin with, some of their priors or assumptions are not
instinct sufficiently. Second, they focus on the rain streaks
more than the rain-freed part. Actually, the rain-free part
maintains a lot of useful information, which is not fully u-
tilized. At last, most of them involve the time-consuming
dictionary learning stage. Therefore, it still has room to fur-
ther enhance the potential capacity and efficiency of the rain
streaks removal model.

To alleviate these problems, this paper proposes a new
rain streaks removal model, which fully takes the discrim-
inatively intrinsic characteristics of rain and rain-free part
into consideration. More specifically, the spatial and tempo-
ral, global and local prior knowledge is analyzed. In the spa-
tial aspect, the directional property of the raindrops causes
two different effects on the rainy video, along the raindrops’
direction and its perpendicular direction respectively, which
can be seen from (c-1,2,3) and (d-1,2,3) of the Fig. 1. Prac-
tically, the traditional TV regularization is applied in [6, 2],
but it is not capable of handling these two different effects.
Fortunately, the unidirectional TV, introduced in [13, 14],
is naturally suitable, so that we adopt it to utilize the spa-
tial priors. As for the temporal aspect, the rain-free part

maintains a quite different situation with comparisons to the
rain streaks and rainy part. (a-2) and (b-2) in Fig. 1 show
the tighter correlation along the time axis, comparing with
(a-1,3)and (b-1,3) respectively. Therefore, a tensor nuclear
norm and a time directional difference operator are applied
to simultaneously boost the global and local correlation of
the underlying clean video along the time direction. Final-
ly, we consider the sparsity of the rain streaks, and use an l1
norm to guarantee it.

Our method is convex and concise, and it is easier to im-
plement and more efficiently generates considerably better
results qualitatively and quantitatively, compared with ex-
isting state-of-the-art methods. In addition, our method is
practical, since it is not limited by the rain streak orienta-
tions and the dynamic/stastic of the camera or scene (see
more details in Section 4.2). For all we know, this is the
first method to rationally extract such priors together for the
task of rain streak removal.

The outline of this paper is given as follows. In Section
2, some preliminary knowledge of tensor is given. Section
3 discusses the related works. In Section 4, the formulation
of our model as well as the ADMM solver are proposed.
Experimental results are reported in Section 5. Finally, we
draw some conclusions in Section 6.

2. Notations and preliminaries
Following [15], we use low-case letters for vectors, e.g.,

a, upper-case letters for matrices, e.g., A, and calligraphic
letters for tensors, e.g., A. An N -mode tensor is defined as
X ∈ RI1×I2×···×IN , and xi1i2···iN is its (i1, i2, · · · , iN )-th
component.

Fibers are defined by fixing every index but one. Third-
order tensors have column, row, and tube fibers, denoted by
x:jk, xi:k, and xij:, respectively. When extracted from the
tensor, fibers are always assumed to be oriented as column
vectors.

Slices are two-dimensional sections of a tensor, defined
by fixing all but two indices. The horizontal, lateral, and
frontal slides of a third-order tensor X , denoted by Xi::,

2
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Table 2. Tensor Notations

Notations Explanations

X ,X,x, x Tensor, matrix, vector, scalar.

x(: i2i3 · · · iN )
Fiber of tensor X defined by fixing
every index but one.

X(:: i3 · · · iN )
Slice of a tensor defined by fixing all
but two indices.

〈X ,Y〉
Inner product of two same-sized
tensors X and Y .

‖X‖F Frobenius norm of tensor X .

X(n), unfoldn(X )

Mode-n unfolding of a tensor X ∈
RI1×I2×···×IN denoted as X(n) ∈
RIn×

∏
i6=n Ii .

(r1, r2, · · · , rN )
N -rank, where rn = rank(X(n)),
n = 1, 2, · · · , N .

X:j:, and X::k, respectively. Alternatively, the k-th frontal
slice of a third-order tensor, X::k, may be denoted more
compactly as Xk.

The inner product of two same-sized tensors X and Y
is defined as〈X ,Y〉 :=

∑
i1,i2,··· ,iN

xi1i2···iN · yi1i2···iN . The

corresponding norm (Frobenius norm) is then defined as
‖X‖F :=

√
〈X ,X〉.

The mode-n unfolding of a tensor X is denot-
ed as X(n) ∈ RIn×Πi6=nIi , where the tensor elemen-
t (i1, i2, · · · , iN ) maps to the matrix element (in, j) sat-
isfying j = 1 +

∑N
k=1,k 6=n(ik − 1)Jk with Jk =∏k−1

m=1,m 6=n Im. The inverse operator of unfolding is de-
noted as “fold”, i.e., X = foldn(X(n)).

The n-rank, which we adopt in our work, is defined
as an array n-rank(X ) = [rank(X(1)), rank(X(2)), · · · ,
rank(X(N))]. The tensor X is low-rank, if X(n) is low-
rank for all n.

Please refer to [15] for a more extensive overview.

3. Related work
Numerous methods are proposed to improve the visibil-

ity of images/videos captured with rain streak interference.
They can be split into two categories: multiple image/video-
based and single image methods.

For single image de-raining task, Kang et al.[1] decom-
posed the rainy image into low frequency (LF) and high
frequency (HF) part, and applied an MCA based dictionary
learning and sparse coding to separate the rain streaks, in the
HF part. Following this elegant decomposition idea, Sun et
al. [16] take the structure information into account. Howev-
er, the background estimated by these methods tends to be
blurry. Chen et al.[2] considered the pattern of rain streak-
s and the smoothness of background, but the constraints in

their objective function are not sufficiently strong. Discrim-
inative sparse coding was adopt by Luo et al.[5], but its per-
formance is not desirable. The recent work by Li et al.[6],
firstly utilizing the Gaussian mixture model (GMM) patch
priors for rain streaks removal, was able to handle orienta-
tions and scales of rain streaks. Nevertheless, there is still
over smooth in their results.

For video cases, Abdel-Hakim et al.[3] applied robust
principle components analysis (RPCA) for rain streaks re-
moval. Their method is limited for the statical camera and
statical background. Kim et al.[4] took the temporal corre-
lation of rain streaks and the low-rankness of clean video
into account, but its effectiveness is still somehow weak for
some dynamic video recorded by dynamic camera. Please
refer to [17], for a more comprehensive review on the ex-
isting video-based methods. In Table 1, characteristics of
recent related works are briefly introduced.

4. Tensor based video rain removal model
In general, from the point of image processing, a rainy

video O ∈ Rm×n×t can be modeled as a linear superimpo-
sition:

O = B + R,

where B and R ∈ Rm×n×t are the unknown rain-free
video and rain steaks, respectively. These three tensors are
illustrated in the third column of Figure 1. Our goal is to de-
compose the rain-free video B and the rain streaks R from
the input rainy video O. To solve this ill-posed problem,
we need to analyze the priors of both B and R, and then
introduce the corresponding regularizers, which will be dis-
cussed in the next subsection.

4.1. Priors and regularizers

Sparsity of rain streaks When the rain is light, the rain
streaks can naturally be considered as being sparse approxi-
mately. We can also obtain the sparsity of rain streaks from
the instantiated example in Fig. 1. Hence, the enhancement
of the sparsity of underlying rain streaks is helpful to the
separation. To boost the sparsity of rain streaks, l0 norm,
which indicates the number of nonzero elements, is an ideal
choice. Meanwhile, we can tune the parameter of the spar-
sity term to handle the scene with heavy rain, since that the
rain streaks are always intrinsically sparser than the back-
ground clean video.

Smoothness along the rain-perpendicular direction In
Fig. 1, (d-1),(d-2) and (d-3) display the pixel intensity of a
fixed row in the rain-perpendicular direction, from the 10th
frame of rainy video, clean video and rain streaks, respec-
tively. It is obvious that only the variation of pixel intensity
in (d-2) is piecewise smooth while burrs appear frequently
in (d-1) and (d-3). Therefore, as previously mentioned, an

3
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l0 norm of the rain-perpendicularly unidirectional TV regu-
larizer for B is a suitable candidate.

Peculiarity of the rain along the rainy direction It can
be found in Fig. 1 that (c-3), which exhibits the histogram
of the intensity of rain directional difference of a rain streak-
s frame, maintains a particular distribution with respect to
(c-1) and (c-2). More zeros and smaller non-zeros values
indicate the smoothness of the rain streaks along the rain
direction. Naturally, we apply l1 norm to the rain direction-
al unidirectional TV regularizer , or said differently the rain
directional difference operator, of the rain streaks R.

Correlation along time direcion It can be found that,
clean video maintains different type of correlation along the
time direction from the first and second columns of the Fig.
1, compared with the rainy video and rain streaks.

On the one hand, the sub-figures (a-1), (a-2) and (a-3),
which present the distributions of the magnitudes of the dif-
ference of two adjacent frames, illustrate that the difference
of clean video possesses more zero values and smaller non-
zero values, while the differences of the rainy video and
rain streaks tend to have more and larger non-zero values.
Therefore, the l1 norm is naturally selected for the time di-
rectional difference of clean video B.

On the other hand, (b-1), (b-2) and (b-3) respectively
show the singular values of the O(t), B(t) and R(t) in de-
clining order, where the matrix X(t) is the time mode un-
folding of a tensor X . What noteworthy is that the singu-
lar valves of B(t) finally descend approximately to zeros,
yet the singular values of O(t) and R(t) do not share this
property. Thus we can conclude that, the rank minimiza-
tion of B(t) would promote the separation of rain streaks
and clean video, although the clean video is not extreme-
ly low-rank, i.e. dynamic background and moving camera.
By the way, if the video is taken by static camera or with
static background, the rank minimization is more forceful.
Meanwhile, as discussed in [18], there is weak correlations
in video frames or natural images. Hence, we consider to
minimize the rank of B.

4.2. Formulation

As a summary of the discussion of the prior and regular-
ization, our model can be succinctly formulated as:

min
B,R

α1‖∇1R‖0 + α2‖R‖0 + α3‖∇2B‖1

+ α4‖∇tB‖1 + rank(B),

s.t. O = B + R, B,R > 0,

(1)

where ∇1 and ∇2 are the unidirectional TV operators of
rain direction and the perpendicular direction, respectively,
and ∇t indicates the time directional difference operator.

Nevertheless, the l0 and rank terms in (1) can only
take discrete values, and lead to combinatorial optimization
problem in applications which is hard to solve. We thus re-
lax them as l1 norm and tensor nuclear norm, the definition
of which is selected form [19] as ‖X‖∗ =

∑n
i=1 ‖Xi‖∗,

where Xi = Unfoldi(X ).

Moreover, in real rainfall scene, the raindrops generally
fall from top to bottom, so that the rain streaks’ direction
can be approximately counted as the mode-1 (column) di-
rection of the video tensor. Thus rain streaks direction is de-
noted as y-direction while the perpendicular direction (hor-
izontal direction) denoted as x-direction, for convenience.
Commonly, there would be an angle between the y-direction
and the real falling direction of raindrops. The priors, cor-
responding to the unidirectional TV regularizers, still exist,
when the angle is small. Actually, the rain streaks in Fig.
1 is not strictly vertical, and there is a 5-degree angle. For
the large angle cases, we can handle them by rotating the
frames of rainy videos.

Instead of solving (1), our goal then turns to solving the
following convex optimization problem:

min
R

α1‖∇y(R)‖1 + α2‖R‖1 + ‖O −R‖∗

+ α3‖∇x(O −R)‖1 + α4‖∇t(O −R)‖1.
(2)

where R ∈ Rm×n×t is the rain streaks.

An efficient algorithm is then proposed in the following
section to solve the problem.

4.3. optimization

Since the proposed model (2) is a convex model, many
state-of-the-art solvers are available. Here we apply the
ADMM [20, 21, 22, 23], an effective strategy for solving
large scale optimization problems. Firstly, five auxiliary
tensors Y ,S,X ,T and L are introduced and the proposed
model (2) is reformulated as the following equivalent con-
strained problem:

min
R,Y,S,X ,T ,L,

α1‖Y‖1 + α2‖S‖1
+α3‖X‖1 + α4‖T ‖1 + ‖L‖∗

s.t. Y = ∇yR, S = R,
X = ∇x(O −R),
T = ∇t(O −R),
L = O −R, O > R > 0,

(3)

where S,Y ,X ,T and L ∈ Rm×n×t.
Then the augmented Lagrangian function of (3) is:

4
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Lβ(R,Y ,S,X ,T ,L,Λ) = α1‖Y‖1 + α2‖S‖1
+ α3‖X‖1 + α4‖T ‖1 + ‖L‖∗ + 〈Λ1,∇y(R)−Y〉

+
β1

2
‖∇y(R)−Y‖2F + 〈Λ2,R− S〉+

β2

2
‖R− S‖2F

+ 〈Λ3,∇x(O −R)−X 〉+
β3

2
‖∇x(O −R)−X‖2F

+ 〈Λ3,∇t(O −R)− T 〉+
β4

2
‖∇t(O −R)− T ‖2F

+ 〈Λ5, (O −R)−L〉+
β5

2
‖O −R−L‖2F ,

where Λ = [Λ1,Λ2, · · · ,Λ5] is the Lagrange Multipliers
and β = [β1, β2, · · · , β5] are five positive scalars. Now
this joint minimization problem, which can be decomposed
into six easier and smaller subproblems, is able to be solved
within the ADMM framework.

Y , S, X , and T sub-problems With other parameters
fixed, Y , S, X and T sub-problems all turn to the same
format equivalent problem:

A+ = arg min
A

α‖A‖1 +
β

2
‖A−B‖2F ,

which has a closed-form solution by soft thresholding:

A+ = Shrinkα
β

(B) .

Here, the tensor nonnegative soft-thresholding operator
Shrinkv(·) is defined as

Shrinkv(B) = B̄

with

b̄i1i2···iN =

{
bi1i2···iN − v, bi1i2···iN > v,

0, otherwise.

Therefore, Y , S, X , and T can be updated as:

Y(t+1) = Shrinkα1
β1

(
∇y(R(t)) +

Λ
(t)
1

β1

)
,

S(t+1) = Shrinkα2
β2

(
R(t) +

Λ
(t)
2

β2

)
,

X (t+1) = Shrinkα3
β3

(
∇x(O −R(t)) +

Λ
(t)
3

β3

)
,

T (t+1) = Shrinkα4
β4

(
∇t(O −R(t)) +

Λ
(t)
4

β4

)
.

(4)

with other parameters fixed, respectively. The time com-
plexity of the each sub-problem above is O(mnt).

Algorithm 1 Algorithm for video rain streaks removal
Input: The rainy video O;

1: Initialization: B(0) = O, R(0) = zeros(m× n× t)
2: while not converged do
3: Update Y , S, X , and T via (4);
4: Update L via (5);
5: Update B and R via (6);
6: Update the multipiers via (7);
7: end while

Output: The estimation of rain-free video X and rain
streaks R;

L-subproblem The L-subproblem is:

L+ = arg min
L

‖L‖∗ +
β3

2
‖(O −R)−L +

Λ3

β3
‖2F .

Since we adopt the tensor nuclear norm definition as
‖X‖∗ =

∑n
i=1 ‖Xi‖∗, where Xi = Unfoldi(X ), then L

can be updated as:

L(t+1) =

3∑
i=1

1

3
Foldi(L

(t+1)
i ), (5)

where L
(t+1)
(i) = D 1

β3

(
B

(t)
(i) +

Λ3
(t)

(i)

β3

)
(i = 1, 2, 3) and

D 1
β3

(X) in indicates doing soft-thresholding to the singular
values of X .

R-subproblem The R sub-problem is a least squares
problem:

R+ = arg min
R

β1

2
‖∇y(R)−Y +

Λ1

β1
‖2F

+
β2

2
‖R− S +

Λ2

β2
‖2F

+
β3

2
‖∇x(O −R)−X +

Λ3

β3
‖2F

+
β4

2
‖∇t(O −R)− T +

Λ4

β4
‖2F

+
β5

2
‖O −R−L +

Λ5

β5
‖2F ,

which has the following closed-form solution:

R(t+1) = F−1

(
F(K1)

F(K2)

)
, (6)

where, F and F−1 denote the fast Fourier transform (FFT)
and its inverse, K1 = ∇T

y(β1Y(t+1) −Λ
(t)
1 ) + β2S(t+1) −

Λ
(t)
2 +∇T

x(β3∇xO−β3X (t+1)+Λ
(t)
3 )+∇T

t (β4∇tO(t+1)−
β4T (t+1) + Λ

(t)
4 )) + β5(O − L(t+1)) + Λ

(t)
5 and K2 =

5
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β1∇T
y∇y + β2I + β3∇T

x∇x + β4∇T
t∇t + I. Elements in

R, which are smller than 0 or bigger than the same elements
in O would be shrank. The time complexity of updating R
is O(mnt · log(mnt))

Multipliers update Following the framework of the AD-
MM, the Lagrange multipliers Λ = [Λ1,Λ2, · · · ,Λ5] can
be updated as:

Λ
(t+1)
1 = Λ

(t)
1 + β1(∇y(O −R(t+1))−Y(t+1)),

Λ
(t+1)
2 = Λ

(t)
2 + β2(O −R(t+1) − S(t+1)),

Λ
(t+1)
3 = Λ

(t)
3 + β3(∇xR(t+1) −X (t+1)),

Λ
(t+1)
4 = Λ

(t)
4 + β4(∇tR(t+1) − T (t+1)),

Λ
(t+1)
5 = Λ

(t)
5 + β5(R(t+1) −L(t+1)).

(7)
The proposed algorithm for video rain streaks removal

can be summarized in Algorithm 1. In fact, the objective
function in (3) can be divided into two blocks. One is the
nuclear norm term, while another block contains the oth-
er four l1 norm terms. Hence, our algorithm fits the typi-
cal ADMM framework, and its convergency is theoretically
guaranteed (see more details in the supplementary material-
s).

5. Experimental results
To validate the effectiveness and efficiency of the pro-

posed method, we compare our method with recent state-of-
the-art methods, including the method using temporally cor-
relation and low-rankness [4]1 (denoted as 15’TIP), sparse
coding based dictionary learning method [5]2 (denoted as
15’ICCV) and the method using layer priors [24] (denoted
as 16’CVPR). Actually the 15’ICCV and 16’CVPR are s-
ingle image based derain methods, but their performances
sometimes surpass the video based methods. Moreover, on-
ly some frames of the experimental results using the real
videos are able to be illustrated in this paper. Hence, the
comparisons with these two single image based methods are
reasonable and challenging. Additionally, in the following
experiments, the parameters {α1, α2, α3, α4} are selected
from {101, 102, 103} and βi (i = 1, 2, · · · , 5) are set 50.

5.1. Synthetic data

For synthetic data, since the ground truth clean video is
available, three evaluation measures are employed, includ-
ing peak signal-to-noise ratio (PSNR), structure similari-
ty (SSIM) [25] and the residual error (RES)3. Six videos,

1Code available on http://www.math.nus.edu.sg/∼matjh/research/ re-
search.htm.

2Code available on http://mcl.korea.ac.kr/ jhkim/deraining/.
3Defined as RSE= ‖X −Y‖F , where X and Y denote the estimated

clean videos and the ground truth, respectively.

Rainy 15’TIP 15’ICCV 16’CVPR Proposed Ground truth

Figure 2. From left to right: the rainy frames, results of 15’TIP,
15’ICCV, 16’CVPR, the proposed method, and the ground truth
frame. From top to bottom: the “carphone”, “container”, “coast-
guard”, “bridgefar”, “highway” and “foreman” videos with heavy
and light synthetic rain, respectively.

Figure 3. The performance of the proposed method and its degrad-
ed methods, which respectively leave one regularizer out.

named as “carphone”, “container”, “coastguard”, “bridge-
far”, “highway” and “foreman”4, are selected as the ground
truth videos.

4http://trace.eas.asu.edu/yuv/.
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Table 3. Quantitative comparisons of rain streaks removal results on the selected 6 synthetic videos.
rain type Heavy Light

Whole Average
Time (s)

Whole Average
Time (s)

PSNR
SSIM SSIM

RSE PSNR
SSIM SSIM

RSE PSNR
SSIM SSIM

RSE PSNR
SSIM SSIM

RSE
video Method (B) (R) (B) (R) (B) (R) (B) (R)

carphone

Rainy 26.830 0.579 — 69.176 26.843 0.614 — 7.246 — 35.256 0.771 — 26.221 35.319 0.832 — 2.739 —
15’TIP 29.028 0.619 0.523 53.712 29.078 0.645 0.401 5.614 2029.673 34.852 0.890 0.628 27.470 35.024 0.892 0.368 2.851 1211.811
15’ICCV 27.478 0.590 0.138 64.205 27.496 0.618 0.054 6.723 1558.478 31.280 0.777 0.111 41.446 31.336 0.827 0.046 4.331 1593.010
16’CVPR 32.396 0.713 0.706 36.777 32.339 0.768 0.688 3.850 7582.206 34.086 0.813 0.444 31.083 33.787 0.840 0.309 3.257 7300.395
Proposed 33.597 0.820 0.790 31.741 33.632 0.819 0.721 3.320 11.377 40.104 0.926 0.732 15.006 40.532 0.927 0.431 1.532 11.230

container

Rainy 27.634 0.558 — 63.063 27.640 0.608 — 6.608 — 36.151 0.757 0.000 23.655 36.185 0.832 — 2.475 —
15’TIP 29.994 0.606 0.573 48.058 30.021 0.647 0.441 5.029 1750.081 35.428 0.900 0.631 25.707 35.484 0.906 0.376 2.686 1200.039
15’ICCV 29.031 0.570 0.127 53.690 29.052 0.616 0.061 5.621 1591.627 31.082 0.763 0.090 42.398 31.106 0.829 0.040 4.439 1614.712
16’CVPR 32.659 0.643 0.649 35.820 32.555 0.716 0.626 3.753 4497.388 33.478 0.694 0.334 33.436 33.147 0.733 0.218 3.505 5476.641
Proposed 37.975 0.910 0.920 19.174 37.985 0.913 0.877 2.008 11.351 46.730 0.963 0.814 6.998 46.771 0.966 0.489 0.732 11.447

coastguard

Rainy 27.716 0.769 — 69.487 26.726 0.807 — 7.280 — 35.061 0.929 — 26.587 35.113 0.945 — 2.779 —
15’TIP 33.347 0.926 0.846 32.385 33.599 0.924 0.772 3.341 2467.202 33.279 0.917 0.429 32.641 33.515 0.915 0.241 3.372 1875.336
15’ICCV 28.531 0.790 0.176 56.389 28.595 0.819 0.093 5.889 1528.879 32.161 0.932 0.165 37.126 32.941 0.944 0.075 3.713 1737.723
16’CVPR 30.585 0.727 0.592 46.843 30.154 0.742 0.526 4.907 4551.357 29.683 0.734 0.134 51.784 29.281 0.725 0.112 5.425 5144.503
Proposed 34.039 0.947 0.793 29.905 34.203 0.949 0.724 3.104 11.736 39.573 0.981 0.701 15.815 39.805 0.982 0.431 1.636 11.927

highway

Rainy 27.789 0.571 — 61.947 27.801 0.623 — 6.489 — 36.208 0.841 — 23.500 36.270 0.876 — 2.455 —
15’TIP 31.720 0.622 0.650 39.395 31.762 0.646 0.537 4.119 1681.520 35.587 0.807 0.491 25.242 35.668 0.814 0.299 2.633 1141.919
15’ICCV 29.841 0.596 0.124 48.911 29.856 0.639 0.060 5.122 1644.783 36.639 0.855 0.111 22.361 36.690 0.883 0.049 2.337 1598.950
16’CVPR 32.244 0.565 0.627 38.768 31.867 0.610 0.590 4.062 10327.949 32.054 0.636 0.323 40.171 31.554 0.648 0.228 4.210 4874.038
Proposed 36.743 0.831 0.773 22.096 36.761 0.840 0.719 2.313 11.682 42.457 0.936 0.702 11.445 42.552 0.939 0.429 1.193 11.707

bridgefar

Rainy 28.128 0.584 — 59.576 28.141 0.623 — 6.240 — 36.310 0.837 — 23.224 36.381 0.858 — 2.425 —
15’TIP 32.245 0.557 0.548 37.086 35.257 0.573 0.411 3.885 1574.131 37.469 0.781 0.488 20.323 37.492 0.781 0.254 2.128 1117.143
15’ICCV 29.960 0.601 0.084 48.427 29.973 0.632 0.029 5.053 1638.194 34.895 0.843 0.056 27.334 34.936 0.860 0.024 2.859 1663.539
16’CVPR 31.736 0.482 0.387 39.699 31.667 0.519 0.359 4.158 5017.966 33.527 0.516 0.180 34.718 32.820 0.525 0.133 3.639 4928.519
Proposed 36.342 0.807 0.696 23.139 36.352 0.808 0.640 2.424 11.353 42.361 0.925 0.642 11.571 42.393 0.920 0.363 1.211 11.252

foreman

Rainy 27.128 0.682 — 66.839 27.135 0.695 — 7.004 — 35.626 0.850 0.000 25.128 35.665 0.879 0.000 2.628 —
15’TIP 28.684 0.708 0.471 55.881 28.750 0.713 0.356 5.835 2020.531 34.443 0.927 0.563 28.794 34.959 0.923 0.298 2.923 1380.608
15’ICCV 28.570 0.687 0.039 56.621 28.577 0.698 0.013 5.932 1608.919 33.262 0.853 0.039 32.989 33.282 0.879 0.001 3.454 1583.973
16’CVPR 32.416 0.791 0.700 36.640 32.362 0.816 0.678 3.838 5077.714 33.645 0.854 0.375 32.900 33.290 0.862 0.276 3.448 5417.467
Proposed 34.324 0.896 0.825 29.193 34.525 0.889 0.756 3.022 11.196 39.591 0.956 0.675 15.919 40.104 0.952 0.365 1.618 11.070

Rainy frame 15’TIP 15’ICCV 16’CVPR Proposed

Figure 4. Results on our the Matrix.

Rain streaks generation We generate the rain by the fol-
lowing steps. Firstly, a salt and pepper noise is added to a
zero tensor with the same size as the ground truth videos.
The denser the noise is, the heavier the synthetic rain will
be. Then, a motion blur is added to the noisy zero tensor,
and a small angle (5 degree) exists between the motion di-
rection and the y-axis. Finally, the blurred noisy zero tensor
is linearly superposed to the ground truth videos, and the

intensities of pixels, which are greater than 1, are set as 1.

Discussion of each component There are five compo-
nents in our model (2). To make their effects clear, we test
our method by leaving each component out, respectively.
Additionally, when only containing the sparse and low-rank
terms, our model degrades to a robust principle components
analysis model, which is similar to the method in [3]. We
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Rainy frame 15’TIP 15’ICCV 16’CVPR Proposed

Figure 5. Results on our video.

show the performances of the proposed method and its de-
graded versions in Fig. 3. We can conclude that each com-
ponent contributes to the separation of rain streaks.

Performance comparisons Fig. 2 shows one frame of
the results of 15’TIP, 15’ICCV, 16’CVPR and the proposed
method, while the corresponding quantitative comparisons
are presented in Table 3. As observed, our method con-
siderably outperforms the other three methods in terms of
both visual quality on the selected three evaluation mea-
sures. With reference to the ground truth (the right most
column in Fig. 2), our method removes almost all rain
streaks and maintains details, while many rain streaks stil-
l exist in the results of 15’TIP and 15’ICCV. Although the
16’CVPR method removes more rain streaks than 15’TIP
and 15’ICCV, spatial details are erased. For instance, in the
“coastguard” video (the 5th and 6th row in Fig. 2), water
waves are smoothed by 16’CVPR, while well preserved by
our method. Furthermore, it is inspiring that our method
takes significantly less time than other three methods.

5.2. Real data

Fig. 4 and Fig. 5 show four adjacent frames of the re-
sults. The first real video is clipped from the well-known
movie “the Matrix”, and the second one is recorded by one
of the authors in a rainy day. Qualitatively, our method pro-
vides the best results both on removing rain streaks and re-
taining spatial details. We can see that there are still many
rain streaks on the results of 15’TIP and 15’ICCV, while
16’CVPR erases some spatial details, for instance, the nose
of Agent Smith in the 2nd frame and the leaves in Fig. 5.
Besides, when the camera is dynamic, the rapid changing
between two adjacent frames seriously effects the perfor-
mance of 15’TIP. More experimental results of real data,
including rotation case, will be presented in the supplemen-
tary materials.

6. Conclusion

We have proposed a novel tensor based approach to re-
move the video rain streaks. Actually, it is a bit counter-
intuitive to see the derivation of total-variation, cooperated
with low-rankness, beats the derivation of sparse dictionary

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVPR
#1636

CVPR
#1636

CVPR 2017 Submission #1636. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

learning and patch prior, because the latter two significant-
ly outperformed total-variation in image denoising. Apart
from that the video based methods can utilize more infor-
mation than image based approaches, we attribute the out-
performance of our method to our intensive analysis on the
priors of rainy videos, clean videos and rain streaks. As a
matter of fact, the priors, taken into consideration by us, var-
ied from spatial to temporal, from local to global. Hence, it
is reasonable to achieve such performance.

Our method is not without limitations. If the rainy direc-
tion is far away from the y-axis, we can handle it with image
rotation, but for the digital data, the rotation inevitably caus-
es distortion. In addition, how to handle the remaining rain
artifacts is still an open problem. These issues are targeted
for future work.
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