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Single image super-resolution via an iterative
reproducing kernel Hilbert space method

Liang-Jian Deng, Weihong Guo, and Ting-Zhu Huang

Abstract—Image super-resolution, a process to enhance image
resolution, has important applications in satellite imaging, high
definition television, medical imaging, etc. Many existing ap-
proaches use multiple low-resolution images to recover one high-
resolution image. In this paper, we present an iterative scheme
to solve single image super-resolution problems. It recovers a
high quality high-resolution image from solely one low-resolution
image without using a training data set. We solve the problem
from image intensity function estimation perspective and assume
the image contains smooth and edge components. We model the
smooth components of an image using a thin-plate reproducing
kernel Hilbert space (RKHS) and the edges using approximated
Heaviside functions. The proposed method is applied to image
patches, aiming to reduce computation and storage. Visual and
quantitative comparisons with some competitive approaches show
the effectiveness of the proposed method.

Index Terms—Single image super-resolution, iterative RKHS,
thin-plate spline, Heaviside function

I. INTRODUCTION

IMAGE super-resolution (SR), a quite active research field
currently, is a process to estimate a high-resolution (HR)

image from one or multiple low-resolution (LR) images. High-
resolution means more details and better visibility. Due to
limitation of hardware devices and high cost, one sometimes
only can collect low-resolution images. For instance, synthetic
aperture radar (SAR) and satellite imaging can not get high-
resolution images due to long distance and air turbulence. In
medical imaging MRI, high-resolution images need more time
and cost [48], [61]. Thus, developing a more accurate and
faster image super-resolution algorithm is important and has
a lot of applications.

A. Literature review

In this section we review some existing super-resolution
methods, some of which will be compared with the proposed
method.

Many existing image super-resolution methods need mul-
tiple low-resolution images as inputs. We refer to them as
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multiple image super-resolution. Mathematically, there are p
low-resolution images yi ∈ Rm available, yi is related to a
high-resolution image x ∈ Rn by

yi = DBix+ ni, 1 ≤ i ≤ p, (1)

where D ∈ Rm×n is a down-sampling operator and Bi ∈
Rn×n is a blurring operator that might happen due to for
instance out of focus, ni ∈ Rm represents random noise [52].

This paper addresses single image super-resolution, i.e.,
p = 1 in equation (1). Compared to multiple image super-
resolution, single image super-resolution is more applicable
when there is only one low-resolution image available. Obvi-
ously, it is also more challenging.

Existing super-resolution methods, for both multiple images
and single image, can be roughly put into several categories:
interpolation-based, statistics-based, learning-based and other-
s. This classification is by no means the best but provides
an organized way for literature review. Note that, ideas of
methods in different category might have overlap. For instance,
some learning-based methods might also involves statistics.

Interpolation is a straightforward idea for image super-
resolution. There are two popular classical interpolation meth-
ods: nearest-neighbor interpolation and bicubic interpolation.
Nearest-neighbor interpolation fills in intensity at an unknown
location by that of its nearest neighbor point. It often causes
jaggy effect (see Figure 1(c)). Bicubic interpolation is to utilize
a cubic kernel to interpolate. It tends to create blur effect
(see Figure 1(b)). Recently, some state-of-the-art interpolation
methods have been proposed [26], [27], [40], [45], [65], [66],
[74]. In [40], for instance, it presents a new edge-directed
interpolation method. It estimates local covariance coefficients
from a low-resolution image, and then applies the coefficients
to interpolate high-resolution image. In [74], the proposed
edge-guided nonlinear interpolation bases on directional fil-
tering and data fusion. It can preserve sharp edges and reduce
ring artifacts. In [45], Mueller et al. propose an interpolation
algorithm by using contourlet transform and wavelet-based
linear interpolation scheme. The proposed method belongs in
this category.

Maximum a Posterior (MAP) and Maximum Likelihood
estimator (MLE) are popular statistics-based methods [6], [19],
[20]. To preserve sharp edges, Fattal [20] utilized statistical
edge dependency to relate edge features in low and high
resolution images. Farsin et al. [19] proposed an alternate
approach using L1 norm minimization and a bilateral prior
based robust regularization.

Learning-based approaches are a powerful tool for image
super-resolution [10], [21], [23]–[25], [30], [37], [38], [41],
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[55], [56], [58], [60], [69], [76]. They normally start from two
large training data sets, one formed of low-resolution images
and the other formed of high-resolution images, and then learn
a relation between low-resolution and high-resolution images.
The relation is then applied to a given low-resolution image to
get a high-resolution image. Learning-based methods usually
can obtain high quality images but they are computationally
expensive. The results might depend on the selection of
training data. Additionally, they are not a completely single
image super-resolution since two large data sets are required
for learning. In [56], Sun et al. utilized sketch priors to extend
the low vision learning approach in [25] to get clear edges,
ridges and corners. Sun et al. in [55] proposed a novel profile
prior of image gradient which can describe the shape and
the sharpness of an image to obtain super-resolution images.
Xie et al. proposed a method via an example-based strategy
which divides the high-frequency patches of a low-resolution
image into different classes [69]. This method can acceler-
ate image super-resolution procedure. Fernandez-Granda and
Candès used transform-invariant group-sparse regularization
[21]. This method performs well for highly structured straight
edges and high upscaling factors. In recent years, sparsity
methods, usually associated with learning-based ideas, have
been widely discussed for image super-resolution [15], [33],
[70]–[73], [75]. In [71], [72], Yang et al. utilized sparse signal
representation to develop a novel method for single image
super-resolution. The authors first sought a sparse representa-
tion for each patch of the low-resolution image and computed
corresponding coefficients, then generated the high-resolution
image via the computed coefficients. Recently, Zeyde and
Elad et al. [73] proposed a local sparse-land model on image
patches based on the work of [71], [72], and obtained improved
results.

In addition, many other image super-resolution methods
also have been proposed, e.g., a frequency technique [3],
pixel classification methods [1], [2], iterative back projection
methods [11], [34], [39], [57], a hybrid method [14], a kernel
regression method [59] and others [5], [9], [22], [53], [62].

In summary, single image super-resolution is still a chal-
lenging problem. Existing single image super-resolution meth-
ods either need training data sets and expensive computation
or lead to blur or jaggy effects. The aim of this paper is to
use a simple mathematical scheme to recover a high quality
high-resolution image from one low-resolution image.

B. Motivation and contributions of the proposed work

In this paper, we use RKHS and Heaviside functions
to study single image super-resolution with only one low-
resolution image as an input. We cast the super-resolution
problem as an image intensity function estimation problem.
Since images contain edges and smooth components, we mod-
el them separately. We assume that the smooth components
belong to a special Hilbert space called RKHS that can be
spanned by a basis. We model the edges using a set of
Heaviside functions. We then use intensity information of
the given low-resolution image defined on a coarser grid to
estimate coefficients of the basis and redundant functions,

(a) (b) (c)

Fig. 1. (a) A low-resolution image; (b) The super-resolution image using
bicubic interpolation method (note the blur effect); (c) The super-resolution
image by nearest-neighbor interpolation method (note the jaggy effect on the
edges); The upscaling factor is 4.

and then utilize the coefficients to generate high-resolution
images at any finer grids. For even better performance, we
make the procedure iterative to recover more details, motivated
by the iterative back projection method [34] and the iterative
regularization method [47].

This paper has the following main contributions:
• To the best of our knowledge, this is the first work to

employ RKHS method to get competitive image super-
resolution results. RKHS-based methods have been con-
sidered as a powerful tool to address machine learning for
a long time. In image processing, however, only limited
studies have been done, e.g., image denoising [4], image
segmentation [36] and image colorization [49].

• Employing Heaviside functions to recover more image
details, not only getting sharp image edges, but also pre-
serving more high-frequency details on non-edge regions.

C. Organization of this paper

The organization of this paper is as follows. In Section II,
we review RKHS and splines based RKHS. We will also make
two remarks in this section. In Section III, we present the
proposed iterative RKHS model based on Heaviside functions
and discuss the algorithms. Many visual and quantitative
experiments are shown in Section IV to demonstrate the
proposed method is a competitive approach for single image
super-resolution. Finally, we draw conclusions in Section V.

II. REVIEW ON SPLINES BASED RKHS

In this section, we review RKHS, splines based RKHS [63]
and their applications in signal/image smoothing. We will
use splines based RKHS to model the smooth components
of images.

A. Review on RKHS and its applications

Given a subset X ⊂ R and a probability measure P on X ,
we consider a Hilbert space H ⊂ L2(P), a family of functions
g : X → R, with ‖g‖L2(P) < ∞, and an associated inner
product 〈·, ·〉H under which H is complete. The space H is
a reproducing kernel Hilbert space (RKHS), if there exists a
symmetric function K : X × X → R such that: (a) for each
x ∈ X , the function K(·, x) belongs to Hilbert space H, and
(b) there exists reproducing relation f(x) = 〈f, K(·, x)〉H
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for all f ∈ H. Any such symmetric kernel function must
be positive semidefinite (see Definition 1). Under suitable
regularity conditions, Mercer’s theorem [43] guarantees that
the kernel has an eigen-expansion of the form K(x, x′) =∑∞
k=1 λkφk(x)φk(x′), with λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 being a

non-negative sequence of eigenvalues, and {φk}∞k=1 associated
eigenfunctions, taken to be orthonormal in L2(P).
Definition 1 (Positive Semidefinite Kernel) Let X be a
nonempty set. The kernel K : X × X → R is positive
semidefinite if and only if Gram matrix K = [K(xi, xj)]N×N ,
xi ∈ X , i, j = 1, 2, · · · , N , is a positive semidefinite matrix.

Since the eigenfunctions {φk}∞k=1 form an orthonor-
mal basis, any function f ∈ H has an expan-
sion of the form f(x) =

∑∞
k=1

√
λkakφk(x), where

ak = 〈f, φk〉L2(P) =
∫
X f(x)φk(x) dP(x) are (gen-

eralized) Fourier coefficients. Associated with any t-
wo functions in H, where f =

∑
k≥1
√
λkakφk and

g =
∑
k≥1
√
λkbkφk, are two distinct inner products. The

first is the usual inner product in the space L2(P) de-
fined as 〈f, g〉L2(P) : =

∫
X f(x)g(x) dP(x) =

∑∞
k=1 λkakbk.

by Parseval’s theorem. The second inner product, denoted
〈f, g〉H, defines the Hilbert space. It can be written in
terms of the kernel eigenvalues and generalized Fourier co-
efficients as 〈f, g〉H =

∑∞
k=1 akbk. Using this definition,

the Hilbert ball of radius 1 for H with eigenvalues λk
and eigenfunctions φk(·), is BH(1) = {f ∈ H; f(·) =∑∞
k=1

√
λkbkφk(·) |

∑∞
k=1 b

2
k = ‖b‖22 ≤ 1}. The class of

RKHS contains many interesting classes that are widely used
in practice including polynomials of degree d (K(x, y) = (1+
〈x, y〉)d), Sobolev spaces with smoothness ν, Lipschitz, and
smoothing splines. Moreover, kernel K(x, x′) = 1

2e
−γ|x−x′|

leads to Sobolev space H1, i.e., a space consisted of square
integrable functions whose first order derivative is square
integrable. K(x, x′) ∝ |x−x′|,K(x, x′) ∝ |x−x′|3 correspond
to 1D piecewise linear and cubic splines respectively.

RKHS has appeared for many years, and it has been used
as a powerful tool for machine learning [7], [8], [12], [13],
[44], [46], [50], [54], [63]. Its application in image processing
is not so common yet. In [4], Bouboulis et al. proposed an
adaptive kernel method to deal with image denoising problem
in the spatial domain. This method can remove many kinds
of noise (e.g., Gaussian noise, impulse noise, mixed noise)
and preserves image edges effectively. In addition, Kang et
al. utilized RKHS method to do image segmentation [36] and
image/video colorization [49].

Wahba proposed splines based RKHS for smoothing prob-
lems in [63]. It shows that the solution of an optimization
problem consists of a set of polynomial splines. The proposed
method is based on splines based RKHS. We thus review them
in the following two subsections.

B. A 1D spline and signal smoothing

For a real-valued function

f ∈ G = {f : f ∈ Cm−1[0, 1], f (m) ∈ L2[0, 1]},

it can be expanded at t = 0 by Taylor series as:

f(t) =
∑m−1
ν=0

tν

ν! f
(ν)(0) +

∫ 1

0

(t−u)m−1
+

(m−1)! f
(m)(u)du

= f0(t) + f1(t),
(2)

with

f0(t) =

m−1∑
ν=0

tν

ν!
f (ν)(0),

and

f1(t) =

∫ 1

0

(t− u)m−1+

(m− 1)!
f (m)(u)du,

where (u)+ = u for u ≥ 0 and (u)+ = 0 otherwise.
Let

φν(t) =
tν−1

(ν − 1)!
, ν = 1, 2, ...,m,

and H0 = span{φ1, φ2, ..., φm} with norm ‖φ‖2 =∑m−1
ν=0 [(D(ν)φ)(0)]2, then D(m)(H0) = 0. It has been proved

in [63] that H0 is a RKHS with reproducing kernel R0(s, t) =∑m
ν=1 φν(s)φν(t). For a function f0 ∈ H0, we can express

f0 using the basis of H0, i.e., f0(t) =
∑m
ν=1 dνφν(t).

Let Bm be a set of functions satisfying boundary condition
f (ν)(0) = 0, ν = 0, 1, 2, · · · ,m−1 and Gm(t, u) =

(t−u)m−1
+

(m−1)! ,
then

f1(t) =

∫ 1

0

(t− u)m−1+

(m− 1)!
f (m)(u)du =

∫ 1

0

Gm(t, u)f (m)(u)du,

belongs to space H1 defined as follows:

H1 = {f : f ∈ Bm, f, f ′, ..., f (m−1)absolutely continuous,
f (m) ∈ L2},

(3)
where H1 is a Hilbert space on [0,1] with norm
‖f‖2 =

∫ 1

0
(f (m)(t))2dt. H1 also has been proved to

be a RKHS in [63] with reproducing kernel R1(s, t) =∫ 1

0
Gm(t, u)Gm(s, u)du. For a function f1 ∈ H1, we can

express f1 via the basis of H1, denoted by {ξi}ni=1, so
that f1(t) =

∑n
i=1 ciξi(t) =

∑n
i=1 ciR

1(si, t), where ξi =
R1(si, ·).

Due to∫ 1

0

((D(m)f0)(u))2du = 0,

m−1∑
ν=0

((D(ν)f1)(0))2 = 0,

we can construct a direct sum space Gm by the two RKHS
spaces H0 and H1, i.e., Gm = H0 ⊕ H1. Gm is proved as a
RKHS in [63] with the following reproducing kernel

R(s, t) =

m∑
ν=1

φν(s)φν(t) +

∫ 1

0

Gm(t, u)Gm(s, u)du, (4)

and norm

‖f‖2 =

m−1∑
ν=0

[(D(ν)f)(0)]2 +

∫ 1

0

(f (m))2(t)dt, (5)

where f ∈ Gm. As a summary, for f ∈ Gm, we have f =
f0 + f1, with f0 ∈ H0, f1 ∈ H1. It also can be written as

f(t) =

m∑
ν=1

dνφν(t) +

n∑
i=1

ciξi(t), (6)
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where t ∈ [0, 1].
let ~f = (f(t1), f(t1), · · · , f(tn))′ be intensity values of f

at ti ∈ [0, 1], i = 1, 2, · · · , n, let

~g = ~f + η, (7)

be a noisy observation with η an additive Gaussian noise.
Let T be a n × m matrix with Ti,ν = φν(ti) and let Σ

be a n × n matrix with Σi,j =< ξi, ξj >, we have the
relation ~f = Td + Σc where d = (d1, d2, · · · , dm)′ and
c = (c1, c2, · · · , cn)′. In [63], the following model is used
to estimate ~f from noisy discrete measurements ~g,

min
c,d

1

n
‖~g − Td− Σc‖2 + λc′Σc, (8)

where the second term penalties nonsmoothness.
The simple model (8) has a closed-form solution:

c = M−1(I − T (T ′M−1T )−1T ′M−1)~g,
d = (T ′M−1T )−1T ′M−1~g,

where M = Σ + nλI with I an identity matrix. The
computation burden of matrix inverse can be reduced via QR
decomposition (see details in Chapter 1 of [63]).
Remark 1 Once c and d are estimated from equation (8), one
can get an estimate for the signal function f(x),

f(x) =
∑m
ν=1 dνφν(x) +

∑n
i=1 ciξi(x)

=
∑m
ν=1 dνφν(x) +

∑n
i=1 ciR

1(si, x),
(9)

for any x ∈ [0, 1].
Next, we will review 2D thin-plate spline which can be

viewed as an extension of the mentioned 1D spline.

C. 2D thin-plate spline and image smoothing

We use 2D thin-plate spline based RKHS, introduced in
[63], for image super-resolution in this paper. We thus review
it.

Similar to the 1D case, let f be the intensity function
of a 2D image defined on a continuous domain E2 =
[0, 1] × [0, 1]. We assume f belongs in a RKHS. Let ~f =
(f(t1), f(t1), · · · , f(tn))′ be its discretization on grids ti =
(xi, yi) ∈ [0, 1] × [0, 1], i = 1, 2, · · · , n, the noisy image of
vector form with an additive noise η can be described by

~g = ~f + η. (10)

In [63], an optimal estimate of f for spline smoothing
problems can be obtained by minimizing the following model

min
1

n
‖~g − ~f‖2 + λJm(f), (11)

where m is a parameter to control the total degree of polyno-
mial, and the penalty term is defined as follows

Jm(f) =

m∑
ν=0

∫ +∞

−∞

∫ +∞

−∞
Cνm(

∂mf

∂xν∂ym−ν
)2dxdy, (12)

From Chapter 2 of [63], we know that the null space of
the penalty function Jm(f) is a M = Cdd+m−1 dimension
space spanned by the polynomials of degree no more than
m − 1. In the experiments, we let d = 2 (for 2D), m = 3,
then M = Cdd+m−1 = 6, so the null space can be spanned by

the following terms: φ1(x, y) = 1, φ2(x, y) = x, φ3(x, y) =
y, φ4(x, y) = xy, φ5(x, y) = x2, φ6(x, y) = y2. Duchon
(see [18]) has proved that if there exists {ti}ni=1 so that least
squares regression on {φν}Mν=1 is unique, then the optimization
model (11) has a unique solution as follows

fλ(t) =

M∑
ν=1

dνφν(t) +

n∑
i=1

ciEm(t, ti), (13)

where Em(t, ti) is a Green’s function for the m-iterated
Laplacian defined as:

Em(s, t) = Em(|s− t|) = θm,d|s− t|2m−dln|s− t|,

where θm,d = (−1)d/2+m+1

22m−1πd/2(m−1)!(m−d/2)! , especially, Em(t, ti)

plays the same role with ξi(t) in 1D case.
Similar with equation (8), model (11) can be rewritten as:

min
1

n
‖~g − (Td+Kc)‖2 + λc′Kc, (14)

where T is a n × M matrix with Ti,ν = φν(ti)
and K is a n × n matrix with Ki,j = Em(ti, tj).
This model also has a similar closed-form solution with
1D case: d = (T ′W−1T )−1T ′W−1~g, c = W−1(I −
T (T ′W−1T )−1T ′W−1)~g where W = K+nλI . Additionally,
a more economical version that utilizing QR decomposition
also has been provided to compute the coefficients c and d
(see details in [63]). Moreover, more information about the
thin-plate spline can also be found in [16]–[18], [42], [51],
[64].
Remark 2 Once we have computed coefficients c and d, the
underlying function f on the continuous domain E2 can be
estimated as

f(w) =

M∑
ν=1

dνφν(w) +

n∑
i=1

ciEm(ti, w), (15)

for any w = (x, y)′ ∈ E2. One thus can get an estimate of
f(w) at any w ∈ [0, 1] × [0, 1]. This is very powerful and
makes image super-resolution possible.

III. THE PROPOSED ITERATIVE METHOD

Let f represent intensity function of an image defined on a
continuous domain. Without loss of generality, we assume the
domain is E2 = [0, 1] × [0, 1]. Let H,L be a high-resolution
and a low-resolution discretization of f , respectively. For
notation simplicity, we interchangeably use H,L to represent
their matrix and vector representations. H and L are usually
formulated by L = DBH+ε as described in equation (1), with
D,B a down-sampling and a blurring operator, respectively,
ε some random noise or 0 for noise-free case. We note that
the high-resolution image H ∈ RU×V can be obtained by
Hi = f(thi ) with thi = (xi, yi), xi ∈ {0, 1

U−1 ,
2

U−1 , · · · , 1},
yi ∈ {0, 1

V−1 ,
2

V−1 , · · · , 1} on a finer grid. Low-resolution
image L ∈ RQ×S is gotten by the discretization formula
Li = f(tli) with tli = (xi, yi), xi ∈ {0, 1

Q−1 ,
2

Q−1 , · · · , 1},
yi ∈ {0, 1

S−1 ,
2

S−1 , · · · , 1} on a coarser grid. In particular,
Q,S are smaller than U, V , respectively. Actually, T l ∈
Rn×M , Kl ∈ Rn×n and Th ∈ RN×M , Kh ∈ RN×n are the
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Fig. 2. (a) 1D Heaviside function; (b) Two approximated Heaviside functions
with ξ = 0.7 (blue solid line) and ξ = 0.05 (black dash line), respectively;
The smaller ξ the sharper edge (color images are better visualized in the pdf
file).

T,K matrices and T̃ , K̃ matrices in Section II-C, respectively,
where n = Q · S, N = U · V and M is the dimension of the
null space of the penalty term (see details also in Section II-C).
Motivated by the smoothing model (14), c, d can be solved
using the following model

min
1

n
‖L−DB(Thd+Khc)‖2 + λc′Klc, (16)

where H = Thd+Khc.
However, model (16) is for image smoothing. Super-

resolution results via this model may smooth out image edges.
In this work, we employ Heaviside functions to recover more
images details such as edges.

A. Heaviside function

Heaviside function, or Heaviside step function (see Figure
2(a)), is defined as follows

φ(x) =

{
0, x < 0,
1, x ≥ 0.

(17)

The Heaviside function is singular at x = 0 and describes
a jump at x = 0 perfectly. We usually use its smooth
approximation for practical problems. In our work, we use
the following approximated Heaviside function (AHF),

ψ(x) =
1

2
+

1

π
arctan(

x

ξ
), (18)

which approximates to φ(x) when ξ → 0 and ξ ∈ R actually
controls the smoothness. The smaller ξ the sharper jump (see
Figure 2(b)).

The AHF ψ(·) is a 1D function. Its variation ψ(vi · x +
ci) is however a 2D function when x ∈ R2. If we let vi =
(cos θi, sin θi), ψ(vi · x + ci) can actually describe an edge
with orientation θi located at a position specified by ci. In
Figure 3, we show some examples of ψ((cos θi, sin θi) · z +
ci). One can see that as θi, ci vary, we get edges of various
orientation at different locations. Confirmed by the following
theoretical foundation, we model edges in 2D images using
linear combination of this type of function.

Theorem 1 (see [35]) For any positive integers m, d and
any p ∈ [1,∞), spanmHd = {

∑m
i=1 ωiψ(vi · x + ci)}, with

ωi ∈ R, vi ∈ Rd and ci ∈ R, is approximately a compact
subset of (Lp([0, 1]d), ‖ · ‖p).
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Fig. 3. Left panel: 3D surface images of ψ under ξ = 10−4 and nine
parameter pairs (θ, c); right panel: the corresponding 2D images. From left
to right and then from top to bottom: ( 4π

5
, 51
1024

), ( 4π
5
, 25
64

), ( 4π
5
, 175
256

),
( 6π

5
, 135
1024

), ( 6π
5
, 1
2

), ( 6π
5
, 25
32

), ( 8π
5
, 5
64

), ( 8π
5
, 75
256

), ( 8π
5
, 75
128

) (for better
visualization, some 3D surface images in the left panel are rotated so that we
can observe the edge jumps clearly).

2D images are defined in R2, i.e., d = 2. Based on the
above theorem, we model edges in 2D images using the
following:

g(z) =

m∑
j=1

ωjψ((cos θj , sin θj) · z + cj), (19)

where small ξ = 10−4 is used in ψ, and

θj ∈ {0, π/12, 2π/12, 3π/12, · · · , 23/12π},

while cj ∈ {0, 1
n−1 ,

2
n−1 , · · · , 1} where n is the number of

all pixels of low-resolution image, m = kn where k is the
number of orientations {θj}.

Actually, equation (19) can be written as g = Ψω where
Ψ ∈ Rn×m, g ∈ Rn, ω ∈ Rm.

B. The proposed iterative method based on RKHS and Heav-
iside functions

In this work, we assume the underlying image intensity
function f is the sum of smooth components and edges,
which are modeled using splines based RKHS and Heaviside
functions, i.e., f = Td+Kc+ Ψβ. Since Ψ contains a pretty
exhaustive list of functions while edges are pretty sparse in
images, it is thus reasonable to expect β to be sparse. The
final proposed model is as follows

min
1

n
‖L−DB(Thd+Khc+Ψhβ)‖2+λc′Klc+α‖β‖1, (20)

where H = Thd+Khc+Ψhβ and `1 sparsity is enforced for
β. For blur free case, B = I , an identity matrix, DB(Thd+
Khc+Ψhβ) is considered as T ld+Klc+Ψlβ. Since ‖β‖1 is
not differentiable, we make a variable substitution and solve
the following equivalent problem:

min
1

n
‖L−(T ld+Klc+Ψlβ)‖2+λc′Klc+α‖u‖1, s.t., u = β,

(21)
using alternating direction method of multipliers (ADMM)
that is a very popular method for solving L1 problem [29],
[31], [67]. In particular, the convergence of ADMM method
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is guaranteed by many works, e.g., [28], [32]. The augmented
Lagrangian of problem (21) is as follows

L(c, d, β, u) = 1
n‖L− (T ld+Klc+ Ψlβ)‖2 + λc′Klc
+α‖u‖1 + ρ

2‖u− β + b‖2,
(22)

where α, ρ ∈ R are regularization parameters, b is a La-
grangian multiplier.

The energy functional in (22) is separable with respect to
(c, d, β) and u. We can thus focus on the two subproblems:

(c, d, β)-subproblem :
min(c,d,β)

1
n‖L− (T ld+Klc+ Ψlβ)‖2

+λc′Klc+ ρ
2‖u− β + b‖2,

(23)

u-subproblem : minu α‖u‖1 + ρ
2‖u− β + b‖2. (24)

The u-subproblem (24) has a closed form solution and is
calculated for each ui (see [67]) as

ui = shrink(βi − bi,
α

ρ
), (25)

where shrink(a, b) = sign(a)max(|a−b|, 0) and 0.(0/0) = 0
is assumed.

We employ least squares method to solve the (c, d, β)-
subproblem (23). The normal equation reads as Kl′Kl + nλKl Kl′T l Kl′Ψl

T l
′
Kl T l

′
T l T l

′
Ψl

Ψl′Kl Ψl′T l Ψl′Ψl + nρ
2 I

 c
d
β


=

 Kl′L

T l
′
L

Ψl′L+ nρ
2 (u+ b)

 ,

(26)
Equation (26) can be rewritten as the following three equa-
tions,

(Kl′Kl + nλKl)c+Kl′T ld+Kl′Ψlβ = Kl′L, (27)

T l
′
Klc+ T l

′
T ld+ T l

′
Ψlβ = T l

′
L, (28)

Ψl′Klc+ Ψl′T ld+ (Ψl′Ψl +
nρ

2
I)β = Ψl′L+

nρ

2
(u+ b).

(29)

We can solve for β from equation (29) in terms of c, d:

β = (Ψl′Ψl+
nρ

2
I)−1(Ψl′L+

nρ

2
(u+b)−Ψl′Klc−Ψl′T ld).

(30)
We then substitute equation (30) into equation (27) and

equation (28) and obtain

c = (A1 −A3A
−1
4 A2)−1(e1 −A3A

−1
4 e2),

d = A−14 (e2 −A2c),

β = (Ψl′Ψl +
nρ

2
I)−1(Ψl′L+

nρ

2
(u+ b)−Ψl′Klc−Ψl′T ld),

(31)

where A1 = (Kl′Kl+nλKl)−Kl′Ψl(Ψl′Ψl+ nρ
2 I)−1Ψl′Kl,

A2 = T l
′
Kl − T l′Ψl(Ψl′Ψl + nρ

2 I)−1Ψl′Kl, A3 = Kl′T l −
Kl′Ψl(Ψl′Ψl + nρ

2 I)−1Ψl′T l, A4 = T l
′
T l − T l′Ψl(Ψl′Ψl +

nρ
2 I)−1Ψl′T l, e1 = Kl′L −Kl′Ψl(Ψl′Ψl + nρ

2 I)−1(Ψl′L +
nρ
2 (u+b)), e2 = T l

′
L−T l′Ψl(Ψl′Ψl+ nρ

2 I)−1(Ψl′L+ nρ
2 (u+

b)). Equation (31) looks complicated and involves some matrix
inversions, but we only compute it once in the algorithm and
the matrix inversions are not ill-conditioned with proper λ and
ρ. If we apply the algorithm to image patches (see details in
the end of this section), the computation is very cheap.

The following algorithm is the corresponding ADMM
scheme:

Algorithm 1
Input: Given L, T l,Kl,Ψl, λ, α, ρ, γ ∈ (0, (

√
5 + 1)/2)

Output: c, d, β
j ← 0, (c(j), d(j), β(j))← 0, u(j) ← 0, b(j) ← 0
while not converged do

1. j ← j + 1
2. (c(j), d(j), β(j))← solve subproblem (23) for
u = u(j−1), b = b(j−1)

3. u(j) ← solve subproblem (24) for β = β(j), b = b(j−1)

4. b(j) ← b(j−1) + γ(u(j) − β(j))
End while.

Note that the convergence of Algorithm 1 is guaranteed by
the following theorem that its proof can be found in [28].
Theorem 2 For any γ ∈ (0, (

√
5 + 1)/2), the sequence

{(c(j), d(j), β(j))} obtained by Algorithm 1 converges to the
solution of problem (20) for any initial points u(0) and b(0).

In particular, we set γ = 1, β(0) = b(0) = 0 in our work,
the convergence of Algorithm 1 thus can be guaranteed.

Although model (20) can pick up more image details,
it can not completely overcome blur effect along edges of
high-resolution image. Due to imperfect reconstruction from
the model, we observe residual edges in difference image
L − DBH(1) where H(1) is the computed high-resolution
image by model (20). Inspired by the iterative back projection
method [34] and the iterative regularization method [47], we
consider the difference L−DBH(1) as a new low-resolution
input L, and recompute model (20) to get a residual high-
resolution image H(2). We repeat this process until the
residual is small enough. The sum of the high-resolution
image H(1) and its residual high-resolution images is the
resulted super-resolution image Ĥ . The strategy can recover
more image details (see Figure 4). In our experiments, it
is enough to iterate the process ten times. Algorithm 2
summerizes the proposed iterative RKHS algorithm for single
image super-resolution. This algorithm can work for general
D,B though we mainly tested it with bicubic down-sampling
and blur-free in the experiments.

For Algorithm 2, note that although we introduce some
parameters in the super-resolution algorithm, these parameters
are all not sensitive and easy to select (see the parameters
remark in Section IV). The solution of step 3a is obtained by
Algorithm 1. Down-sampling operators D, associating with
step 3a and step 3c in Algorithm 2, are done by bicubic
interpolation (In Matlab function: “imresize”).

Algorithm 2 can be applied on the whole image or patch by
patch. In our numerical experiments, we apply the algorithm to
image patches to reduce computation time and storage. We set
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Algorithm 2 (Single image super-resolution via RKHS (SR-
RKHS))
Input: one low-resolution image L ∈ RQ×S , λ > 0, α > 0,
τ : maximum number of iteration

Output: high-resolution image Ĥ ∈ RU×V
Step 1. Set coarse grids tl and fine grids th.
Step 2. Construct matrices T l,Kl,Ψl (refer to Section
II-C and Section III-A) for i, j = 1, 2, · · · , n, n = Q.S,
ν = 1, 2, · · · ,M . Similarly for Th,Kh,Ψh except i =
1, 2, · · · , N ; j = 1, 2, · · · , n, where N = U · V .
Step 3. Initialization: L(1) = L.

for k = 1: τ
a. Compute the coefficients: (c(k), d(k), β(k)) =

argmin 1
n‖L

(k) −DB(Thd+Khc+ Ψhβ)‖2+
λc′Klc+ α||β||1.

b. Update the high-resolution image:
H(k) = Thd(k) +Khc(k) + Ψhβ(k).

c. Down-sampling H(k) to coarse grid: L̃ = DBH(k).
d. Compute residual: L(k+1) = L(k) − L̃.
end

Step 4. Compute the final high-resolution image:
Ĥ =

∑τ
i=1H

(i).

(a) Ĥ (b) H(1) (c) H(2) (d) H(3)

Fig. 4. Super-resolution image “lena” by Algorithm 2; (a) is the sum image
of H(i), i = 1, 2, 3; (b) is the computed image for first iteration. For better
vision, we add 0.5 to the intensities of H(2) and H(3) to obtain (c) and (d),
respectively. From last two images, we know that H(2) and H(3) pick up
some image details.

patch size to be 6×6 with overlaps. Intensity at the boundary
is estimated by bicubic interpolation.

In what follows, we compare the proposed approach with
some competitive methods.

IV. NUMERICAL EXPERIMENTS

In this section, we mainly compare the proposed approach
with some state-of-the-art super-resolution methods: bicubic
interpolation, a fast upsampling method (“08’TOG” [53]),
a learning-based method (“10’TIP” [71]). In addition, the
proposed method actually can be viewed as an interpolation-
based approach. Thus it is necessary to compare the proposed
method with some state-of-the-art interpolation methods, e.g.,
two contour stencils based interpolations (“11’IPOL” [27],
“11’SIAM” [26]) and an interpolation and reconstruction
based method (“14’TIP” [65]). Furthermore, we also com-
pare the proposed method with a kernel regression method
(“07’TIP” [59]), multiscale geometric method (“07’SPIE”
[45]).

We use two kinds of test images. One is low-resolution im-
ages without high-resolution ground-truth (see Section IV-A).

The other is simulated low-resolution images from known
high-resolution images (see Section IV-B). In the later case,
one has high-resolution ground-truth available for quantita-
tive comparisons. For fair comparison, we set B = I in
our experiments because some of the methods compared do
not involve deblurring process. All experiments are done in
MATLAB(R2010a) on a laptop of 3.25Gb RAM and Intel(R)
Core(TM) i3-2370M CPU: @2.40 GHz, 2.40 GHz.

The proposed Algorithm 2 is for gray-scale images. For
color images such as RGB, there is redundancy in channels,
we first transform it to “YCbCr” color space 1 where “Y”
represents luminance component, “Cb” and “Cr” represent
blue-difference and red-difference components that are less
redundant. “Y” is essentially a grayscale copy of the color
image and carries most of the high resolution details of the
color image. This color space is very popular in image/video
processing. Because humans are more sensitive to luminance
changes, the proposed algorithm is only applied to the il-
luminance channel and bicubic interpolation is applied to
the color layers (Cb, Cr). The upscaled images in YCbCr
space is transformed back to the original color space for
visualization/analysis. Color image results are better visualized
in the original pdf file.

We employ root-mean-square error (RMSE) for quantitative
comparisons, and the RMSE index is used in some super-
resolution works, e.g., “10’TIP” [71]. Furthermore, a pop-
ular index Peak Signal-Noise Ration (PSNR) is utilized to
estimate the performance of different methods. In particular,
we compute PNSR only on the luminance channel “Y” in
the experiments. In addition, we also employ the structural
similarity (SSIM) index 2 [68] to compare different methods.
A remark on parameter selection: The related parameters
in Algorithm 1 and Algorithm 2 are easy to select. We set
λ = 10−11, α = 10−4, ρ = 10−5. The maximum iteration τ
is 3. For simplicity, we only do 10 iterations for Algorithm
1. In addition, we set M = 6 so that φ1(t) = 1, φ2(t) =
x,φ3(t) = y, φ4(t) = xy, φ5(t) = x2, φ6(t) = y2 (see details
in Section II-C). Note that the proposed method includes many
parameters, e.g., λ, ρ, patch size, etc. However, they are easy
to select because the proposed method that can be viewed as
an interpolation approach is not sensitive to the selection of
parameters. Actually, choosing suitable parameters is always
a difficulty to many image algorithms. Tuning empirically is a
popular way to determine parameters. In our work, we obtain
the parameters by tuning empirically.

A. Results on low-resolution images without ground-truth

In this section, experiments are based on natural images
without ground-truth, thus quantitative comparisons (e.g.,
RMSE) are not available.

In Figure 5 and Figure 6, we compare the proposed SR-
RKHS method with classical bicubic interpolation, “07’TIP”
[59], “08’TOG” [53], “10’TIP” [71], “11’IPOL” [27],
“11’SIAM” [26] and “14’TIP” [65]. The upscaling factors are
all 3. From the figures, the results of bicubic interpolation,

1http://en.wikipedia.org/wiki/YCbCr
2https://ece.uwaterloo.ca/∼z70wang/research/ssim/
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LR Bicubic 07’TIP 08’TOG 10’TIP

11’IPOL 11’SIAM 14’TIP Ours

LR Bicubic 07’TIP 08’TOG 10’TIP

11’IPOL 11’SIAM 14’TIP Ours

Fig. 5. Compare the proposed algorithm with some state-of-the-art approaches: Bicubic interpolation, 07’TIP [59], 08’TOG [53], 10’TIP [71], 11’IPOL [27],
11’SIAM [26] and 14’TIP [65]. The upscaling factor is 3. No ground-truth high-resolution images are available for quantitative comparison. Color images
are better visualized in the pdf file.

“07’TIP” and “08’TOG” show blur effect for the whole image.
The results of “10’TIP” and “14’TIP” preserve sharp edges
well, however, they smooth out image details on non-edge
regions, e.g., freckles on the skin (see close-ups in Figure
6). The two contour interpolation methods “11’IPOL” and
“11’SIAM” keep image edges and details well, but the results
contain some artificial contours near true edges. The proposed
method performs well, not only on edges but also for fine
details/textures away from edges.

B. Results on low-resolution images simulated from known
ground-truth images

To provide quantitative comparisons in terms of RMSE,
PSNR and SSIM, we start from some high-resolution images,
treat them as ground-truth and simulate low-resolution images
by bicubic interpolation.

In this section, we mainly compare the proposed method
with several state-of-the-art methods: bicubic interpolation,
“08’TOG” [53], “10’TIP” [71], “11’IPOL” [27] and “14’TIP”
[65]. In Figures 7-9, upscaled high-resolution images by
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LR Bicubic 07’TIP 08’TOG 10’TIP

11’IPOL 11’SIAM 14’TIP Ours

Fig. 6. Compare the proposed algorithm with some state-of-the-art approaches: Bicubic interpolation, 07’TIP [59], 08’TOG [53], 10’TIP [71], 11’IPOL [27],
11’SIAM [26] and 14’TIP [65]. The upscaling factor is 3. No ground-truth high-resolution images are available for quantitative comparison.

LR Ground Bicubic 08’TOG

10’TIP 11’IPOL 14’TIP Ours

Fig. 7. Qualitative comparison for the image “face” among the proposed method and Bicubic, “08’TOG” [53], “10’TIP” [71], “11’IPOL” [27] and “14’TIP”
[65], with the upscaling factor of 2.
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LR Ground Bicubic 08’TOG 10’TIP 11’IPOL 14’TIP Ours

Fig. 8. Results of “baboon” (upscaling factor 4) and “forest” (upscaling factor 4); Compared methods: Bicubic interpolation, “08’TOG” [53], “10’TIP” [71],
“11’IPOL” [27] and “14’TIP” [65] and ours. In particular, readers are recommended to zoom in all figures for better visualization.

bicubic interpolation show blur effect. Although we can get
sharp edges via “08’TOG” [53], it flattens details on non-edge
regions. The method “11’IPOL” [27] recovers image details
well, but introduces some artificial contours near true edges.
For instance, for the “baboon” example in Figure 8, it has
many artificial contours near the true edges (see the close-
up). “14’TIP” [65] preserves sharp image edges but smooths
out image intensity not on edges. The method “10’TIP” [71]
obtains competitive visual results, however, it generates worse
quantitative results than the proposed method (see Table I). In
addition, the results of “07’SPIE” [45] and “11’SIAM” [26] in
Figure 9 also perform worse than the proposed method. The
proposed method not only preserves sharp edges but also keeps
high-frequency details well on non-edge regions. Furthermore,
the proposed method also gets the best RMSE, PSNR and
SSIM for almost all examples.

In Figure 10 and Table I, we find that the proposed method
gets better quantitative and visual results. The results of
bicubic interpolation and “08’TOG” show significant blur
effect. The method “11’IPOL” also obtains excellent visual
results, but the visual results show obvious artificial contours.
The method “14’TIP” gets the sharpest image edges, but it
smoothes out image details on non-edge regions. In addition,
The method “10’TIP” obtains similarly visual results with the
proposed method, but the proposed method has lower RMSE,
larger PSNR and SSIM. In Figure 11, the proposed method
performs best, especially for image details, e.g., hair of lion.
The learning-based method “10’TIP” [71] obtain excellent
visual and quantitative results, it however needs extra training
data to generate dictionary. We also give corresponding error
maps in Figure 12. Furthermore, we can find more quantitative
comparisons in Table I. It demonstrates that the proposed
method gets better quantitative performance than other meth-
ods for almost all examples. In particular, instead of RKHS and
Heaviside functions, one can use wavelet basis or frames in our
framework. We haven’t got time to compare the performance.

Computation issue: We present the computation com-
parisons in Table II. From the table, we find that bicubic
interpolation is the fastest. However, we have to note that
bicubic interpolation is optimized in MATLAB, “08’TOG”

Ground Bicubic 07’SPIE

08’TOG 10’TIP 11’IPOL

11’SIAM 14’TIP Ours

Fig. 9. Results of “baby” with the upscaling factor of 2; First row: Ground-
truth image, Bicubic interpolation (RMSE = 3.58; PSNR = 37.06; SSIM
= 0.993), “07’SPIE” [45] (3.73; 36.70; 0.996); Second row: “08’TOG”
[53] (4.32; 35.43; 0.982), “10’TIP” [71] (3.40; 37.51; 0.995), “11’IPOL”
[27] (3.37; 37.58; 0.997); Third row: “11’SIAM” [26] (3.24; 37.93; 0.997),
“14’TIP” [65] (4.19; 36.82; 0.985) and the proposed method (3.17; 38.19;
0.997).

is optimized by an executable software 3, “11’IPOL” 4 and
“14’TIP” 5 are speeded up via C language and Cmex, re-
spectively. Only “10’TIP” 6 and the proposed method are
based on MATLAB codes that are not optimized. In particular,
computation time with respect to the change of upscaling

3http://www.cse.cuhk.edu.hk/∼leojia/projects/upsampling/index.html
4http://www.ipol.im/pub/art/2011/g iics/
5http://www.escience.cn/people/LingfengWang/publication.html
6http://www.ifp.illinois.edu/∼jyang29/ScSR.htm
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LR Ground Bicubic 08’TOG 10’TIP 11’IPOL 14’TIP Ours

Fig. 10. Results of “dog” (upscaling factor 3) and “field” (upscaling factor 3); Compared methods: Bicubic interpolation, “08’TOG” [53], “10’TIP” [71],
“11’IPOL” [27] and “14’TIP” [65] and the proposed method.

LR Ground Bicubic 08’TOG

10’TIP 11’IPOL 14’TIP Ours

Fig. 11. Results of “lion” with the upscaling factor of 3; Compared methods: Bicubic interpolation, “08’TOG” [53], “10’TIP” [71], “11’IPOL” [27] and
“14’TIP” [65] and the proposed method.

Bicubic 08’TOG 10’TIP

11’IPOL 14’TIP Ours

Fig. 12. Compare error maps of the proposed method and five other methods.
The test image is “lion”. The error maps are brightened for better visualization.

factor and image size is presented in Figure 13. One can see
that it is acceptable to employ our method for image super-
resolution. The computation time is based on non-optimized
Matlab code. It has a lot of room to speed up the code.
For instance, the code contains a lot of loops that can be
significantly sped up using Cmex.

The relation between model (20) and model (20) com-
bined with iterative strategy: Equation (20) is the proposed
model in the work. In particular, we employ an iterative
strategy for the proposed model to recover more image details.
Thus it is necessary to illustrate the relation between model
(20) and model (20) combined with our iterative strategy.
Actually, there is no significantly visual difference between
the two methods, especially in image details and edges (see
the almost dark error map in Figure 14(c)). However, it is
easy to know that the proposed model (20) combined with the
iterative strategy performs lower RMSE comparing with the
proposed model (20). In addition, the iterative strategy results
in more computation obviously.
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Fig. 13. (a) Computation time vs. upscaling factor for low-resolution image with size 80 × 80; (b) Computation time vs. size of low-resolution image, the
size of low-resolution image is from 40 × 40 to 140 × 140 and the upscaling factor is always 5.

V. CONCLUSIONS

Given a low-resolution image, the super-resolution prob-
lem was casted as an image intensity function estimation
problem. Because images mainly contain smooth components
and edges, we assumed smooth components belong to 2D
thin-plate spline based RKHS and edges can be represented
by approximated Heaviside functions. The coefficients of
the redundant basis were computed using the low-resolution
image. We then applied the coefficients to generate high-
resolution images. To recover sharp high-resolution images,
we proposed an iterative scheme to preserve more image
details. In addition, we applied the proposed method to image
patches to reduce computation and storage significantly. Many
experiments showed that the proposed approach outperformed
the state-of-the-art methods, both visually and quantitatively.

(a) (b) (c)

Fig. 14. (a) Result of model (20) with the iterative strategy (i.e., τ = 3 in
Algorithm 2, RMSE = 10.25); (b) Result of model (20) without the iterative
strategy (i.e., τ = 1 in Algorithm 2, RMSE = 10.36); (c) Error map between
(a) and (b). Upscaling factor: 3.
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TABLE I
QUANTITATIVE COMPARISONS FOR DIFFERENT METHODS IN TERMS OF RMSE, PSNR AND SSIM (BOLD: THE BEST ONE; UNDERLINE: THE SECOND
BEST). COMPARED METHODS: BICUBIC INTERPOLATION, “08’TOG” [53], “10’TIP” [71], “11’IPOL” [27] AND “14’TIP” [65] AND THE PROPOSED

METHOD.

Image(factor) Index Bicubic 08’TOG 10’TIP 11’IPOL 14’TIP Proposed
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SSIM 0.862 0.843 0.873 0.879 0.828 0.883

baboon(X4)
RMSE 19.47 19.29 19.32 19.22 19.51 19.13
PSNR 22.25 22.31 22.30 22.41 21.88 22.43
SSIM 0.704 0.714 0.718 0.760 0.711 0.756

forest(X4)
RMSE 18.63 18.30 18.47 18.44 18.84 18.09
PSNR 22.78 22.93 22.85 22.86 22.79 23.03
SSIM 0.685 0.701 0.701 0.738 0.646 0.748

baby(X2)
RMSE 3.58 4.32 3.40 3.37 4.19 3.17
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TABLE II
TIME COMPARISON FOR DIFFERENT METHODS (BOLD: THE BEST ONE; UNDERLINE: THE SECOND BEST). COMPARED METHODS: BICUBIC

INTERPOLATION, “08’TOG” [53], “10’TIP” [71], “11’IPOL” [27], “14’TIP” [65] AND THE PROPOSED METHOD. NOTE THAT BICUBIC IS OPTIMIZED
IN MATLAB, “08’TOG” IS OPTIMIZED BY AN EXECUTABLE SOFTWARE, “11’IPOL” AND “14’TIP” ARE SPEEDED UP VIA C LANGUAGE AND CMEX,

RESPECTIVELY. ONLY “10’TIP” AND THE PROPOSED METHOD ARE BASED ON MATLAB CODES THAT ARE NOT OPTIMIZED. (UNIT: SECOND)
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[35] P. C. Kainen, V. Ku̇rková, and A. Vogt, “Best approximation by
linear combinations of characteristic functions of half-space,” Journal
of Approximation Theory, vol. 122, pp. 151–159, 2003.

[36] S. H. Kang, B. Shafei, and G. Steidl, “Supervised and Transductive
Multi-Class Segmentation Using p-Laplacians and RKHS methods,”
Preprint at uni-kl.de, 2012.

[37] C. Kim, K. Choi, K. Hwang, and J. B. Ra, “Learning-based super-
resolution using a multi-resolution wavelet approach,” Iternational work-
shop on Advance Image Technology (IWAIT), 2009.

[38] C. Kim, K. Choi, and J. B. Ra, “Improvement on learning-based super-
resolution by adopting residual information and patch reliability,” IEEE
International Conference on Image Processing (ICIP), pp. 1197–1200,
2009.

[39] K. Komatsu, T. Igarashi, and T. Saito, “Very high resolution imaging
scheme with multiple different-aperture cameras,” Signal Processing:
Image Communication, vol. 5, pp. 511–526, 1993.

[40] X. Li and M. Orchard, “New Edge-Directed Interpolation,” IEEE Trans.
Image Processing, vol. 10, pp. 1521–1527, 2001.

[41] Liyakathunisa and V. K. Ananthashayana, “Super resolution blind re-
construction of low resolution images using wavelets based fusion,”
International Journal of Computer and Information Engineering, vol. 2,
pp. 106–110, 2008.

[42] J. Meinguet, “Multivariate interpolation at arbitrary points made simple,”
Journal of Applied Mathematics and Physics (ZAMP), vol. 30, pp. 292–
304, 1979.



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2475895, IEEE Transactions on Circuits and Systems for Video Technology

14

[43] J. Mercer, “Functions of positive and negative type, and their connection
with the theory of integral equations,” Philosophical transactions of the
royal society of London. Series A, containing papers of a mathematical
or physical character, vol. 209, pp. 415–446, 1909.

[44] C. A. Micchelli and M. Pontil, “On leaning vector-valued functions,”
Neural Computation, vol. 17, pp. 177–204, 2005.

[45] N. Mueller, Y. Lu, and M. Do, “Image Interpolation Using Multiscale
Geometric Representations,” SPIE proceedings, 2007.

[46] A. Nosedal-Sanchez, C. B. Storlie, T. C. M. Lee, and R. Christensen,
“Reproducing kernel Hilbert spaces for penalized regression: a tutorial,”
The American Statistician, vol. 66, pp. 50–60, 2012.

[47] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-
larization method for total variation-based image restoration,” Multiscale
Modeling and Simulation, vol. 4, pp. 460–489, 2005.

[48] S. C. Park, M. K. Park, and M. G. Kang, “Super-Resolution image
reconstruction: a technical overview,” IEEE signal processing magazine,
vol. 20, pp. 21–36, 2003.

[49] M. H. Quang, S. H. Kang, and T. M. Le, “Image and video colorization
using vector-valued reproducing kernel Hilbert spaces,” Journal of
Mathematical Imaging and Vision, vol. 37, pp. 49–65, 2010.

[50] B. Schökopf and A. Smola, “Learning with kernels: support vector
machines, regularization, optimization, and beyond,” MIT Press, Cam-
bridge, 2002.

[51] R. Seaman and M. Hutchinson, “Compamtive real data tests of some
objective analysis methods by withholding,” Australian Meteorological
Magazine, vol. 33, pp. 37–46, 1985.

[52] A. J. Shah and S. B. Gupta, “Image super resolution - a survey,”
International Conference on Emerging Technology Trends in Electronics,
Communication and Networking, 2012.

[53] Q. Shan, Z. Li, J. Jia, and C. Tang, “Fast Image/Video Upsampling,”
ACM Transactions on Graphics (TOG), vol. 27, 2008.

[54] J. Shawe-Taylor and N. Cristianini, “Kernel methods for pattern analy-
sis,” Cambridge University Press, Cambridge, 2004.

[55] J. Sun, J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using
gradient profile prior,” CVPR, pp. 1–8, 2008.

[56] J. Sun, N. N. Zheng, H. Tao, and H. Shum, “Image hallucination with
primal sketch priors,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2, pp. 729–736, 2003.

[57] S.-C. Tai, T.-M. Kuo, C.-H. Iao, and T.-W. Liao, “A fast algorithm
for single-image super resolution in both wavelet and spatial domain,”
International Symposium on Computer, Consumer and Control, pp. 702–
705, 2012.

[58] Y.-W. Tai, S. Liu, M. Brown, and S. Lin, “Super resolution using edge
prior and single image detail synthesis,” CVPR, pp. 2400–2407, 2010.

[59] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Transactions on Image Processing,
vol. 16, pp. 349–366, 2007.

[60] M. F. Tappen, B. C. Russell, and W. T. Freeman, “Exploiting the
sparse derivative prior for super-resolution and image demosaicing,”
IEEE Workshop on Statistical and Computational Theories of Vision,
2003.

[61] J. D. Van Ouwerkerk, “Image super-resolution survey,” Image and Vision
Computing, vol. 24, pp. 1039–1052, 2006.

[62] F. Viola, A. W. Fitzgibbon, and R. Cipolla, “A unifying resolution-
independent formulation for early vision,” CVPR, pp. 494–501, 2012.

[63] G. Wahba, “Spline models for observational data,” SIAM. CBMS-NSF
Regional Conference Series in Applied Mathematics, vol. 59, 1990.

[64] G. Wahba and J. Wendelberger, “Some new mathematical methods
for variational objective analysis using splines and cross-validation,”
Monthly Weather Review, vol. 108, pp. 1122–1145, 1980.

[65] L. Wang, H. Wu, and C. Pan, “Fast image upsampling via the displace-
ment field,” IEEE Trans. Image Processing, vol. 23, pp. 5123–5135,
2014.

[66] L. Wang, S. Xiang, G. Meng, H. Wu, and C. Pan, “Edge-Directed
single-image super-resolution via adaptive gradient magnitude self-
interpolation,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 23, pp. 1289–1299, 2013.

[67] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimiza-
tion algorithm for total variation image reconstruction,” SIAM Journal
on Imaging Sciences, vol. 1, pp. 248–272, 2008.

[68] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Processing, vol. 13, pp. 600–612, 2004.

[69] Q. Xie, H. Chen, and H. Cao, “Improved example-based single-image
superresolution,” International Congress on Image and Signal Process-
ing (CISP), vol. 3, pp. 1204–1207, 2010.

[70] J. Yang, Z. Wang, L. Zhe, and T. Huang, “Coupled dictionary training
for image super-resolution,” IEEE transactions on image processing,
vol. 21, pp. 3467–3478, 2011.

[71] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE transactions on image processing, vol. 19,
pp. 2861–1873, 2010.

[72] J. Yang, J. Wright, Y. Ma, and T. Huang, “Image super-resolution
as sparse representation of raw image patches,” IEEE Conference on
Computer Vision and Pattern Recongnition (CVPR), pp. 1–8, 2008.

[73] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” Curves and Surfaces, Lecture Notes in Comput-
er Science, vol. 6920, pp. 711–730, 2012.

[74] L. Zhang and X. Wu, “An Edge-Guided Image Interpolation Algorithm
via Directional Filtering and Data Fusion,” IEEE Trans. Image Process-
ing, vol. 15, pp. 2226–2238, 2006.

[75] Y. Zhao, J. Yang, Q. Zhang, S. Lin, Y. Cheng, and Q. Pan, “Hyper-
spectral imagery superresolution by sparse representation and spectral
regularization,” EURASIP Journal on Advances in Signal Processing,
2011.

[76] H. Zheng, A. Bouzerdoum, and S. L. Phung, “Wavelet based nonlocal-
means superresolution for video sequences,” IEEE International Con-
ference on Image Processing (ICIP), pp. 2817–2820, 2010.

Liang-Jian Deng received B.S. degree from
the School of Mathematical Sciences, Universi-
ty of Electronic Science and Technology of Chi-
na(UESTC), Chengdu, China, in 2010. He is current-
ly pursuing the Ph.D. degree with School of Math-
ematical Sciences of UESTC. His current research
interest is image processing, including image super-
resolution, deblurring&denoising, inpainting and de-
hazing.

Weihong Guo received the B.S. degree in Compu-
tational Math from Minzu University of China in
1999, the M.S. degree in Statistics and the Ph.D.
degree in Applied Math, both from University of
Florida and both in 2007. She was a Math Assistant
Professor at the University of Alabama 2007-2009
and is now an Applied Math Associate Professor at
Case Western Reserve University, OH. Her research
interests include variational image reconstruction,
image super-resolution and image segmentation.

Ting-Zhu Huang is a professor at the School of
Mathematical Sciences, University of Electronic Sci-
ence and Technology of China. His research inter-
ests include numerical linear algebra and scientific
computation with applications in electromagnetics,
modeling and algorithms for image processing, etc.
He has published over 100 papers in international
journals, including SIAM J. Sci. Comput., SIAM
J. Matrix Anal. Appl., IMA J. Numerical Anal., J.
Comput. Phys., Computer Phys. Comm., Numerical
Lin. Alg. Appl., Automatica, IEEE Trans. Antennas

and Propagation, IEEE Trans. Geoscience and Remote Sensing, Information
Sciences, J. Optical Society of America A, Computing, Lin. Alg. Appl., Appl.
Math. Letters, Comput. Math. Appl., Appl. Math. Modelling, J. Franklin
Institute, J. Comput. Appl. Math., Comm. Nonlin. Sci. Numer. Simul., etc. He
received the Science and Technology Progress Award of Sichuan Province,
Chinese Information Ministry for several times. Dr. Huang has been served
in the editorial board of several international journals.


