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Abstract

Image super-resolution is a process to enhance image resolution from one single or multiple low
resolution images. It is widely used in medical imaging, satellite imaging, target recognition, etc. In
this paper, we solve the problem of single image super-resolution from an image intensity function
estimation perspective. We conduct continuous modeling and assume that the unknown image
intensity function is defined on a continuous domain and belongs to a space with a redundant
basis. The selection of the redundant basis is based on an observation: an image is consisted
of smooth components and non-smooth components, and we use two classes of approximated
Heaviside functions (AHFs) to represent them respectively. The coefficients of the redundant
basis are computed iteratively from the given low-resolution image. In addition, we apply the
proposed iterative model to image patches to reduce computation and storage. Comparisons with
some existing competitive methods show the effectiveness of the proposed method.
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1 Introduction

Image super-resolution (SR) is to estimate a high-resolution (HR) image from one or multiple low-
resolution (LR) images. When there is only one low-resolution input, it is called single image super-
resolution. The other case is called multiple image super-resolution. Compared to multiple image
super-resolution, single image super-resolution is more practical when only one low-resolution image
is available. Obviously, it is more challenging. In this paper, we address single image super-resolution.
Low-resolution images but not high-resolution images are sometimes available due to the limitation
of hardware devices and high cost. For instance, it needs more cost and time to get high-resolution
images in medical imaging MRI. Due to long distance and air turbulence, we can not get high-resolution
images for synthetic aperture radar (SAR) and satellite imaging. In target recognition, we may not
always get high-resolution videos to make accurate recognition. Thus, it is important and useful to
develop a more effective image super-resolution algorithm.

There are mainly four categories of image super-resolution methods: interpolation-based methods,
learning-based methods, statistics-based methods and other methods. In Tab. 1 we briefly list some
advantages and disadvantages of methods in each category. Methods in different category are however
not completely independent. For instance, some of statistics-based methods may involve learning
strategies.

Nearest-neighbor interpolation and bicubic interpolation are two classical interpolation methods.
Nearest-neighbor interpolation estimates intensity of an unknown location using that of its nearest
neighbor point. It however often creates jaggy effect. Bicubic interpolation is to interpolate unknown
intensity by utilizing a cubic kernel, and may cause blur effect. More interpolation methods have
been proposed recently [39, 43, 69, 7, 25, 24, 54]. In [24], it introduces a contour stencils method to
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estimate the image contours based on total variation (TV) along curves. This method can distinguish
lines of different orientations, curves, corners, etc., with a computationally efficient formula so that
the resulted high-resolution images preserve image details well. In [54], Wang et al. propose a fast
image super-resolution method on the displacement field. This method is based on two stages, one of
which uses an interpolation technique to pick up the low-frequency information and the other employs
a reconstruction method to recover local high-frequency structures.

Learning-based methods are an important tool for many image applications, e.g., image retrieval
[63], image reranking [62], image classification [61]. Recently, many image super-resolution methods
are learning-based [23, 22, 47, 50, 28, 21, 46, 35, 34, 41, 76, 57, 48, 9, 19, 60, 59, 58, 75, 30, 16, 67, 36,
3, 51, 52, 15, 72, 27, 38]. Learning-based methods need two large training data sets, one formed by
low-resolution images and the other by the corresponding high-resolution images. A relation between
the two training data sets is learned and then applied to a given low-resolution image to obtain
a high-resolution image. They heavily rely on the selection of training data and involve expensive
computation. They are not single image super-resolution approaches in a strict sense as they require
extra training data. In particular, most of the learning-based methods are based on the optimization
framework that can be used in many image applications, e.g., image deblurring [73, 74, 12, 14, 40],
image decomposition [42], etc. In [59], Yang et al. propose a sparse signal representation method
based on the optimization frame for single image super-resolution. [15] by Dong et al. was the first
work to apply a deep learning method for single image super-resolution.

Table 1: Four categories for image super-resolution. Note that these categories sometimes are not
completely independent. For instance, some of statistics-based methods may involve learning strategies.
In particular, since there are no common advantages and disadvantages for “Other methods”, we do
not present them in the table.

Interpolation-based
methods

e.g., Nearest-neighbor interpolation,
bicubic interpolation, contour

stencils [25, 24]. More
references: [39, 43, 69, 7, 54]

Advantage: fast.
Disadvantage: sometimes encounter

jaggy or blur effect.

Learning-based
methods

e.g., Sparse coding [60, 59], deep
learning method [15]. More

references: [36, 3, 51, 52], etc.

Advantage: accurate.
Disadvantage: extra data for

training, slow speed.

Statistics-based
methods

e.g., Maximum a Posterior (MAP),
Maximum Likelihood estimator (MLE).

References: [17, 6, 18].

Advantage: accurate.
Disadvantage: encounter some

artifacts, e.g., blur effect.

Other methods
e.g., hybrid method [11], frequency

technique [4], etc. More
references: [31, 32, 37, 53, 5].

Advantage: -
Disadvantage: -

Statistics-based methods such as Maximum a Posterior (MAP) and Maximum Likelihood estimator
(MLE) are a popular tool for image super-resolution [17, 6, 18, 45]. Fattal [18] utilizes statistical edge
dependency relating edge features in low and high resolution images to preserve sharp edges. In [17],
an alternative approach using `1 norm minimization and a bilateral prior based robust regularization,
is proposed by Farsin et al.

Many other methods have also been proposed for image super-resolution. Examples are hybrid
method [11], pixel classification method [1, 2], frequency technique [4], reconstruction method [31, 32,
37, 10, 49] and others [53, 5, 20, 44, 65, 8, 64, 66, 70, 71, 68].

Most existing image super-resolution methods are based on discrete models. In this paper, we
propose a continuous model based on approximated Heaviside functions (AHFs) for single image super-
resolution. Since an image is normally consisted of smooth components and non-smooth components
such as step edges, we model an image as a sum of two classes of AHFs, one representing smooth
components and the other depicting non-smooth components. Due to the sparsity of non-smooth
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components, we design a `1 regularization model and solve it by alternating direction method of
multipliers (ADMM). An iterative model based on the `1 model is proposed to preserve more details.
We apply the coefficients, computed by the iterative model, to generate high-resolution images at any
upscaling factors. The iterative model is applied to image patches, aiming to get cheap computation
and storage. For images with smooth background, the proposed method may cause ring artifacts and
we develop a strategy utilizing image gradient to reduce them. Numerical experiments show that the
proposed method is a competitive method comparing with existing excellent methods.

To the best of our knowledge, this is the first work to use AHFs on image super-resolution. The
proposed method can preserve not only edges, but also the high-frequency details on non-edge regions.
The proposed method is completely single image super-resolution method without using training data.

The organization of this paper is as follows. In Section 2, we review Heaviside function and show
why we can use it for image super-resolution. In Section 3, we present the proposed method, including
the corresponding new model, new algorithm and other strategies. Visual and quantitative experiments
are given in Section 4. Finally, we draw conclusions in Section 5.

2 The Heaviside function

The Heaviside function, or the Heaviside step function, is defined as follows (see Fig. 1(a))

φ(x) =

{
0, x < 0,
1, x ≥ 0,

(1)

which is singular at x = 0. In practice, we usually use its approximation, called approximated Heaviside
function (AHF), such as 1

1+e−2x/ξ and 1
2 + 1

πarctan(xξ ) which approximate to φ(x) when ξ → 0. In this
paper, we use the following approximated Heaviside function,

ψ(x) =
1

2
+

1

π
arctan

(
x

ξ

)
, (2)

where ξ ∈ R actually controls the smoothness. The smaller ξ, the sharper edge (see Fig. 1(b)).
From [33], we know that any function in Lp([0, 1]d), p ∈ [1,∞), has a best approximation by linear

combinations of m characteristic functions of half-space, and m is any positive integer. Let Hd be a
set of functions on [0, 1]d defined as

Hd = {f : [0, 1]d → R : f(x) = ψ(v · x + c),v ∈ Rd, c ∈ R}, (3)

where ψ is an approximated Heaviside function. Hd is the set of characteristic function of closed
half-spaces of Rd.

Theorem 1 (see [33]) For any positive integer d, define spanmHd as {
∑m
i=1 ωiψ(vi ·x+ci)}, where

ωi ∈ R and vi ∈ Rd and ci ∈ R, then it is known that Um∈N+spanmHd is dense in (Lp([0, 1]d), ‖ · ‖p),
p ∈ [1,∞) .

Theorem 2 (see [33]) For every positive integers m, d and every p ∈ [1,∞), spanmHd is approxi-
mately a compact subset of (Lp([0, 1]d), ‖ · ‖p).

In practical computing, one only can afford to use spanmHd for a finite m.
In our work, we focus on two-dimensional image super-resolution, so d = 2. Here, we assume the

underlying image intensity function f is defined on [0, 1]2 and f ∈ Lp([0, 1]2) with p ∈ [1,∞), by
Theorem 1 and 2, f can be approximated by the following equation,

f(z) =

m∑
j=1

ωjψ(vj · z + cj), (4)

where ωj ∈ R, vj ∈ R2 and cj ∈ R. We discretize vj = {(cosθt, sinθt)′, t = 1, 2, · · · , k} to denote k
different directions, and cj = { 1q ,

2
q ,

3
q , · · · , 1} to denote discrete positions, m = kq, z = (x, y)′. We fix

q as the total number of pixels of the input image. Furthermore, {ψ(vj · z + cj)}mj=1 with a specific
ξ is called a class of AHFs. In particular, we can describe edges of different orientations θt at the
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Figure 1: (a) Heaviside function; (b) Two approximated Heaviside functions with ξ = 0.7 (blue solid
line) and ξ = 0.05 (black dash line), the smaller ξ the sharper edge (color images are better visualized
in the pdf file).

locations cj when setting a small ξ. For an image L ∈ Rn1×n2 , we assume it is a discretization of
intensity function f on [0, 1]2, i.e., Li,j = f(xi, yj), xi = i

n1
, yj = j

n2
, i = 1, 2, · · · , n1, j = 1, 2, · · · , n2.

We can rewrite Eq. (4) as matrix-vector form, L ≈ Ψω, where L ∈ Rn,Ψ ∈ Rn×m, ω ∈ Rm with
n = n1n2,m = kq. Once we have computed coefficient ω, we can make image super-resolution with
upscaling factor s possible by the equation Ψ̃ω, where Ψ̃ ∈ RN×m is obtained similarly with Ψ,
N = s2n1n2. Note that the approximation accuracy of Eq. (4) depends on the value of ξ. In the next
section, we will address how to choose it.

3 The proposed model and its solution

3.1 The proposed `1 model and its solution

From Fig. 2 and Fig. 3, it is easy to know that the corresponding AHFs with bigger ξ represent smooth
components well, and the corresponding AHFs with smaller ξ depict non-smooth components such as
edges well. An image is generally consisted of smooth components and non-smooth components, thus
we represent an image with two classes of AHFs, one with a bigger parameter ξ1 to represent smooth
components (forming Ψ1) and the other with a smaller ξ2 to depict non-smooth components (forming
Ψ2). The two classes of AHFs form a redundant representation for the underlying intensity function.
By this strategy, the vector-form image L can be approximated by the following discrete formula,

L ≈ Ψ1β1 + Ψ2β2, (5)

where Ψ1,Ψ2 ∈ Rn×m, and β1, β2 ∈ Rm×1 are representation coefficients. Once the coefficients β1,
β2 are computed, one can apply the computed coefficients to get high-resolution images at finer grids
by f̂ = Ψ̃1β1 + Ψ̃2β2, where Ψ̃1, Ψ̃2 ∈ RN×m are generated similarly as Ψ̃ using finer grids. Note that,
in a recent work of ourself [13], we have used Heaviside function to describe non-smooth components
only but in this work both smooth and non-smooth components are described using approximated
Heaviside functions.

For an image, non-smooth components such as edges are more sparsely distributed than smooth
components, we thus enforce `1 sparsity on β2 while `2 regularity on β1. The optimization model is

min
β1,β2

‖L−Ψ1β1 −Ψ2β2‖22 + λ1‖β1‖22 + λ2‖β2‖1, (6)

where λ1, λ2 are regularization parameters, L represents the low-resolution input.
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Figure 2: Left panel: surface visualization of ψ under ξ = 0.1 and nine random parameter pairs
(θ, c); Right panel: the corresponding 2D intensity images. From left to right and then from top to
bottom: (4π

5 ,
51

1024 ), ( 4π
5 ,

25
64 ), ( 4π

5 ,
175
256 ), ( 6π

5 ,
135
1024 ), ( 6π

5 ,
1
2 ), ( 6π

5 ,
25
32 ), ( 8π

5 ,
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64 ), ( 8π

5 ,
75
256 ), ( 8π

5 ,
75
128 ) (for

better visualization, we make slightly rotation to some surfaces).
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Figure 3: Left panel: surface visualization of ψ under ξ = 10−4 and the same nine parameter pairs
(θ, c) as in Fig. 2; Right panel: the corresponding 2D intensity images. (for better visualization, we
make slightly rotation to some surfaces).
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Since `1 term is not differentiable, we make a variable substitution for β2, and rewrite model (6)
as

min
β1,β2

‖L−Ψ1β1 −Ψ2β2‖22 + λ1‖β1‖22 + λ2‖u‖1, s.t., u = β2, (7)

where u is the substitution variable. Eq. (7) can be rewritten as

min
β
‖L−Ψβ‖22 + λ1‖Aβ‖22 + λ2‖u‖1, s.t., u = Bβ, (8)

where Ψ = (Ψ1,Ψ2), β = (β1, β2)′, A = (I,0) and B = (0, I). The optimization problem (8) is
separable w.r.t β and u. There are many methods to solve (8). We select alternating direction method
of multipliers (ADMM)[26, 55, 29].

The augmented Lagrangian of Eq. (8) is

L(β, u, b) = ‖L−Ψβ‖22 + λ1‖Aβ‖22 + λ2‖u‖1 +
ρ

2
‖u−Bβ + b‖22, (9)

where b is Lagrangian multiplier with proper size. The problem of minimizing L(β, u, b) is solved by
iteratively and alternatively solving the following two subproblems:

β-subproblem : min
β
‖L−Ψβ‖22 + λ1‖Aβ‖22 +

ρ

2
‖u−Bβ + b‖22, (10)

u-subproblem : min
u
λ2‖u‖1 +

ρ

2
‖u−Bβ + b‖22. (11)

The following ADMM algorithm is used to solve Eq. (8).

Algorithm 1

Input: Given low-resolution image L, Ψ1, Ψ2, λ1, λ2, ρ
Output: β

1. k ← 0, β(k) ← 0, u(k) ← 0, b(k) ← 0
2. while not converged do
3. k ← k + 1
4. β(k) ← solve subproblem (10) for u = u(k−1), b = b(k−1),
5. u(k) ← solve subproblem (11) for β = β(k), b = b(k−1),
6. b(k) ← b(k−1) + (u(k) −Bβ(k)).
7. End while.

The β-subproblem (10) can be solved by least squares method:

β = K−1r, (12)

where β ∈ R2m×1, K = (ΨTΨ + λ1A
TA+ ρ

2B
TB) ∈ R2m×2m, r = ρ

2 (u+ b) + ΨTL ∈ R2m×1.
The u-subproblem (11) has a closed form solution for each ui (see [55])

ui = shrink((Bβ)i − bi,
λ2
ρ

), (13)

where shrink(a, b) = sign(a)max(|a− b|, 0) and 0.(0/0) = 0 is assumed.

3.2 The iterative AHF method based on the proposed model

Even though model (6) takes different behaviors of smooth components and non-smooth components
into consideration, we still see some blur in the high-resolution image. We find that the difference
image L −DH(1), where H(1) is the resulted high-resolution output by model (6) and D is a down-
sampling operator, contains some residual edges. To pick up more edges and details and thus to
make results less blurry, we consider the difference L − DH(1) as a new low-resolution input L of
model (6) to recompute a residual high-resolution image H(2). This process is repeated until the resid-
ual edges are small enough. The sum of H(1) and its residual high-resolution images is the resulted
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(a) H (b) H(1) (c) H(2) (d) H(3)

Figure 4: Illustration of step 2 of Algorithm 2 using “wing” image. (a) The sum image of H(i), i = 1, 2, 3
(we set 3 iterations here) ; (b) the computed image for the first iteration. For better visualization, we
add 0.3 to the intensities of H(2) and H(3) to brighten them. From the last two images, we can see
that H(2) and H(3) pick up image details.

super-resolution image. This iterative strategy can recover more image details (see Fig. 4). The fol-
lowing Algorithm 2 is the proposed iterative AHF algorithm for single image super-resolution. We use
bicubic downsampling D in our experiments although Algorithm 2 can work for general downsampling.

Algorithm 2 (Single image super-resolution via iterative AHF method)

Input: one low-resolution image (vector-form): L ∈ Rn×1, λ1 > 0, λ2 > 0, s: upscaling factor.
τ : maximum number of iterations.

Output: high-resolution image (vector-form): Ĥ ∈ RN×1

1. Construct matrices Ψ1,Ψ2 ∈ Rn×m on coarse grids and Ψ̃1, Ψ̃2 ∈ RN×m on fine grids (see Section 3.1),
where N = s2n.

2. Initialization: L(1) = L.
for k = 1: τ

a. Compute the coefficients: (β
(k)
1 , β

(k)
2 ) = argmin‖L(k) −Ψ1β1 −Ψ2β2‖22 + λ1‖β1‖22 + λ2‖β2‖1.

b. Update the high-resolution image: H(k) = S(k) + E(k) where S(k) = Ψ̃1β
(k)
1 , E(k) = Ψ̃2β

(k)
2 .

c. Downsampling H(k) to the coarse grid: L̃ = DH(k).

d. Compute residual: L(k+1) = L(k) − L̃.
end

3. Assemble the high-resolution outputs: S =
∑τ
i=1 S

(i), E =
∑τ
i=1E

(i).
4. Compute the final high-resolution image:

Ĥ = S + c(E, p),
where c represents a convolution operator, and p is a Gaussian kernel with small size.

Note that step 2.a in Algorithm 2 is solved by Algorithm 1. As shown in Fig. 5, E represents some
edges. In particular, we use a Gaussian kernel p with size 5× 5 and standard derivation 1 to make a
convolution to reduce the oversharp information of the non-smooth component E on non-edge regions.
In addition, although we introduce some parameters in the algorithm, they are not sensitive and easy
to select. We will give a remark on parameter selection in Section 4.

3.3 Apply the proposed method to image patches

We have proposed the iterative AHF method for single image super-resolution, but it can be very
expensive if we apply it to a whole image. For instance, if one low-resolution image has size 100× 100
and the upscaling factor is 2, then Ψ1,Ψ2 with 10 angles should have size 10, 000× 100, 000. It is very
expensive to implement Algorithm 2 with large-scale non-sparse matrices. In our work, we apply the
iterative AHF method to image patches, so that we can reduce computation and storage significantly.
We set patch size to be 6×6 and overlap to be 2 pixels in our work. We take the mean as the intensity
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(a) Ĥ (b) S (c) c(E, p) (d) E

Figure 5: Illustration for the step 4 of Algorithm 2. (a) The sum image S + c(E, p); (b) the image S;
(c) the image c(E, p) which contains some edges and high-frequency information away from edges; (d)
the image E without using the convolution operator. Note that the image E contains more oversharp
information on non-edge regions than the image c(E, p). For better visualization, we add 0.3 to the
intensities of c(E, p) and E to brighten them.

of pixels at the overlapped region. Moreover, the intensity of pixels on the boundary will be handled
by bicubic interpolation.

In summary, we use a set of Heaviside functions with sharp edges to represent sharp image edges
which can be viewed as a kind of image high-frequency information. In particular, applying the
proposed method to each image patches may make image high-frequency information more significant.
This is the reason why the proposed method can pick up high-frequency information.

4 Numerical experiments

In this section, two kinds of test images are utilized to illustrate the performance of different methods.
One is low-resolution images without high-resolution ground-truth. The other is low-resolution images
downsampled from known high-resolution images, for which we can make quantitative comparisons.
All experiments are implemented in MATLAB(R2010a) on a laptop of 3.25Gb RAM and Intel(R)
Core(TM) i3-2370M CPU: @2.40 GHz.

We mainly compare the proposed method with some competitive image super-resolution methods:
nearest-neighbor interpolation, bicubic interpolation, a kernel regression method (denoted as “07’TIP”
[49]), a fast upsampling method (denoted as “08’TOG” [44]), TV-based super-resolution method (de-
noted as “11’JMIV” [8]), two state-of-the-art learning-based methods (“10’TIP” [59] and “12’BMVC”
[3]) and three state-of-the-art interpolation-based methods (denoted as “11’IPOL” [25], “11’SIAM”
[24] and “14’TIP” [54]).

For gray images, we can apply the proposed Algorithm 2 directly. For color images such as RGB,
we first transform from RGB color space to “Ycbcr” color space which is very popular in image/video
processing. “Y” represents luma component, “Cb” and “Cr” are blue-difference and red-difference
components, respectively. We only apply the proposed algorithm to the illuminance channel because
humans are more sensitive to luminance changes. In addition, we interpolate the color layers (Cb, Cr)
using bicubic interpolation. After getting the upsampled images in “Ycbcr” color space, we transform
them back to the original RGB color space for visualization.

In the experiments, we use three measures, root-mean-square error (RMSE), peak signal-noise
ration (PSNR) and the structural similarity (SSIM) index 1 [56], to evaluate quantitative performance.
Remark on parameter selection: For the parameters in Algorithm 1 and Algorithm 2, we set
ρ = 10−4, λ1 = 10−2, λ2 = 10−6, τ = 3. Matrices Ψ1, Ψ̃1 with ξ = 10−1 and Ψ2, Ψ̃2 with ξ = 10−4.
We set 12 angles evenly distributed on [0, 2π], i.e., θ = {0, π6 ,

π
3 ,

π
2 ,

2π
3 ,

5π
6 , π,

7π
6 ,

4π
3 ,

3π
2 ,

5π
3 ,

11π
6 }. We

fix q as the total number of pixels of the low-resolution patch, i.e., q = 36 for 6× 6 patches. Note that,

1https://ece.uwaterloo.ca/~z70wang/research/ssim/
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fine tuning of parameters for some images may get better results. However, we unify the parameter
selection to illustrate the stability of the proposed method.

4.1 Super-resolution for generic images

First, we test on low-resolution images without known high-resolution images (see Fig. 6). We com-
pare the proposed method with bicubic interpolation, two state-of-the-art learning-based methods
(“10’TIP” [59] and “12’BMVC” [3]), a fast upsampling method (“08’TOG” [44]) and three state-
of-the-art interpolation-based methods (“11’IPOL” [25], “11’SIAM” [24] and “14’TIP” [54]). The
upscaling factors are all 3. From the resulted images, super-resolution images by bicubic interpola-
tion generate blur effect. “08’TOG” performs well on image edges, but it smooths the intensities on
non-edge regions. The two learning-based methods (“10’TIP” and “12’BMVC”) perform compara-
ble visually. In addition, “11’IPOL” and “11’SIAM” also show similar performance. In particular,
“14’TIP” appears to be better on image edges, but it smooths out image details on non-edge regions.
The proposed method outperforms all the others, especially for image details on non-edge regions.

In Fig. 7 and Fig. 8, low-resolution test images are generated by downsampling known high-
resolution via bicubic interpolation. Since ground-truth images are known, we can compute quanti-
tative measures such as RMSE, PSNR and SSIM. The upscaling factors are set to be 4 for “baboon”
and “forest”, 3 for “field” and 2 for “leopard”. From these figures, one can see that the results of
“08’TOG” generate sharp edges but smooth the intensities on non-edge regions. TV-based method
“11’JMIV” [8] also obtains sharp edges but has oil-painting effect (e.g., see the close-up of “baboon”
in Fig. 7). Nearest-neighbor interpolation in Fig. 8 generates significant jaggy effect. Results of
bicubic interpolation and the kernel regression method “07’TIP” [49] show significant blur. Because
the proposed method can be viewed as an interpolation method, we compare our method with three
state-of-the-art interpolation-based methods (“11’IPOL” [25], “11’SIAM” [24] and “14’TIP” [54]). In
addition, we also compare the proposed method with two modern learning-based methods (“10’TIP”
[59] and “12’BMVC” [3]). As shown in Fig. 7 and Fig. 8, the proposed method obtains the best
quantitative results for almost all test examples (see captions of the two figures), and generates high-
resolution images with more image details. Actually, learning-based methods need extra training data
that can be viewed as extra prior information while our method does not require any extra data. Note
that the interpolation-based method “14’TIP” [54] keeps very sharp image edges and runs quite fast,
but it does not obtain good quantitative results and smooths image details significantly on non-edge
regions (see close-ups for better visualization). Furthermore, more quantitative results can be found
in Tab. 2 that also demonstrates the effectiveness of the proposed method.

4.2 Super-resolution for images with smooth background

The proposed method performs well for natural images. It is a better method than the compared
methods. However, the proposed method encounters a drawback: ring artifacts along large scale edges
of images with smooth background (see Fig. 9(b)). The images with smooth background are generally
obtained from single lens reflex (SLR) camera or other specific scenes. The ring artifacts mainly come
from the added non-smooth components (see step 4 of Algorithm 2). In this section, we utilize a method
without ring artifacts to make a mask, aiming to discard the ring artifacts of non-smooth components
E. We learn that bicubic interpolation will not cause ring artifacts (see the resulted images in section
4.1) and run very fast. Thus we use bicubic interpolation as our intermediate method to make the
mask. Actually, we only need to update the E in the step 4 of Algorithm 2 by Enew which is obtained
from the following equations, then we can reduce the ring artifacts significantly.

Enew = M ∗ E, (14)

where M is the mask matrix defined as follows,

M =

{
0, if 0 ≤ Gi,j ≤ t,
1, otherwise,

(15)

where Gi,j is the vector norm of gradient at the location (i, j) of image B; and the image B is a
high-resolution image generated by bicubic interpolation with an upscaling factor s; notation “∗” here
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LR Bicubic 10’TIP 08’TOG 11’IPOL

11’SIAM 12’BMVC 14’TIP Ours

LR Bicubic 10’TIP 08’TOG 11’IPOL

11’SIAM 12’BMVC 14’TIP Ours

Figure 6: Results of “butterflywing” and “landscape”, upscaling factors are all 3. From left to right
and top to bottom: low-resolution images, results of bicubic interpolation, “10’TIP” [59], “08’TOG”
[44], “11’IPOL” [25], “11’SIAM” [24], “12’BMVC” [3], “14’TIP” [54] and the proposed method (color
images are better visualized in the pdf file).
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LR Bicubic 08’TOG 11’JMIV 11’IPOL

11’SIAM 12’BMVC 14’TIP Ours

LR Bicubic 08’TOG 11’JMIV 11’IPOL

11’SIAM 12’BMVC 14’TIP Ours

Figure 7: Visual results and the corresponding (RMSE, PSNR, SSIM) of “baboon” and “forest”
by the upscaling factor of 4. First example: bicubic interpolation (19.69, 22.25, 0.704), “08’TOG”
(19.54, 22.31, 0.714), “11’JMIV” (19.81, 22.19, 0.720), “11’IPOL” (19.32, 22.41, 0.760), “11’SIAM”
(19.28, 22.43, 0.765), “12’BMVC” (19.28, 22.43, 0.749), “14’TIP” (21.51, 21.48, 0.591) and the pro-
posed method (19.20, 22.45, 0.760). Second example: bicubic interpolation (18.41, 22.83, 0.687),
“08’TOG” (18.10, 22.98, 0.701), “11’JMIV” (18.56, 22.76, 0.700), “11’IPOL” (18.23, 22.92, 0.739),
“11’SIAM” (18.02, 23.01, 0.750), “12’BMVC” (17.99, 23.03, 0.735), “14’TIP” (20.55, 21.88, 0.553) and
the proposed method (17.81, 23.09, 0.758) (Bold: the best one; Underline: the second best).
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LR Ground Nearest Bicubic

07’TIP 08’TOG 10’TIP 11’IPOL

11’SIAM 12’BMVC 14’TIP Ours

Ground 07’TIP 08’TOG 11’IPOL

11’SIAM 12’BMVC 14’TIP Ours

Figure 8: Visual results of “field” (upscaling factor 3) and “leopard” (upscaling factor 2), and the
corresponding (RMSE, PSNR, SSIM). First example: nearest-neighbor interpolation (13.01, 25.52,
0.579), bicubic interpolation (12.56, 26.20, 0.599), “07’TIP” (14.70, 25.12, 0.551), “08’TOG” (12.37,
26.32, 0.595), “10’TIP” (12.33, 26.36, 0.615), “11’IPOL” (12.28, 26.39, 0.638), “11’SIAM” (12.16,
26.50, 0.646), “12’BMVC” (12.17, 26.48, 0.631), “14’TIP” (13.86, 25.37, 0.559) and the proposed
method (12.08, 26.53, 0.642). Second example: “07’TIP” (20.25, 22.51, 0.772), “08’TOG” (16.44,
23.84, 0.832), “11’IPOL” (14.65, 24.81, 0.850), “11’SIAM” (14.40, 25.00, 0.855), “12’BMVC” (14.28,
25.01, 0.849), “14’TIP” (18.46, 22.84, 0.779) and the proposed method (14.23, 25.11, 0.858).
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Table 2: RMSE, PSNR and SSIM for more test examples (Bold: the best one; Underline: the second
best).

Image(factor) Index Bicubic 07’TIP [49] 08’TOG [44] 10’TIP [59] Ours

lena(X2)
RMSE 5.10 9.91 6.98 4.09 3.84
PSNR 33.52 28.11 31.07 36.02 37.51
SSIM 0.961 0.920 0.941 0.982 0.995

landscape(X2)
RMSE 10.75 13.55 11.74 10.09 9.63
PSNR 27.57 25.47 27.25 27.84 28.55
SSIM 0.905 0.690 0.893 0.916 0.929

purplebutterfly(X2)
RMSE 13.03 16.85 14.19 11.69 11.43
PSNR 25.14 23.71 25.30 27.26 27.35
SSIM 0.802 0.759 0.781 0.865 0.871

leaf(X3)
RMSE 17.51 18.23 17.55 17.39 17.28
PSNR 22.12 21.11 22.04 22.85 23.01
SSIM 0.726 0.715 0.720 0.733 0.741

dog(X3)
RMSE 2.12 3.76 1.95 1.93 1.85
PSNR 41.88 38.13 42.51 42.57 43.00
SSIM 0.997 0.996 0.998 0.998 0.999

fruits(X3)
RMSE 4.13 9.09 3.55 3.75 3.53
PSNR 36.11 29.55 38.61 38.00 38.66
SSIM 0.992 0.948 0.996 0.995 0.996

babyface(X3)
RMSE 5.12 8.44 4.86 4.87 4.74
PSNR 33.60 29.43 33.91 33.91 33.98
SSIM 0.957 0.925 0.962 0.962 0.964

train(X4)
RMSE 12.98 15.85 12.64 12.85 12.62
PSNR 25.29 23.28 26.07 25.55 26.14
SSIM 0.811 0.763 0.829 0.818 0.831

stands for dot product; t is a thresholding value, and we set t = 0.05 in our work. Obviously, this
strategy reduces the ring artifacts of super-resolution images (see Fig. 9(c)).

In Fig. 10, we apply the proposed method to images “comic” and “face” which have smooth
background. The upscaling factors are set to be 2 and 4, respectively. We can find more details
from the close-ups in Fig. 10. The proposed method reduces ring artifacts significantly and performs
competitive, both visually and quantitatively.

In Fig. 11, we compare the proposed method with some competitive methods. The upscaling factor
is 2. The test image “butterfly” has obvious smooth background. The results of bicubic interpola-
tion show significant blur effect. Although the results by “08’TOG” and “14’TIP” keep sharp edges
well, they make image details of non-edge regions oversmoothing. The two learning-based methods
“10’TIP” and “12’BMVC” obtain competitive visual and quantitative results (see the figure caption for
quantitative results). In addition, the two interpolation methods “11’IPOL” and “11’SIAM” generate
excellent visual results and run very fast. In particular, the proposed method preserves image details
of non-edge regions well and overcomes ring artifacts significantly. Furthermore, our method also gets
the competitive quantitative results. Please note that the quantitative results by the proposed method
in Fig. 10 and Fig. 11 are not the best, since the updating strategy in Eq. (14) can reduce ring
artifacts significantly, it however might discard some crucial information in E, e.g., image details away
from edges. This will lead to the not so good quantitative results.
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(a) LR (b) using original E (c) using updated Enew

Figure 9: Results of “butterfly” by an upscaling factor of 2. Image “butterfly” is an image with the
smooth background; (a) low-resolution image; (b) super-resolution image by the proposed method
using original E; (c) super-resolution image by the proposed method using updated Enew.

Ground 10’TIP 11’SIAM 12’BMVC Ours

Figure 10: Results of “comic” (first row, upscaling factor 2) and “face” (second row, upscaling factor
4), and the corresponding (RMSE, PSNR, SSIM). First example: “10’TIP” (11.11, 27.15, 0.886),
“11’SIAM” (10.85, 27.41, 0.896), “12’BMVC” (10.83, 27.41, 0.891) and the proposed method (11.01,
27.25, 0.888). Second example: “10’TIP” (6.59, 31.76, 0.759), “11’SIAM” (6.22, 32.26, 0.780),
“12’BMVC” (6.39, 32.15, 0.772) and the proposed method (6.36, 32.17, 0.773).
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Ground Bicubic 08’TOG

10’TIP 11’IPOL 11’SIAM

12’BMVC 14’TIP Ours

Figure 11: Results of “butterfly” by an upscaling factor of 2. First row: ground-truth, results of bicubic
interpolation (6.36, 32.05, 0.956), “08’TOG” (8.08, 29.97, 0.942). Second row: results of “10’TIP”
(5.14, 33.86, 0.964), “11’IPOL” (5.32, 33.61, 0.966) and “11’SIAM” (5.22, 33.78, 0.967). Third row:
results of “12’BMVC” (4.90, 34.33, 0.969), “14’TIP” (9.47, 28.58, 0.928) and the proposed method
(5.15, 33.81, 0.967).
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LR 09’ICCV 13’ICCV 14’ECCV Ours

Figure 12: Results of “girl” (first row) and “animal” (second row) with the upscaling factor of 3. From
left to right: low-resolution images, results of “09’ICCV” [11], “13’ICCV” [51], “14’ECCV” [15] and
the proposed method.

4.3 Discussions

More comparison: We further compare the proposed method with three recent state-of-the-art
methods, i.e., “09’ICCV” [11], “13’ICCV” [51] and “14’ECCV” [15]. The proposed method actually
can be viewed as interpolation-based method. It does not need any extra information for training,
and is a completely single image super-resolution method. The methods “13’ICCV and “14’ECCV are
two competitive learning based methods. In particular, “14’ECCV utilizes the recent most efficient
technique: deep learning. They first utilize extra training data to learn dictionaries, and then apply
the dictionaries to get the final super-resolution images. Furthermore, the method “09’ICCV” is a
very novel and efficient single image super-resolution method. From Fig. 12, we can observe that
the proposed method performs comparably with the others, including image edges and the details on
non-edge regions.

More on parameters selection: The proposed method involves many parameters, e.g., λ1, λ2, ξ1,
ξ2, patch size, etc. However, they are easy to select because the results are not sensitive to the selection
of parameters (see ξ1, ξ2 in Tab. 3 and λ1, λ2 in Tab. 4). Actually, choosing suitable parameters is
always a difficulty to many algorithms. Tuning empirically is a popular way for determining parame-
ters. In our work, we obtain the parameters empirically. For instance, for λ1 and λ2, we first fix one
parameter λ1, and then tune λ2 with 10 times change. For instance, we fix λ1 = 10−2, then tune λ2
by 10−3, 10−4, 10−5, 10−6, 10−7, etc. When we find λ2 = 10−6 is the best one for λ1, then tune λ2
in the rang of [10−5, 10−7], e.g., 5 × 10−6 and 5 × 10−7. Actually, the results around λ1 = 10−2 and
λ2 = 10−6 also do not show obvious difference (see Tab. 4). Fine tuning of parameters might lead to
slightly better results (see Tab. 5). But to make it simple, we set λ1 = 10−2, λ2 = 10−6 in all test
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examples. Under this setting, the results are already good enough for comparisons. We choose values
for other parameters in a similar way.

Table 3: RMSE around ξ1 = 10−1 and ξ2 = 10−4. Test example is “field” in Fig. 8.

H
HHHHξ2

ξ1 0.8× 10−1 1× 10−1 1.2× 10−1

0.8× 10−4 12.09 12.08 12.07
1× 10−4 12.10 12.08 12.07

1.2× 10−4 12.09 12.08 12.08

Table 4: RMSE around λ1 = 10−2 and λ2 = 10−6.

HHH
HHλ2

λ1 0.8× 10−2 1× 10−2 1.2× 10−2

0.8× 10−6 12.09 12.08 12.08
1× 10−6 12.09 12.08 12.08
5× 10−6 12.10 12.09 12.08

Table 5: RMSE of the proposed method when setting λ1 from 5 × 10−1 to 1 × 10−3 and λ2 from
1× 10−3 to 1× 10−7 (Bold: the best one; Underline: the second best).

HHH
HHλ2

λ1 5× 10−1 1× 10−1 5× 10−2 1× 10−2 5× 10−3 1× 10−3

1× 10−3 12.16 12.14 12.13 12.11 12.13 12.18
1× 10−4 12.13 12.12 12.11 12.10 12.12 12.17
1× 10−5 12.11 12.10 12.10 12.09 12.11 12.15
5× 10−6 12.09 12.07 12.08 12.08 12.11 12.14
1× 10−6 12.09 12.07 12.07 12.08 12.10 12.14
5× 10−7 12.10 12.08 12.08 12.10 12.10 12.14
1× 10−7 12.11 12.10 12.09 12.11 12.11 12.17

Computation time: From Fig. 13(a), we know that the computation time does not increase sig-
nificantly when the upscaling factor is increased from 2 to 9. Using our non-optimized Matlab code,
it is about below 10 seconds for a low-resolution image 60 × 60. From Fig. 13(b), when the size of
low-resolution image is from 30×30 to 110×110, the computation time is increased from 3 seconds to
34 seconds. We can conclude that the computation time mainly depends on the size of low-resolution
image but not so significantly on the upscaling factor, since the main computation is to compute co-
efficients β1 and β2 via the low-resolution image. Note that, there is a lot of room to speed up the
speed. We can use cmex in Matlab to speed up the code that involves a lot of loops. We can also use
parallel computing as the computation is done patch by patch.

About θ and c: The proposed method is based on the approximated Heaviside function that mainly
depends on two factors θ and c (see Eq. (4)). Here, we tend to study the relations on RMSE, com-
putation time and parameter pairs. From the first row of Fig. 14, the RMSE of the proposed method
decreases smoothly (only about 0.05 RMSE reduction) with q increasing from 36 to 90 when setting
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Figure 13: (a) Computation time v.s. upscaling factor for low-resolution image with the size of 60×60.
(b) Computation time v.s. size of low-resolution image, the size of low-resolution image is increased
from 30× 30 to 110× 110 and the upscaling factor is always set to be 5. The experimental computer
is with 3.47GB RAM, Inter(R) Core(TM) i3-2130 CPU, @3.40GHz. Note that each value reported in
the figure is the average of 10 runs.

k = 12, while computation time increases significantly from about 20 seconds to 60 seconds. Thus
more parameter pairs (k, q) lead to better approximation but more computation as the matrices Ψ1

and Ψ2 will become larger. In particular, we also can get similar conclusions for the second row of
Fig. 14. In the experiments, to balance computation efficiency and quality, we set k = 12, q = 36
empirically (see the parameter selection before section 4.1).

The relation between model (6) and model (6) combined with iterative idea: It is necessary
to illustrate the relation between model (6) and model(6) combined with our iterative idea. Actually,
there is only fine visual difference, especially in image details and edges, between model (6) and model
(6) combined with our iterative idea. Due to small magnitude of the difference, there is no significant
visual difference between the two methods. However, from Fig. 15, it is easy to know that the proposed
model (6) combined with the iterative AHF method performs smaller RMSE than the proposed model
(6). In particular, the model (6) with the iterative strategy will result in more computation.

5 Conclusions

In this paper, we casted image super-resolution problem as an intensity function estimation problem.
We assumed the underlying intensity function, defined on a continuous domain and belonging to a space
with redundant basis, could be approximately represented by two classes of approximated Heaviside
functions (AHFs). The representation coefficients were computed by the proposed iterative AHF
method using only one low-resolution image. We then applied the coefficients to get high-resolution
images. To reduce computation and storage, we applied the proposed iterative AHF method to image
patches. For images with smooth background, we designed a strategy utilizing image gradient to reduce
ring artifacts along large scale edges. The method can be applied to any upscaling factors and needs
no extra data for learning. In particular, we also discussed the parameter selection and computation
time. Many experiments show that the proposed approach outperforms existing competitive methods,
both visually and quantitatively.
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Figure 14: The investigation on RMSE, computation time and the number of parameter pairs (k, q).
First row: k = 12, the RMSE of the proposed method decreases smoothly with the number of pixels
q increasing from 36 to 90 (left); whereas the computation time increases significantly (right). Second
row: q = 36, the RMSE of the proposed method decreases smoothly with the number of directions k
increasing from 12 to 60 (left); whereas the computation time increases significantly (right). It demon-
strate that there is no significant RMSE reduction with more parameter pairs (k, q), but increasing
computation time apparently.
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RMSE = 19.20 RMSE = 19.28

RMSE = 17.81 RMSE = 17.92

Figure 15: First column: results of model (6) with iterative AHF method. Second column: results of
model (6) without iterative AHF method. Third column: error maps (for better vision, we add extra
intensity 30/255 to true error maps). Upscaling factors: 4.
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