
A DEMO OF ADMM METHOD FOR 1D SINGAL RECOVERY

Liang-Jian Deng ∗

School of Mathematical Sciences, University of Electronic Science and
Technology of China (UESTC), China

Emai: liangjian.deng@uestc.edu.cn
Address: A-401, Innovation Center, UESTC

ABSTRACT
In this manuscript, we will give the details of how to im-

plement ADMM method for 1D signal recovery.

1. INTRODUCTION

Problem (degraded signal formulation):

y = Ax+ n, (1)

where y ∈ Rm×1 is the observed degraded signal, x ∈ Rn×1

is the true sparse signal (no noise, no downsampling),
A ∈ Rm×n is a degraded matrix/operator (downsampling),
and n ∈ Rm×1 is the added sparse noise. Our Goal is to
recover x from the given model (1).

Optimization model for (1):

min
x
‖y −Ax‖1 + λ‖x‖1, (2)

To solve (2), we use ADMM algorithm to do it. The fol-
lowing is the detailed steps of ADMM.

1. Using two new variables u, v to substitute y−Ax and
x, respectively, i.e., u = y −Ax and v = x, then get
the following constrained minimization problem:

min
u,v

‖u‖1 + λ‖v‖1,

s.t., u = y −Ax, v = x
(3)

2. For the constrained problem (3), we may get Aug-
mented Lagrange Equation as follows,

L(u, v, x, b1, b2) =‖u‖1 +
β1
2
‖u− (y −Ax) + b1‖22

λ‖v‖1 +
β2
2
‖v − x+ b2‖22,

(4)

3. Now, we turn to minimize the problem (4) with multi-
ple unknown variables, see, e.g., u, v, x, b1, b2,

min
u,v,x,b1,b2

L(u, v, x, b1, b2) (5)

How to compute this minimization problem with
multiple unknown variables?
We use alternative direction method of multipliers
(ADMM), which to compute one variable problem
by fixing other variables for each time! (Details of
ADMM will be illustrated in Sect. 1.1)

1.1. Details of ADMM

For the minimization of (5), we compute one variable prob-
lem by fixing other variables for each time!

Initialization: y and A known; set vectors x(0) = b
(0)
1 =

b
(0)
1 = 0; given numbers λ, β1 and β2; k = 0

1. u-subproblem: First, to find the u-involved minimiza-
tion problem from (5), i.e.,

min
u
‖u‖1 +

β1
2
‖u− (y −Ax) + b1‖22, (6)

which has the following closed-form solution on (k+1)
iteration:

u(k+1) = Shrink
(
y −Ax(k) − b

(k)
1 ,

1

β1

)
, (7)

where Shrink(a, b) = sign(a). ∗max(|a| − b, 0).

2. v-subproblem: to find the v-involved minimization
problem from (5), i.e.,

min
v

λ‖v‖1 +
β2
2
‖v − x− b2‖22, (8)

which has the following closed-form solution:

v(k+1) = Shrink
(
x(k) − b

(k)
2 ,

λ

β2

)
. (9)

3. x-subproblem: to find the x-involved minimization
problem from (5), i.e.,

min
x

β1
2
‖u− (y −Ax) + b1‖22 +

β2
2
‖v − x+ b2‖22,

(10)

Fig. 1. Check if your results follow this figure? If yes, your code is right! (Left) Original signal; (Middle) Noisy signal;
(Right) Recoverd signal by model (2) and ADMM algorithm.

which has the following closed-form solution by least
squares method:

x(k+1) =(β1A
TA+ β2I)

−1r(k) (11)

where r(k) = β2(v
(k+1)+b

(k)
2)−β1AT (u(k+1)−y+

b
(k)
1), and I is an identity matrix.

4. Update b1 and b2 :

b
(k+1)
1 = b

(k)
1 + 1.618 ∗

(
u(k+1) − (y −Ax(k+1))

)
b
(k+1)
2 = b

(k)
2 + 1.618 ∗ (v(k+1) − x(k+1))

(12)

5. Go back to step 1 until reaching the pre-defined toler-
ance.

Summarize the above algorithm to get the following Al-
gorithm 1 for solve (2).

Algorithm 1: The ADMM algorithm for the model (2)

Input: y, A; λ, β1 and β2; MaxIte = 500; tol = 10−8

Output: Recovered signal x̃
Initialize: x(0) = b

(0)
1 = b

(0)
1 = 0; ReErr = 1, k = 0

While ReErr > tol && k < MaxIter
1) Compute u(k+1) by (7)
2) Compute v(k+1) by (9)
3) Compute x(k+1) by (11)
4) Update b

(k+1)
1 and b

(k+1)
2 by (12)

5) Calculate ReErr = ‖x(k+1)−x(k)‖2
‖x(k+1)‖2

6) k = k + 1
end

7) Output the final recovered signal x as the final result x̃.

1.2. Please coding Algorithm 1 and getting the corre-
sponding solution for 1D signal recovery

Setting the simulation experiment by the following (given in
the code), then please coding ADMM by Algorithm 1 to get
the results

1. clear all; close all;
2. rng(0); % for reproducibility
3. m = 50; % num samples
4. n = 200; % num variables, note that n ¿ m
5. A = rand(m, n);
6. x = zeros(n, 1);
7. nz = 10; % 10 non-zeros variables
8. nz idx = randperm(n);
9. x(nz idx(1:nz)) = 2 * rand(nz, 1);
10. y = A*x;
11. y = y + 0.1 * rand(m, 1); % add some noise
12. · · · · · · (coding Algorithm 1 by yourself from here)

1.3. Q: How to extend 1D signal recovery to 2D image
recovery?

